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Abstract

This paper presents a novel probabilistic foundation for
volumetric 3D reconstruction. We formulate the problem
as inference in a Markov random field, which accurately
captures the dependencies between the occupancy and ap-
pearance of each voxel, given all input images. Our main
contribution is an approximate highly parallelized discrete-
continuous inference algorithm to compute the marginal
distributions of each voxel’s occupancy and appearance.
In contrast to the MAP solution, marginals encode the un-
derlying uncertainty and ambiguity in the reconstruction.
Moreover, the proposed algorithm allows for a Bayes opti-
mal prediction with respect to a natural reconstruction loss.
We compare our method to two state-of-the-art volumet-
ric reconstruction algorithms on three challenging aerial
datasets with LIDAR ground truth. Our experiments demon-
strate that the proposed algorithm compares favorably in
terms of reconstruction accuracy and the ability to expose
reconstruction uncertainty.

1. Introduction
Over the last decades, multi-view stereo algorithms

have steadily improved in terms of accuracy and complete-
ness [29]. More recently, researchers have shifted their fo-
cus from reconstructing isolated single objects to more chal-
lenging general scenes that involve significant occlusions,
textureless or reflective surfaces, transient objects, vary-
ing illumination conditions, and camera mis-registration er-
rors [7, 16, 17, 24, 32]. Such factors cause fundamental
ambiguities for 3D reconstruction from images [2]. Con-
sider the grass region in Fig. 1a. The surface contains little
texture and therefore, multiple reconstructions satisfy the
input images equally well. Fig. 1b depicts the area of am-
biguity for two views, where many surfaces residing inside
the green quadrangle are valid solutions. Similar ambigui-
ties arise due to occlusions, reflective surfaces, etc., making
it critical to explicitly model, or expose, this uncertainty.

Most previous work on multi-view stereo does not ad-
dress such reconstruction ambiguities. While some meth-

(a) (b) (c)

Figure 1: (a) The grass region contains very little texture.
(b) Side view of the grass region. The solid line is the
true ground plane. The limited viewpoints and lack of
texture cause reconstruction ambiguity: all voxels inside
the green quadrangle are equally photo-consistent, lead-
ing to multiple valid reconstructions. (c) The maximum-
a-posteriori (MAP) solution is the closest surface to the
camera since these surface voxels are not occluded by
any photo-consistent voxel. Our solution assigns uniform
and lower probability of occupancy throughout the region,
thereby encoding the reconstruction uncertainty.

ods assign confidence scores for each reconstructed 3D
point [11, 15] or model the ambiguity in view-centric depth
maps [9, 25, 31], we focus on volumetric reconstruction in
this paper. A volumetric representation allows for encod-
ing ambiguities everywhere in the scene and yields dense
reconstructions. Probabilistic and volumetric reconstruc-
tion methods associate an occupancy variable with each
voxel and infer the probability of occupancy from the in-
put images [3, 1, 4, 2, 23, 35]. However, the resulting in-
ference procedure either requires strong visibility approxi-
mations [4] or slow stochastic search [2]. Other, more effi-
cient algorithms lack a global objective function, making it
unclear what is being optimized and what the probabilistic
interpretation should be [3, 1, 35, 23].

In this paper, we propose a novel and principled prob-
abilistic approach to volumetric reconstruction. We for-
mulate the problem as inference in a Markov random field
(MRF) that models the joint distribution over discrete occu-
pancy and continuous appearance (color) variables at each
voxel, given all input images. High-order ray potentials
capture dependencies between occupancy and appearance
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variables along each input camera ray, accurately modeling
visibility constraints. While previous works on ray poten-
tials aim at the maximum-a-posteriori (MAP) solution of
the occupancy variables [20, 28], our goal is to infer the
marginal distributions of occupancy and appearance at each
voxel. In contrast to the MAP solution, the marginals di-
rectly expose the uncertainty in the reconstruction.

