
ARAH: Animatable Volume Rendering of
Articulated Human SDFs

Shaofei Wang1, Katja Schwarz2,3, Andreas Geiger2,3, and Siyu Tang1

1 ETH Zürich
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Abstract. Combining human body models with differentiable rendering
has recently enabled animatable avatars of clothed humans from sparse
sets of multi-view RGB videos. While state-of-the-art approaches achieve
a realistic appearance with neural radiance fields (NeRF), the inferred
geometry often lacks detail due to missing geometric constraints. Fur-
ther, animating avatars in out-of-distribution poses is not yet possible
because the mapping from observation space to canonical space does
not generalize faithfully to unseen poses. In this work, we address these
shortcomings and propose a model to create animatable clothed human
avatars with detailed geometry that generalize well to out-of-distribution
poses. To achieve detailed geometry, we combine an articulated implicit
surface representation with volume rendering. For generalization, we pro-
pose a novel joint root-finding algorithm for simultaneous ray-surface
intersection search and correspondence search. Our algorithm enables
efficient point sampling and accurate point canonicalization while gener-
alizing well to unseen poses. We demonstrate that our proposed pipeline
can generate clothed avatars with high-quality pose-dependent geome-
try and appearance from a sparse set of multi-view RGB videos. Our
method achieves state-of-the-art performance on geometry and appear-
ance reconstruction while creating animatable avatars that generalize
well to out-of-distribution poses beyond the small number of training
poses.

Keywords: 3D Computer Vision, Clothed HumanModeling, Cloth Mod-
eling, Neural Rendering, Neural Implicit Functions

1 Introduction

Reconstruction and animation of clothed human avatars is a rising topic in
computer vision research. It is of particular interest for various applications in
AR/VR and the future metaverse. Various sensors can be used to create clothed
human avatars, ranging from 4D scanners over depth sensors to simple RGB
cameras. Among these data sources, RGB videos are by far the most accessi-
ble and user-friendly choice. However, they also provide the least supervision,
making this setup the most challenging for the reconstruction and animation of
clothed humans.
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Our Results on
Out-of-distribution Poses

Existing Works
(Neural Body, Ani-NeRF)

Fig. 1: Detailed Geometry and Generalization to Extreme Poses. Given
sparse multi-view videos with SMPL fittings and foreground masks, our approach
synthesizes animatable clothed avatars with realistic pose-dependent geometry
and appearance. While existing works, e.g . Neural Body [60] and Ani-NeRF [58],
struggle with generalizing to unseen poses, our approach enables avatars that
can be animated in extreme out-of-distribution poses.

Traditional works in clothed human modeling use explicit mesh [1,2,6,7,18,
19, 31, 35, 56, 69, 75, 85, 90] or truncated signed distance fields (TSDFs) of fixed
grid resolution [36,37,73,83,88] to represent the geometry of humans. Textures
are often represented by vertex colors or UV-maps. With the recent success
of neural implicit representations, significant progress has been made towards
modeling articulated clothed humans. PIFu [65] and PIFuHD [66] are among the
first works that propose to model clothed humans as continuous neural implicit
functions. ARCH [25] extends this idea and develops animatable clothed human
avatars from monocular images. However, this line of works does not handle
dynamic pose-dependent cloth deformations. Further, they require ground-truth
geometry for training. Such ground-truth data is expensive to acquire, limiting
the generalization of these methods.

Another line of works removes the need for ground-truth geometry by utiliz-
ing differentiable neural rendering. These methods aim to reconstruct humans
from a sparse set of multi-view videos with only image supervision. Many of
them use NeRF [49] as the underlying representation and achieve impressive vi-
sual fidelity on novel view synthesis tasks. However, there are two fundamental
drawbacks of these existing approaches: (1) the NeRF-based representation lacks
proper geometric regularization, leading to inaccurate geometry. This is particu-
larly detrimental in a sparse multi-view setup and often results in artifacts in the
form of erroneous color blobs under novel views or poses. (2) Existing approaches
condition their NeRF networks [60] or canonicalization networks [58] on inputs
in observation space. Thus, they cannot generalize to unseen out-of-distribution
poses.

In this work, we address these two major drawbacks of existing approaches.
(1) We improve geometry by building an articulated signed-distance-field (SDF)
representation for clothed human bodies to better capture the geometry of
clothed humans and improve the rendering quality. (2) In order to render the
SDF, we develop an efficient joint root-finding algorithm for the conversion from
observation space to canonical space. Specifically, we represent clothed human
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avatars as a combination of a forward linear blend skinning (LBS) network, an
implicit SDF network, and a color network, all defined in canonical space and do
not condition on inputs in observation space. Given these networks and camera
rays in observation space, we apply our novel joint root-finding algorithm that
can efficiently find the iso-surface points in observation space and their corre-
spondences in canonical space. This enables us to perform efficient sampling on
camera rays around the iso-surface. All network modules can be trained with a
photometric loss in image space and regularization losses in canonical space.

We validate our approach on the ZJU-MoCap [60] and the H36M [26] dataset.
Our approach generalizes well to unseen poses, enabling robust animation of
clothed avatars even under out-of-distribution poses where existing works fail,
as shown in Fig. 1. We achieve significant improvements over state-of-the-arts
for novel pose synthesis and geometry reconstruction, while also outperforming
state-of-the-arts in the novel view synthesis task on training poses. Code and
data are available at https://neuralbodies.github.io/arah/.

2 Related Works

Clothed Human Modeling with Explicit Representations: Many ex-
plicit mesh-based approaches represent cloth deformations as deformation lay-
ers [1, 2, 6–8] added to minimally clothed parametric human body models [5,
21, 28, 39, 54, 57, 82]. Such approaches enjoy compatibility with parametric hu-
man body models but have difficulties in modeling large garment deformations.
Other mesh-based approaches model garments as separate meshes [18,19,31,35,
56,69,75,85,90] in order to represent more detailed and physically plausible cloth
deformations. However, such methods often require accurate 3D-surface registra-
tion, synthetic 3D data or dense multi-view images for training and the garment
meshes need to be pre-defined for each cloth type. More recently, point-cloud-
based explicit methods [40, 42, 89] also showed promising results in modeling
clothed humans. However, they still require explicit 3D or depth supervision
for training, while our goal is to train using sparse multi-view RGB supervision
alone.

Clothed Humans as Implicit Functions: Neural implicit functions [13, 44,
45, 55, 61] have been used to model clothed humans from various sensor inputs
including monocular images [22,23,25,33,64–66,72,80,93], multi-view videos [30,
38, 52, 58, 60, 81], sparse point clouds [6, 14, 16, 77, 78, 94], or 3D meshes [11, 12,
15,47,48,67,74]. Among the image-based methods, [4,23,25] obtain animatable
reconstructions of clothed humans from a single image. However, they do not
model pose-dependent cloth deformations and require ground-truth geometry for
training. [30] learns generalizable NeRF models for human performance capture
and only requires multi-view images as supervision. But it needs images as inputs
for synthesizing novel poses. [38, 52, 58, 60, 81] take multi-view videos as inputs
and do not need ground-truth geometry during training. These methods generate

https://neuralbodies.github.io/arah/
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personalized per-subject avatars and only need 2D supervision. Our approach
follows this line of work and also learns a personalized avatar for each subject.

