

Overview

 \succ We propose to use meta-learning to effectively incorporate cloth-deformation priors for clothed humans, thus enabling fast fine-tuning (few minutes) for generating neural avatars given only a few monocular depth images of unseen clothed humans and their corresponding SMPL fittings as inputs.

Our Approach

> We follow the same pipeline of recently proposed SCANimate [1], which learns dynamic neural SDFs from dense full-body scans to represent subject/cloth-type specific avatars of clothed humans. Instead of learning subject/cloth-type specific models from scratch, we propose to meta-learn a prior model which can be fast fine-tuned to represent any subject/cloth-type specific neural avatars given only monocular depth frames.

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images Shaofei Wang¹, Marko Mihajlovic¹, Qianli Ma^{1,2}, Andreas Geiger^{2,3}, Siyu Tang¹ ¹ETH Zürich, ²Max Planck Institute for Intelligent Systems, Tübingen, ³University of Tübingen

[1] Saito et al, SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks. CVPR, 2021.

Meta-learned Prior

- \succ Our key contribution is a meta-learned hypernetwork.
- \succ In practice, we decompose the training into two stages 1) meta-learn a static neural SDF 2) meta-learn a hypernetwork which predicts residuals to the parameters of the previously meta-learned static neural
 - SDF.

Training Stage 1: Learn Meta-SDF

Linear

SDF $f_{\phi^*}(\mathbf{x})$

 \succ Results show that our approach performs well with limited depth input data.

 $\rightarrow \longrightarrow \rightarrow$ Linear $\rightarrow \longrightarrow \rightarrow$ Linear

		3D Input			2.5D Input	- 	$1 \rightarrow 1 \rightarrow 1$	100	50	20	10	5	1	
		NASA	LEAP	SCANimate	Ours	- Fine-t	une data (%)	100	50	20	10	3	<1	
Subi 00122_00215							Subj 00122, 00215							
$\frac{500 \int 00122,00215}{E_{\rm T}}$				0.5	- <u>Ex.</u>	PS ↑	0.5	0.471	0.509	0.473	0.373	0.510		
EX.	P5	0.078	0.314	0.333	0.5	_	D_{m}	_	0.450	0 4 8 0	0.512	0 543	0 592	
	$D_p \downarrow$	0.484	0.454	0.586	0.450	Int	$D p \downarrow$		0.120	0.100	0.252	0.201	0.372	
Int.	$\hat{D_f}$	0.327	0.293	0.489	0.273 Int.	$D_f \downarrow$	-	0.275	0.510	0.555	0.391	0.430		
	$\frac{-}{NC}$	0 752	0.807	0 793	0 821		$NC\uparrow$	-	0.821	0.808	0.795	0.785	0.768	
$\frac{110 \ \ 0.752 \ 0.007 \ 0.753 \ 0.021}{0.021}$						_	Subj 00134, 03375							
Subj 00134, 03375						- F v	DC ተ	0.5	0 176	$\frac{1}{0}$	0.463	0/30	0 3 8 7	
Ex.	PS ↑	0.182	0.224	0.481	0.5	<u> </u>		0.5					0.307	
Int.	$D_{\rm m}$	0 595	0.483	0.629	0 518	-	$D_p\downarrow$	-	0.518	0.545	0.5/6	0.603	0.619	
	$D p \downarrow$	0.575	0.100	0.542	0.267	Int.	$D_f \downarrow$	-	0.367	0.400	0.438	0.471	0.489	
	$D_f \downarrow$	0.409	0.340	0.342	0.307		$NC\uparrow$	_	0.773	0.762	0.753	0.745	0.737	
	$NC\uparrow$	0.693	0.780	0.755	0.773		Average per model training/fine tuning time (hours)							
Averge per-model training/fine-tuning time (hours)					-	Average per-model training/me-tuning time (nours)								
	0	>10		<u> </u>	1.60	-		1.60	0.8	0.32	0.16	0.08	0.02	
		/10	-	~10	1.00	_								

Comparison to baslines

Few-shot learning