Neural Rendering of Animatable Clothed Humans: Differentiable neural
rendering has been extended to model animatable human bodies by a number
of recent works [52, 58, 60, 63, 72, 81]. Neural Body [60] proposes to diffuse la-
tent per-vertex codes associated with SMPL meshes in observation space and
condition NeRF [49] on such latent codes. However, the conditional inputs of
Neural Body are in the observation space. Therefore, it does not generalize well
to out-of-distribution poses. Several recent works [52, 58, 72] propose to model
the radiance field in canonical space and use a pre-defined or learned back-
ward mapping to map query points from observation space to this canonical
space. A-NeRF [72] uses a deterministic backward mapping defined by piece-
wise rigid bone transformations. This mapping is very coarse and the model
has to use a complicated bone-relative embedding to compensate for that. Ani-
NeRF [58] trains a backward LBS network that does not generalize well to out-
of-distribution poses, even when fine-tuned with a cycle consistency loss for its
backward LBS network for each test pose. Further, all aforementioned methods
utilize a volumetric radiance representation and hence suffer from noisy geome-
try [53,76,86,87]. In contrast to these works, we improve geometry by combining
an implicit surface representation with volume rendering and improve pose gen-
eralization via iterative root-finding. H-NeRF [81] achieves large improvements
in geometric reconstruction by co-training SDF and NeRF networks. However,
code and models of H-NeRF are not publicly available. Furthermore, H-NeRF’s
canonicalization process relies on imGHUM [3] to predict an accurate signed
distance in observation space. Therefore, imGHUM needs to be trained on a
large corpus of posed human scans and it is unclear whether the learned signed
distance fields generalize to out-of-distribution poses beyond the training set. In
contrast, our approach does not need to be trained on any posed scans and it
can generalize to extreme out-of-distribution poses.

Concurrent Works: Several concurrent works extend NeRF-based articulated
models to improve novel view synthesis, geometry reconstruction, or animation
quality [10,24,27,32,46,59,71,79,84,92]. [92] proposes to jointly learn forward
blending weights, a canonical occupancy network, and a canonical color network
using differentiable surface rendering for head-avatars. In contrast to human
heads, human bodies show much more articulation. Abrupt changes in depth
also occur more frequently when rendering human bodies, which is difficult to
capture with surface rendering [76]. Furthermore, [92] uses the secant method
to find surface points. For each secant step, this needs to solve a root-finding
problem from scratch. Instead, we use volume rendering of SDFs and formulate
the surface-finding task of articulated SDFs as a joint root-finding problem that
only needs to be solved once per ray. We remark that [27] proposes to formu-
late surface-finding and correspondence search as a joint root-finding problem
to tackle geometry reconstruction from photometric and mask losses. However,
they use pre-defined skinning fields and surface rendering. They also require esti-
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(a) Root-finding and point sampling

Near Surface Points
Surface Points

(b) Canonicalization of sampled points

SDF Color

Predict Pixel

(c) SDF-based volume rendering

GT Pixel

L1 
Loss

Far Surface Points

(d) Photometric loss

Joint root-finding
(Sec 3.3)

Fig. 2: Overview of Our Pipeline. (a) Given a ray (c,v) with camera center
c and ray direction v in observation space, we jointly search for its intersec-
tion with the SDF iso-surface and the correspondence of the intersection point
via a novel joint root-finding algorithm (Section 3.3). We then sample near/far
surface points {x̄}. (b) The sampled points are mapped into canonical space
as {x̂} via root-finding. (c) In canonical space, we run an SDF-based volume
rendering with canonicalized points {x̂}, local body poses and shape (θ, β), an
SDF network feature z, surface normals n, and a per-frame latent code Z to
predict the corresponding pixel value of the input ray (Section 3.4). (d) All net-
work modules, including the forward LBS network LBSσω

, the canonical SDF
network fσf

, and the canonical color network fσc
, are trained end-to-end with

a photometric loss in image space and regularization losses in canonical space
(Section 3.5).

mated normals from PIFuHD [66] while our approach achieves detailed geometry
reconstructions without such supervision.

3 Method

Our pipeline is illustrated in Fig. 2. Our model consists of a forward linear blend
skinning (LBS) network (Section 3.1), a canonical SDF network, and a canon-
ical color network (Section 3.2). When rendering a specific pixel of the image
in observation space, we first find the intersection of the corresponding camera
ray and the observation-space SDF iso-surface. Since we model a canonical SDF
and a forward LBS, we propose a novel joint root-finding algorithm that can
simultaneously search for the ray-surface intersection and the canonical corre-
spondence of the intersection point (Section 3.3). Such a formulation does not
condition the networks on observations in observation space. Consequently, it
can generalize to unseen poses. Once the ray-surface intersection is found, we
sample near/far surface points on the camera ray and find their canonical corre-
spondences via forward LBS root-finding. The canonicalized points are used for
volume rendering to compose the final RGB value at the pixel (Section 3.4). The
predicted pixel color is then compared to the observation using a photometric
loss (Section 3.5). The model is trained end-to-end using the photometric loss
and regularization losses. The learned networks represent a personalized animat-
able avatar that can robustly synthesize new geometries and appearances under
novel poses (Section 4.1).
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3.1 Neural Linear Blend Skinning

Traditional parametric human body models [5, 21, 39, 54, 57, 82] often use lin-
ear blend skinning (LBS) to deform a template model according to rigid bone
transformations and skinning weights. We follow the notations of [78] to de-

scribe LBS. Given a set of N points in canonical space, X̂ = {x̂(i)}Ni=1, LBS
takes a set of rigid bone transformations {Bb}24b=1 as inputs, each Bb being a
4×4 rotation-translation matrix. We use 23 local transformations and one global
transformation with an underlying SMPL [39] model. For a 3D point x̂(i) ∈ X̂ 4,

a skinning weight vector is defined as w(i) ∈ [0, 1]24, s.t.
∑24

b=1 w
(i)
b = 1. This

vector indicates the affinity of the point x̂(i) to each of the bone transforma-
tions {Bb}24b=1. Following recent works [12, 48, 67, 78], we use a neural network
fσω (·) : R3 7→ [0, 1]24 with parameters σω to predict the skinning weights of any

point in space. The set of transformed points X̄ = {x̄(i)}Ni=1 is related to X̂ via:

x̄(i) = LBSσω

(
x̂(i), {Bb}

)
, ∀i = 1, . . . , N

⇐⇒x̄(i) =

(
24∑
b=1

fσω
(x̂(i))bBb

)
x̂(i), ∀i = 1, . . . , N (1)

where Eq. (1) is referred to as the forward LBS function. The process of applying

Eq. (1) to all points in X̂ is often referred to as forward skinning. For brevity,
for the remainder of the paper, we drop {Bb} from the LBS function and write
LBSσω

(x̂(i), {Bb}) as LBSσω
(x̂(i)).

3.2 Canonical SDF and Color Networks

We model an articulated human as a neural SDF fσf
(x̂, θ, β,Z) with parameters

σf in canonical space, where x̂ denotes the canonical query point, θ and β
denote local poses and body shape of the human which capture pose-dependent
cloth deformations, and Z denotes a per-frame optimizable latent code which
compensates for time-dependent dynamic cloth deformations. For brevity, we
write this neural SDF as fσf

(x̂) in the remainder of the paper.
Similar to the canonical SDF network, we define a canonical color network

with parameters σc as fσc
(x̂,n,v, z,Z) : R9+|z|+|Z| 7→ R3. Here, n denotes

a normal vector in the observation space. n is computed by transforming the
canonical normal vectors using the rotational part of forward transformations∑24

b=1 fσω
(x̂(i))bBb (Eq. (1)). v denotes viewing direction. Similar to [76,86,87],

z denotes an SDF feature which is extracted from the output of the second-last
layer of the neural SDF. Z denotes a per-frame latent code which is shared with
the SDF network. It compensates for time-dependent dynamic lighting effects.
The outputs of fσc are RGB color values in the range [0, 1].

4 with slight abuse of notation, we also use x̂ to represent points in homogeneous
coordinates when necessary.
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3.3 Joint Root-Finding

While surface rendering [51, 87] could be used to learn the network parameters
introduced in Sections 3.1 and 3.2, it cannot handle abrupt changes in depth, as
demonstrated in [76]. We also observe severe geometric artifacts when applying
surface rendering to our setup, we refer readers to Appendix F for such an
ablation. On the other hand, volume rendering can better handle abrupt depth
changes in articulated human rendering. However, volume rendering requires
multi-step dense sampling on camera rays [76,86], which, when combined naively
with the iterative root-finding algorithm [12], requires significantly more memory
and becomes prohibitively slow to train and test. We thus employ a hybrid
method similar to [53]. We first search the ray-surface intersection and then
sample near/far surface points on the ray. In practice, we initialize our SDF
network with [78]. Thus, we fix the sampling depth interval around the surface
to [−5cm,+5cm].

A naive way of finding the ray-surface intersection is to use sphere tracing [20]
and map each point to canonical space via root-finding [12]. In this case, we
need to solve the costly root-finding problem during each step of the sphere
tracing. This becomes prohibitively expensive when the number of rays is large.
Thus, we propose an alternative solution. We leverage the skinning weights of
the nearest neighbor on the registered SMPL mesh to the query point x̄ and
use the inverse of the linearly combined forward bone transforms to map x̄
to its rough canonical correspondence. Combining this approximate backward
mapping with sphere tracing, we obtain rough estimations of intersection points.
Then, starting from these rough estimations, we apply a novel joint root-finding
algorithm to search the precise intersection points and their correspondences in
canonical space. In practice, we found that using a single initialization for our
joint root-finding works well already. Adding more initializations incurs drastic
memory and runtime overhead while not achieving any noticeable improvements.
We hypothesize that this is due to the fact that our initialization is obtained
using inverse transformations with SMPL skinning weights rather than rigid
bone transformations (as was done in [12]).

Formally, we define a camera ray as r = (c,v) where c is the camera center
and v is a unit vector that defines the direction of this camera ray. Any point on
the camera ray can be expressed as c+v · d with d >= 0. The joint root-finding
aims to find canonical point x̂ and depth d on the ray in observation space, such
that:

fσf
(x̂) = 0

LBSσω (x̂)− (c+ v · d) = 0 (2)

in which c,v are constants per ray. Denoting the joint vector-valued function as
gσf ,σω (x̂, d) and the joint root-finding problem as:

gσf ,σω (x̂, d) =

[
fσf

(x̂)
LBSσω (x̂)− (c+ v · d)

]
= 0 (3)
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we can then solve it via Newton’s method[
x̂k+1

dk+1

]
=

[
x̂k

dk

]
− J−1

k · gσf ,σω (x̂k, dk) (4)

where:

Jk =

 ∂fσf

∂x̂ (x̂k) 0

∂LBSσω

∂x̂ (x̂k) −v

 (5)

Following [12], we use Broyden’s method to avoid computing Jk at each iteration.

Amortized Complexity: Given the number of sphere-tracing steps as N and
the number of root-finding steps as M, the amortized complexity for joint root-
finding is O(M) while naive alternation between sphere-tracing and root-finding
is O(MN). In practice, this results in about 5× speed up of joint root-finding
compared to the naive alternation between sphere-tracing and root-finding. We
also note that from a theoretical perspective, our proposed joint root-finding
converges quadratically while the secant-method-based root-finding in the con-
current work [92] converges only superlinearly.

We describe how to compute implicit gradients wrt. the canonical SDF and
the forward LBS in Appendix C. In the main paper, we use volume rendering
which does not need to compute implicit gradients wrt. the canonical SDF.

3.4 Differentiable Volume Rendering

We employ a recently proposed SDF-based volume rendering formulation [86].
Specifically, we convert SDF values into density values σ using the scaled CDF
of the Laplace distribution with the negated SDF values as input

σ(x̂) =
1

b

(
1

2
+

1

2
sign(−fσf

(x̂)
)(
1− exp(−

| − fσf
(x̂)|

b
)

)
(6)

where b is a learnable parameter. Given the surface point found via solving
Eq. (3), we sample 16 points around the surface points and another 16 points
between the near scene bound and the surface point, and map them to canonical
space along with the surface point. For rays that do not intersect with any
surface, we uniformly sample 64 points for volume rendering. With N sampled
points on a ray r = (c,v), we use standard volume rendering [49] to render the
pixel color

Ĉ(r) =

N∑
i=1

T (i)
(
1− exp(−σ(x̂(i))δ(i))

)
fcσ (x̂

(i),n(i),v, z,Z) (7)

T (i) = exp

−
∑
j<i

σ(x̂(j))δ(j)

 (8)

where δ(i) = |d(i+1) − d(i)|.
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3.5 Loss Function

Our loss consists of a photometric loss in observation space and multiple regu-
larizers in canonical space

L = λC · LC + λE · LE + λO · LO + λI · LI + λS · LS (9)

LC is the L1 loss for color predictions. LE is the Eikonal regularization [17].
LO is an off-surface point loss, encouraging points far away from the SMPL
mesh to have positive SDF values. Similarly, LI regularizes points inside the
canonical SMPL mesh to have negative SDF values. LS encourages the forward
LBS network to predict similar skinning weights to the canonical SMPL mesh.
Different from [27, 81, 87], we do not use an explicit silhouette loss. Instead, we
utilize foreground masks and set all background pixel values to zero. In practice,
this encourages the SDF network to predict positive SDF values for points on
rays that do not intersect with foreground masks. For detailed definitions of loss
terms and model architectures, please refer to Appendix A, B.

4 Experiments

We validate the generalization ability and reconstruction quality of our proposed
method against several recent baselines [58, 60, 72]. As was done in [60], we
consider a setup with 4 cameras positioned equally spaced around the human
subject. For an ablation study on different design choices of our model, including
ray sampling strategy, LBS networks, and number of initializations for root-
finding, we refer readers to Appendix F.

Datasets: We use the ZJU-MoCap [60] dataset as our primary testbed because
its setup includes 23 cameras which allows us to extract pseudo-ground-truth
geometry to evaluate our model. More specifically, the dataset consists of 9
sequences captured with 23 calibrated cameras. We use the training/testing splits
from Neural Body [60] for both the cameras and the poses. As one of our goals
is learn to detailed geometry, we collect pseudo-ground-truth geometry for the
training poses. We use all 23 cameras and apply NeuS with a background NeRF
model [76], a state-of-the-art method for multi-view reconstruction. Note that
we refrain from using the masks provided by Neural Body [60] as these masks are
noisy and insufficient for accurate static scene reconstruction. We observe that
geometry reconstruction with NeuS [76] fails when subjects wear black clothes
or the environmental light is not bright enough. Therefore, we manually exclude
bad reconstructions and discard sequences with less than 3 valid reconstructions.
For completeness, we also tested our approach on the H36M dataset [26] and
report a quantitative comparison to [52,58] in Appendix G.

Baselines: We compare against three major baselines: Neural Body [60](NB),
Ani-NeRF [58](AniN), and A-NeRF [72](AN). Neural Body diffuses per-SMPL-
vertex latent codes into observation space as additional conditioning for NeRF
models to achieve state-of-the-art novel view synthesis results on training poses.
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Ani-NeRF learns a canonical NeRF model and a backward LBS network which
predicts residuals to the deterministic SMPL-based backward LBS. Consequently,
the LBS network needs to be re-trained for each test sequence. A-NeRF em-
ploys a deterministic backward mapping with bone-relative embeddings for query
points and only uses keypoints and joint rotations instead of surface models (i.e.
SMPL surface). For the detailed setups of these baselines, please refer to Ap-
pendix E.

Benchmark Tasks: We benchmark our approach on three tasks: generalization
to unseen poses, geometry reconstruction, and novel-view synthesis. To analyze
generalization ability, we evaluate the trained models on unseen testing poses.
Due to the stochastic nature of cloth deformations, we quantify performance via
perceptual similarity to the ground-truth images with the LPIPS [91] metric.
We report PSNR and SSIM in Appendix G. We also encourage readers to check
out qualitative comparison videos at https://neuralbodies.github.io/arah/.

For geometry reconstruction, we evaluate our method and baselines on the
training poses. We report point-based L2 Chamfer distance (CD) and normal
consistency (NC) wrt. the pseudo-ground-truth geometry. During the evaluation,
we only keep the largest connected component of the reconstructed meshes. Note
that is in favor of the baselines as they are more prone to producing floating blob
artifacts. We also remove any ground-truth or predicted mesh points that are
below an estimated ground plane to exclude outliers from the ground plane
from the evaluation. For completeness, we also evaluate novel-view synthesis
with PSNR, SSIM, and LPIPS using the poses from the training split.

Table 1: Generalization to Unseen
Poses. We report LPIPS [91] on syn-
thesized images under unseen poses
from the testset of the ZJU-MoCap
dataset [60] (i.e. all views except 0, 6,
12, and 18). Our approach consistently
outperforms the baselines by a large
margin. We report PSNR and SSIM
Appendix G.

Sequence Metric NB AniN AN Ours

313 LPIPS ↓ 0.126 0.115 0.209 0.092

315 LPIPS ↓ 0.152 0.167 0.232 0.105

377 LPIPS ↓ 0.119 0.153 0.165 0.093

386 LPIPS ↓ 0.171 0.187 0.241 0.127

387 LPIPS ↓ 0.135 0.145 0.162 0.099

390 LPIPS ↓ 0.163 0.173 0.226 0.126

392 LPIPS ↓ 0.135 0.169 0.183 0.106

393 LPIPS ↓ 0.132 0.155 0.175 0.104

394 LPIPS ↓ 0.150 0.171 0.199 0.111

Table 2: Geometry Reconstruc-
tion. We report L2 Chamfer Distance
(CD) and Normal Consistency (NC)
on the training poses of the ZJU-
MoCap dataset [60]. Note that AniN
and AN occasionally produce large
background blobs that are connected
to the body resulting in large devia-
tions from the ground truth.

Sequence Metric NB AniN AN Ours

313
CD ↓ 1.258 1.242 9.174 0.707

NC ↑ 0.700 0.599 0.691 0.809

315
CD ↓ 2.167 2.860 1.524 0.779

NC ↑ 0.636 0.450 0.610 0.753

377
CD ↓ 1.062 1.649 1.008 0.840

NC ↑ 0.672 0.541 0.682 0.786

386
CD ↓ 2.938 23.53 3.632 2.880

NC ↑ 0.607 0.325 0.596 0.741

393
CD ↓ 1.753 3.252 1.696 1.342

NC ↑ 0.600 0.481 0.605 0.739

394
CD ↓ 1.510 2.813 558.8 1.177

NC ↑ 0.628 0.540 0.639 0.762

https://neuralbodies.github.io/arah/
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A-NeRF Ani-NeRF Neural Body Ours GT

Fig. 3: Generalization to Unseen Poses on the testing poses of ZJU-MoCap.
A-NeRF struggles with unseen poses due to the limited training poses and the
lack of a SMPL surface prior. Ani-NeRF produces noisy images as it uses an
inaccurate backward mapping function. Neural Body loses details, e.g. wrinkles,
because its conditional NeRF is learned in observation space. Our approach
generalizes well to unseen poses and can model fine details like wrinkles.

4.1 Generalization to Unseen Poses

We first analyze the generalization ability of our approach in comparison to
the baselines. Given a trained model and a pose from the test set, we render
images of the human subject in the given pose. We show qualitative results
in Fig. 3 and quantitative results in Table 1. We significantly outperform the
baselines both qualitatively and quantitatively. The training poses of the ZJU-
MoCap dataset are extremely limited, usually comprising just 60-300 frames of
repetitive motion. This limited training data results in severe overfitting for the
baselines. In contrast, our method generalizes well to unseen poses, even when
training data is limited.

We additionally animate our models trained on the ZJU-MoCap dataset us-
ing extreme out-of-distribution poses from the AMASS [43] and AIST++ [34]
datasets. As shown in Fig. 5, even under extreme pose variation our approach
produces plausible geometry and rendering results while all baselines show se-
vere artifacts. We attribute the large improvement on unseen poses to our root-
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A-NeRF Ani-NeRF Neural Body Ours GT

Fig. 4: Geometry Reconstruction. Our approach reconstructs more fine-
grained geometry than the baselines while preserving high-frequency details such
as wrinkles. Note that we remove an estimated ground plane from all meshes.

finding-based backward skinning, as the learned forward skinning weights are
constants per subject, while root-finding is a deterministic optimization process
that does not rely on learned neural networks that condition on inputs from the
observation space. More comparisons can be found in Appendix H.2, H.3.

4.2 Geometry Reconstruction on Training Poses

Next, we analyze the geometry reconstructed with our approach against recon-
structions from the baselines. We compare to the pseudo-ground-truth obtained
from NeuS [76]. We show qualitative results in Fig. 4 and quantitative results
in Table 2. Our approach consistently outperforms existing NeRF-based human
models on geometry reconstruction. As evidenced in Fig. 4, the geometry ob-
tained with our approach is much cleaner compared to NeRF-based baselines,
while preserving high-frequency details such as wrinkles.

4.3 Novel View Synthesis on Training Poses

Lastly, we analyze our approach for novel view synthesis on training poses. Ta-
ble. 3 provides a quantitative comparison to the baselines. While not the main
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Table 3: Novel View Synthesis. We report PSNR, SSIM, and LPIPS [91]
for novel views of training poses of the ZJU-MoCap dataset [60]. Due to better
geometry, our approach produces more consistent rendering results across novel
views than the baselines. We include qualitative comparisons in Appendix H.1.
Note that we crop slightly larger bounding boxes than Neural Body [60] to
better capture loose clothes, e.g . sequence 387 and 390. Therefore, the reported
numbers vary slightly from their evaluation.

313 315 377

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NB 30.5 0.967 0.068 26.4 0.958 0.079 28.1 0.956 0.080

Ani-N 29.8 0.963 0.075 23.1 0.917 0.138 24.2 0.925 0.124

A-NeRF 29.2 0.954 0.075 25.1 0.948 0.087 27.2 0.951 0.080

Ours 31.6 0.973 0.050 27.0 0.965 0.058 27.8 0.956 0.071

386 387 390

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NB 29.0 0.935 0.112 26.7 0.942 0.101 27.9 0.928 0.112

Ani-N 25.6 0.878 0.199 25.4 0.926 0.131 26.0 0.912 0.148

A-NeRF 28.5 0.928 0.127 26.3 0.937 0.100 27.0 0.914 0.126

Ours 29.2 0.934 0.105 27.0 0.945 0.079 27.9 0.929 0.102

392 393 394

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
NB 29.7 0.949 0.101 27.7 0.939 0.105 28.7 0.942 0.098

Ani-N 28.0 0.931 0.151 26.1 0.916 0.151 27.5 0.924 0.142

A-NeRF 28.7 0.942 0.106 26.8 0.931 0.113 28.1 0.936 0.103

Ours 29.5 0.948 0.090 27.7 0.940 0.093 28.9 0.945 0.084

focus of this work, our approach also outperforms existing methods on novel view
synthesis. This suggests that more faithful modeling of geometry is also benefi-
cial for the visual fidelity of novel views. Particularly when few training views are
available, NeRF-based methods produce blob/cloud artifacts. By removing such
artifacts, our approach achieves high image fidelity and better consistency across
novel views. Due to space limitations, we include further qualitative results on
novel view synthesis in Appendix H.1.

5 Conclusion

We propose a new approach to create animatable avatars from sparse multi-view
videos. We largely improve geometry reconstruction over existing approaches by
modeling the geometry as articulated SDFs. Further, our novel joint root-finding
algorithm enables generalization to extreme out-of-distribution poses. We discuss
limitations of our approach in Appendix I.
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Fig. 5: Qualitative Results on Out-of-distribution Poses from the
AMASS [43] and AIST++ [34] datasets. From top to bottom row: Neural Body,
Ani-NeRF, our rendering, and our geometry. Note that Ani-NeRF requires re-
training their backward LBS network on novel pose sequence. We did not show
A-NeRF results as it already produces severe overfitting effects on ZJU-MoCap
test poses. For more qualitative comparisons, please refer to the Supp. Mat.
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A Loss Definition

In Section 3.5 of the main paper, we define the loss terms as follows

L = λC · LC + λE · LE + λO · LO + λI · LI + λS · LS (A.1)

In this section, we elaborate on how each loss term is defined. Let Ip ∈ [0, 1]3

denote the ground-truth RGB value of a pixel p. Further, let P denote the set
of all pixels sampled from an image.

https://doi.org/10.1109/TPAMI.2021.3050505
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RGB Color Loss: The RGB color loss is defined as

LC =
1

|P |
∑
p∈P

∣∣∣fσc(x̂
(p),n(p),v(p), z,Z)− Ip

∣∣∣ (A.2)

Eikonal Regularization: We sample 1024 points, denoted as X̂eik, in the range

[−1, 1]3 in canonical space, and compute Eikonal loss [17] as follows:

LE =
1

|P |
∑

x̂∈X̂eik

∣∣∣∥∇x̂fσf
(x̂)∥2 − 1

∣∣∣ (A.3)

Off-surface Point Loss: In canonical space, we sample 1024 points whose

distance to the canonical SMPL mesh is greater than 20cm. Let X̂off denote
these sampled points, we compute the off-surface point loss as

LO =
1

|P |
∑

x̂∈X̂off

exp
(
−1e2 · fσf

(x̂)
)

(A.4)

Inside Point Loss: In canonical space, we sample 1024 points that are inside

the canonical SMPL mesh and whose distance to the SMPL surface is greater
than 1cm. Let X̂in denote these sampled points, we compute the inside point
loss as

LI =
1

|P |
∑

x̂∈X̂in

sigmoid
(
5e3 · fσf

(x̂)
)

(A.5)

Skinning Loss: Finally, in canonical space, we sample 1024 points on the canon-

ical SMPL surface, X̂S, and regularize the forward LBS network with the corre-
sponding SMPL skinning weights W = {w}:

LS =
1

|P |
∑
x̂∈X̂S
w∈W

i=24∑
i=1

∣∣∣fσω
(x̂)i −wi

∣∣∣ (A.6)

We set λC = 3e1, λE = 5e1, λO = 1e2, λI = λS = 10 throughout all experiments.

Mask Loss: As described in Section 3.5 of the main paper, our volume ren-
dering formulation does not need explicit mask loss. Here we describe the mask
loss from [87] which we use in the ablation study on surface rendering (Sec-
tion F). Given the camera ray r(p) = (c,v(p)) of a specific pixel p, we first define
S(α, c,v(p)) = sigmoid(−αmind≥0 fσf

(LBS−1
σω

(c + dv(p))), i.e. the Sigmoid of
the minimal SDF along a ray. In practice we sample 100 ds uniformly between
[dmin, dmax] along the ray, where dmin and dmax are determined by the bounding
box of the registered SMPL mesh. α is a learnable scalar parameter.

Let Op ∈ {0, 1} denote the foreground mask value (0 indicates background
and 1 indicates foreground) of a pixel p. Further, let Pin denote the set of pixels



ARAH: Animatable Volume Rendering of Articulated Human SDFs 21

for which ray-intersection with the iso-surface of neural SDF is found and Op = 1,
while Pout = P \ Pin is the set of pixels for which no ray-intersection with the
iso-surface of neural SDF is found or Op = 0. The mask loss is defined as

LM =
1

α|P |
∑

p∈Pout

BCE(Op, S(α, c,v
(p)))) (A.7)

where BCE(·) denotes binary cross entropy loss. We set the weight of LM to
be 3e3 and add this loss term to Eq. (A.1) for our surface rendering baseline in
Section F.

B Network Architectures

In this section, we describe detailed network architectures for the forward LBS
network fσω , the SDF network fσf

and the color network fσc introduced in
Sections 3.1-3.2 of the main paper.

B.1 Forward LBS Network

We use the same forward LBS network as [12], which consists of 4 hidden layers
with 128 channels and weight normalization [68]. It uses Softplus activation with
β = 100. fσω

only takes query points in canonical space as inputs and does not
have any conditional inputs.

To initialize this forward LBS network, we meta learn the network on skinning
weights of canonical meshes from the CAPE [41] dataset. Specifically, we use
Reptile [50] with 24 inner steps. The inner learning rate is set to 1e−4 while
the outer learning rate is set to 1e−5. Adam [29] optimizer is used for both the
inner and the outer loop. We train with a batch size of 4 for 100k steps of the
outer loop. We use the resulting model as the initialization for our per-subject
optimization on the ZJU-MoCap [60] dataset.

B.2 Canonical SDF Network

We describe our canonical SDF network in Fig. B.1. The hypernetwork (top)
and neural SDF (middle) are initialized with MetaAvatar [78] pre-trained on
the CAPE dataset. Note that the SDF network from MetaAvatar can be trained
with canonical meshes only and does not need any posed meshes as supervision.
Each MLP of the hypernetwork (top) consists of one hidden layer with 256
channels and uses ReLU activation. The neural SDF (middle) consists of 5 hidden
layers with 256 channels and uses a periodic activation [70]. In addition to the
MetaAvatar SDF, we add a mapping network [9, 62] which consists of 2 hidden
layers with 256 channels and a ReLU activation. It maps the per-frame latent
code Z to scaling factors and offsets that modulate the outputs from each layer
of the neural SDF. We initialize the last layer of the mapping network to predict
scaling factors with value 1 and offsets with value 0.
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Fig. B.1: Network Architecture for the SDF Network. Our SDF network
builds upon MetaAvatar [78] which uses a hypernetwork (top) that conditions
on local body poses and shape (θ, β), and predicts the parameters of a neural
SDF with periodic activation (middle). Since MetaAvatar does not model per-
frame latent codes, we add a mapping network (bottom) that maps the per-frame
latent code Z to scaling factors {γ} and offsets {η} which are used to modulate
the outputs from each linear layer of the neural SDF, except for the last layer.

B.3 Canonical Color Network

We describe our canonical color network in Fig. B.2. The network consists of 4
hidden layers with 256 channels and ReLU activation. The inputs to the network
are also concatenated with activations of the third layer and fed into the fourth
layer together.

C Implicit Gradients

In this section, we describe how to compute gradients of the root-finding solutions
wrt. the forward LBS network and the SDF network. In the main paper, we
use our novel joint root-finding algorithm to find the surface point and sample
points around the surface point; these sampled points, along with the surface
point, are mapped to canonical space via iterative root-finding [12]. Section C.1
describes how to differentiate through these points to compute gradients wrt.
the forward LBS network. Section C.2 describes how to compute gradients wrt.
the forward LBS network and the SDF network given the surface point and its
correspondence. Section C.1 is used for volume rendering, which is described in
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Fig. B.2: Network Architecture for the Color Network. The color network
takes canonicalized query points x̂, normal vectors n, viewing directions v, an
SDF feature z, and a per-frame latent code Z as inputs.

Section 3.4 of the main paper. Section C.2 is used for surface rendering, which
is one of our ablation baselines in Section F.

C.1 Implicit Gradients for Forward LBS

Here we follow [12] and describe how to compute implicit gradients for the
forward LBS network given samples on camera rays and their canonical cor-
respondences. Denoting sampled points in observation space as X̄ = {x̄}Ni=1,
and their canonical correspondences obtained by iterative root-finding [12] as

X̂∗ = {x̂∗}Ni=1, they should satisfy the following condition

LBSσω
(x̂∗(i))− x̄(i) = 0, ∀i = 1, . . . , N (C.1)

As done in [87], by applying implicit differentiation, we obtain a differentiable
point sample x̂ as

x̂ = x̂∗ − (J∗)−1 ·
(
LBSσω

(x̂∗(i))− x̄(i)
)

(C.2)

where J∗ =
∂LBSσω

∂x̂ (x̂∗). x̂∗ and J∗ are detached from the computational graph
such that no gradient will flow through them. These differentiable samples can
be used as inputs to the SDF and color networks. Gradients wrt. σω are com-
puted from photometric loss Eq. (A.2) via standard back-propagation. Taking
the derivative wrt. σω for both sides of Eq. (C.2) results in the same analytical
gradient defined in Eq. (14) of [12].

Pose and Shape Optimization: We note that implicit gradients can also
be back-propagated to SMPL parameters {θ, β} as the SMPL model is fully
differentiable. We found pose and shape optimization particularly helpful when
SMPL estimations are noisy, e.g . those estimated from monocular videos. In
Fig. C.1 we show a qualitative sample on the People Snapshot dataset [2] where
the pose is improved while the resulting model also achieves better visual quality.
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Fig. C.1: Result of Pose and Shape Optimization. We can improve the
noisy SMPL estimations on training poses with implicit gradients and improve
the rendering quality on unseen poses (see Unseen w. opt.).

C.2 Implicit Gradients for Joint Root-finding

Now we derive implicit gradients for our joint root-finding algorithm. We denote
the joint vector-valued function of the ray-surface intersection and forward LBS
as gσf ,σω

(x̂, d). The joint root-finding problem is

gσf ,σω (x̂, d) =

[
fσf

(x̂)
LBSσω (x̂)− (c+ v · d)

]
= 0 (C.3)

with a slight abuse of notation, we denote the iso-surface point as x̂∗ and their
corresponding depth in observation space as d∗. We follow [87] and use implicit
differentiation to obtain a differentiable point sample x̂ and a depth sample d:

[
x̂
d

]
=

[
x̂∗

d∗

]
− (J∗)−1 · gσf ,σω (x̂

∗, d∗) (C.4)

where J∗ is defined as

J∗ =

 ∂fσf

∂x̂ (x̂∗) 0

∂LBSσω

∂x̂ (x̂∗) −v

 (C.5)

Similar to Section C.1, these differentiable samples can be used as inputs to the
SDF and color networks and gradients wrt. σf , σω can be computed from the
photometric loss Eq. (A.2).

D Implementation Details

We use Adam [29] to optimize our models and the per-frame latent codes {Z}.
We initialize the SDF network with MetaAvatar [78] and set the learning rate
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to 1e−6 as suggested in [78]. For the remaining models and the latent codes, we
use a learning rate of 1e−4. We apply weight decay with a weight of 0.05 to the
per-frame latent codes.

We train our models with a batch size of 4 and 2048 rays per batch, with
1024 rays sampled from the foreground mask and 1024 rays sampled from the
background. As mentioned in Section 3.4 of the main paper, we sample 16 near
and 16 far surface points for rays that intersect with a surface and 64 points for
rays that do not intersect with a surface. Our model is trained for 250 epochs
(except for sequence 313 which we trained for 1250 epochs, due to its training
frames being much fewer than other sequences), which corresponds to 60k-80k
iterations depending on the amount of training data. This takes about 1.5 days
on 4 NVIDIA 2080 Ti GPUs. During training, we follow [81] and add normally
distributed noise with zero mean and a standard deviation of 0.1 to the input θ of
the SDF network. This noise ensures that the canonical SDF does not fail when
given extreme out-of-distribution poses. We also augment the input viewing di-
rections to the color network during training. We do so by randomly applying
roll/pitch/yaw rotations sampled from a normal distribution with zero mean
and a standard deviation of 45◦ to the viewing direction, but reject augmenta-
tion in which the angle between the estimated surface normal and the negated
augmented viewing direction is greater than 90 degrees.

For inference, we follow [58, 60] and crop an enlarged bounding box around
the projected SMPL mesh on the image plane and render only pixels inside the
bounding box. For unseen test poses we follow the practice of [58, 60] and use
the latent code Z of the last training frame as the input. The rendering time of
a 512× 512 image is about 10-20 seconds, depending on the bounding box size
of the person. In this process, the proposed joint root-finding algorithm takes
about 1 second.

E Implementation Details for Baselines

In this section, we describe the implementation details of the baselines from the
main paper, i.e. Neural Body [60], Ani-NeRF [58], and A-NeRF [72].

E.1 Neural Body

For quantitative evaluation, we use the official results provided by the Neural
Body website. For generating rendering results and geometries, we use the official
code of Neural Body and their pre-trained models without modification.

E.2 Animatable NeRF (Ani-NeRF)

For quantitative evaluation, we use the official code and pre-trained models when
possible, i.e. for sequences 313, 315, 377, and 386. For the remaining sequences
that the official code does not provide pre-trained models, we train models using
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the default hyperparameters that were applied to sequences 313, 315, 377, and
386.

We note that when reconstructing geometry on the training poses, Neural
Body and Ani-NeRF compute visual hulls from ground-truth masks of training
views and set density values outside the visual hulls to 0. This removes extrane-
ous geometry blobs from reconstructions by Neural Body and Ani-NeRF. When
testing on unseen poses, we disable the mask usage, as, by definition of the task,
we do not have any image as input.

E.3 A-NeRF

For A-NeRF, we follow the author’s suggestions to 1) use a bigger foreground
mask for ray sampling, 2) enable background estimation in the official code, and
3) use L2 loss instead of L1 loss. The learned models give reasonable novel view
synthesis results on training poses (Fig. H.1) but cannot generalize to unseen
poses (Fig. H.2). We hypothesize that this is because training poses on the
ZJU-MoCap dataset are extremely limited, and A-NeRF uses only keypoints
instead of surface models to construct their conditional inputs to NeRF networks.
The lack of a surface model makes it easy for A-NeRF to confuse background
and foreground, resulting in obvious floating blob artifacts. These artifacts are
amplified when training poses are limited, making the generalization result of
A-NeRF on the ZJU-MoCap dataset the worst among the baselines.

F Ablation Study

In this section, we ablate on ray sampling strategies as well as canonicalization
strategies. We conduct an ablation on sequence 313. Metrics on all novel views
of training poses are reported.

F.1 Ablation on Ray Sampling Strategies

We compare our proposed ray sampling strategy to surface rendering and uni-
form sampling with 64 samples on the novel view synthesis task (Fig F.1). As
discussed in the main paper, we did not use more sophisticated hierarchical sam-
pling strategies [49,76,86] due to the computational cost of running the iterative
root-finding [12] on dense samples and the memory cost for running additional
forward/backward passes through the LBS network.

F.2 Ablation on Learned forward LBS

In this subsection, we replace our learned forward LBS with (1) a backward
LBS network that conditions on local body poses θ, and (2) a deterministic
LBS with nearest neighbor SMPL skinning weights. For the learned backward
LBS, we always canonicalize the query points using the SMPL global transla-
tion and rotation before querying the LBS network. We also sample points on
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Fig. F.1: Ablation on ray sampling strategies. We observe severe geometric
artifacts with models trained with surface rendering. A simple uniform sampling
strategy (as used in [58, 60]) produces stratified artifacts due to the discretized
sampling. In contrast, our proposed approach does not suffer from these problems
and achieves better result.

the transformed SMPL meshes and supervise the backward LBS network with
corresponding skinning weights using Eq. (A.6). We show qualitative results in
Fig. F.2.

F.3 Ablation on Root-finding Initialization

To ablate the effect of multiple initializations for root-finding, we add additional
initializations from the nearest 2 SMPL bones but do not observe any notice-
able change in metrics. We report PSNR/SSIM/LPIPS as: single initialization
- 31.6/0.973/0.050, 2 more initializations: 31.5/0.972/0.049. Also, adding more
initializations for root-finding drastically increases memory/time consumption,
we thus decide to use only a single initialization for root-finding in our approach.

G Additional Quantitative Results

We present complete evaluation metrics including PSNR, SSIM, LPIPS on the
test poses of the ZJU-MoCap [60] dataset in Table G.1.

We also report quantitative results on the H36M dataset [26], following the
testing protocols proposed by [58] in Table G.2.
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Table G.1: Complete evaluation results on novel pose synthesis. PSNR,
SSIM, LPIPS are reported for the test poses of the ZJU-MoCap dataset.

313 315 377
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NB 24.1 0.908 0.126 19.8 0.867 0.152 24.2 0.917 0.119
Ani-N 23.9 0.909 0.115 19.2 0.855 0.167 22.6 0.900 0.153

A-NeRF 22.0 0.855 0.209 18.7 0.810 0.232 22.6 0.890 0.165
Ours 24.4 0.914 0.092 20.0 0.881 0.105 25.5 0.933 0.093

386 387 390
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NB 26.1 0.894 0.171 22.7 0.902 0.135 24.2 0.882 0.164
Ani-N 25.5 0.884 0.187 23.1 0.906 0.145 23.9 0.887 0.173

A-NeRF 24.8 0.858 0.241 22.4 0.885 0.162 22.6 0.846 0.226
Ours 27.0 0.910 0.127 24.2 0.917 0.099 24.8 0.896 0.126

392 393 394
Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NB 26.0 0.916 0.135 23.5 0.900 0.132 24.1 0.888 0.150
Ani-N 24.3 0.900 0.169 23.8 0.897 0.155 24.1 0.887 0.171

A-NeRF 23.7 0.886 0.183 22.1 0.875 0.175 22.7 0.861 0.199
Ours 26.2 0.927 0.106 24.4 0.915 0.104 25.2 0.908 0.111

Table G.2: Evaluation results on the H36M dataset. Numbers of NARF [52]
and Ani-N [58] are reported in [84].

Training Poses Unseen Poses
PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

NARF Ani-N Ours NARF Ani-N Ours NARF Ani-N Ours NARF Ani-N Ours
S1 21.41 22.05 24.45 0.891 0.888 0.919 20.19 21.37 23.08 0.864 0.868 0.899
S5 25.24 23.27 24.54 0.914 0.892 0.918 23.91 22.29 22.79 0.891 0.875 0.890
S6 21.47 21.13 24.61 0.871 0.854 0.903 22.47 22.59 24.04 0.883 0.884 0.900
S7 21.36 22.50 24.31 0.899 0.890 0.919 20.66 22.22 22.58 0.876 0.878 0.891
S8 22.03 22.75 24.02 0.904 0.898 0.921 21.09 21.78 22.34 0.887 0.882 0.896
S9 25.11 24.72 26.20 0.906 0.908 0.924 23.61 23.72 24.36 0.881 0.886 0.894
S11 24.35 24.55 25.43 0.902 0.902 0.921 23.95 23.91 24.78 0.885 0.889 0.902

Average 23.00 23.00 24.79 0.898 0.890 0.918 22.27 22.55 23.42 0.881 0.880 0.896
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Fig. F.2: Ablation on Learned LBS networks. Backward LBS has difficulties
with learning skinning weights for points far from the surface, resulting in ar-
tifacts under specific poses. Canonicalization with deterministic SMPL weights
results in discretized artifacts on the cloth surface. In contrast, our approach
does not suffer from these problems.

H Additional Qualitative Results

H.1 Qualitative Results on ZJU-MoCap Training Poses

We present additional qualitative results on ZJU-MoCap training poses in Fig. H.1.
Due to better geometry constraints, our approach better captures cloth wrin-
kles, textures, and face details. We also avoid extraneous color blobs under novel
views which all baselines suffer from.

H.2 Additional Qualitative Results on ZJU-MoCap Test Poses

We show additional qualitative results on ZJU-MoCap test poses in Fig. H.2.
Similar to the results presented in the main paper, A-NeRF and Neural Body
do not generalize to these within-distribution poses. Ani-NeRF produces noisy
rendering due to its inaccurate backward LBS network. Note that since these
results are pose extrapolations, it is not possible to reproduce the exact color
and texture of ground-truth images. Still, our approach does not suffer from the
artifacts that baselines have demonstrated, resulting in better metrics, especially
for LPIPS (Table G.1). We present more qualitative results in the supplementary
video.

H.3 Additional Qualitative Results on Out-of-distribution Poses

We show additional qualitative results on out-of-distribution poses [34] in Fig. H.3.
We present more results in the supplementary video.
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H.4 Closest Training Poses to Out-of-distribution Poses

To further demonstrate the generalization ability of our approach, we also visual-
ize the closest training pose from the ZJU-MoCap dataset to out-of-distribution
test poses from the AIST++ dataset and the AMASS dataset in Fig. H.4. To
find the closest training pose to a test pose, we convert local poses (i.e. all pose
vectors excluding global orientation) to a matrix representation and find the
closest training pose with nearest neighbor search using the converted matrix
representation.

H.5 Qualitative Results on Models Trained with Monocular Videos

In this subsection, we present models trained on monocular videos. For this
monocular setup, we use only the first camera of the ZJU-MoCap dataset to train
our models. We do not modify our approach and all hyperparameters remain the
same as the multi-view setup. We train each model for 500 epochs on 500 frames
of selected sequences in which the subjects do repetitive motions while rotat-
ing roughly 360 degrees. We animate the trained model with out-of-distribution
poses from AIST++ [34]. Qualitative results are shown in Fig. H.5. Even under
this extreme setup, our approach can still learn avatars with plausible geome-
try/appearance and the avatars still generalize to out-of-distribution poses. For
the complete animation sequences, please see our supplementary video.

I Limitations

As reported in Section D, our approach is relatively slow at inference time. The
major bottlenecks are the iterative root-finding [12] and the volume rendering.

Another limitation is that neural rendering-based reconstruction methods
tend to overfit the geometry to the texture, resulting in a reconstruction bias.
As shown in Fig. I.1, while NeRF-based baselines are unable to recover de-
tailed wrinkles, SDF-based rendering (ours and NeuS) wrongfully reconstructs
the stripes on the shirt as part of the geometry. Note that A-NeRF and Ani-
NeRF also suffer from this kind of bias. Neural Body demonstrates less overfit-
ting effects. We hypothesize that this is because the structured latent codes in
Neural Body are local in space and thus give the color network more flexibility,
making the density network less prone to overfitting. Still, Neural Body gives
noisy reconstructions and cannot generalize to unseen poses. Resolving this re-
construction bias while maintaining a clean geometry is an interesting avenue
for future research.
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Fig.H.1:Novel View Synthesis Results on the training poses of ZJU-MoCap.
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Fig.H.2: Additional Generalization Results on ZJU-MoCap Test Poses.
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Fig.H.3: Additional Generalization Results on Out-of-distribution
Poses. From top to bottom: Neural Body, Ani-NeRF, ours, and our geometry.
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Fig.H.4: Closest Training Poses to Out-of-distribution Test Poses. We
show rendering results of out-of-distribution poses on the left-most column, while
demonstrating 4 training images of the closest training pose to each of the test
poses.

Fig. H.5: Generalization to AIST++ [34] Poses with Models Trained
from Monocular Videos.
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Fig. I.1: Shape-Appearance Ambiguity. The Neural Rendering-based recon-
struction tends to bake complex textures into the geometry, resulting in a biased
geometry reconstruction.