Unfortunately, computing per-voxel marginal distribu-
tions in the proposed MRF is very challenging. The model
comprises both discrete and continuous variables. Further,
each input image contains millions of pixels, leading to a
huge number of ray potentials, each connecting to hundreds
of variables, resulting in highly loopy graphs. We tackle
these challenges by deriving an approximate, highly par-
allelized, inference algorithm based on sum-product belief
propagation. As a by-product, our algorithm yields a Bayes
optimal prediction for a natural 3D reconstruction metric.

We evaluate our algorithm on three challenging aerial
datasets with LIDAR ground truth. Experiments demon-
strate that the algorithm is able to produce accurate 3D
models while exposing the uncertainty inherent in the re-
construction. Our method also compares favorably to two
state-of-the-art volumetric reconstruction methods [20, 23]
both in terms of reconstruction accuracy, as well as in terms
of its ability to encode reconstruction uncertainty.

2. Related Work
This section reviews the most relevant work on proba-

bilistic approaches to volumetric reconstruction. Please re-
fer to [29, 8] for a more complete overview of multi-view
stereo methods.

In their early work, Bonet and Viola proposed an al-
gorithm that iterates between estimating the occupancies
and the colors of each voxel [3]. To accommodate video
streams, their ideas have been extended to the online set-
ting [1], where voxel occupancy and color are updated one
image at a time. Similar online algorithms with a Bayesian
interpretation have been proposed in [23, 35]. More re-
cently, Pollard and Mundy’s framework [23] has been
adapted to use efficient octree representations [6] and im-
plemented on a GPU [21], leading to some of the most ac-
curate and efficient volumetric 3D reconstruction pipelines
to date [5, 33]. However, Pollard and Mundy’s method,
as well as [3, 1, 35], lack a global formulation that relates
voxel occupancy and color to all the input images. There-
fore, it is not clear how the resulting probabilities should be
interpreted. Moreover, Pollard and Mundy’s update algo-
rithm is typically iterated many times over the same input
images [26], effectively treating each image as a new in-
dependent observation at each iteration. Our experiments
show that this approach leads to a self-reinforcing behavior
and results in overly confident occupancy probabilities.

A more principled approach is to directly integrate all

image observations using ray potentials into a MRF model,
which can be optimized using message passing [10, 20] or
graph cuts [28]. Our approach follows this line of work but
differs in two main aspects: First, we estimate voxel occu-
pancy and appearance jointly via a global inference algo-
rithm. In contrast, [10, 20] decouple voxel appearance esti-
mation from the inference of occupancies and [28] does not
model voxel appearance but instead relies on pre-estimated
depth maps. Second, we compute marginal distributions
of occupancy and appearance, rather than the most likely
occupancy assignment. This allows our method to expose
the uncertainty in the reconstruction, which can be utilized
by subsequent processing stages. Our experiments confirm
that the proposed approach correctly assigns uniform and
low occupancy probabilities to ambiguous regions, whereas
the MAP solution favors the first, i.e., most visible, photo-
consistent voxel along the ray, therefore leading to recon-
structions that “bulge out” as illustrated in Fig. 1c. Interest-
ingly, Space-Carving exhibits similar behavior in feature-
less regions [19].

3. Probabilistic and Volumetric 3D Model
Let us assume a decomposition of the 3D space into a

grid of voxels, which we identify with a unique index from
the index set X. Let us further assume that the scene con-
tains only solid objects and empty space. We associate each
voxel i ∈ X with two random variables: a binary occu-
pancy variable oi ∈ {0, 1} indicating whether the voxel is
occupied (oi = 1) or free (oi = 0) and a real-valued ap-
pearance variable ai ∈ R describing the intensity or color
of the 3D surface at voxel i. Note that appearance variables
are defined for every voxel since the surface locations are
unknown a-priori.

In the following, we first describe the image formation
process for a single viewing ray, followed by the specifica-
tion of our full probabilistic model.

3.1. Image Formation Process

Let R denote the set of viewing rays originating from
one or multiple calibrated cameras. For a single ray r ∈ R,
let or = {or1, . . . , orNr

} and ar = {ar1, . . . , arNr
} denote the

ordered sets of occupancy and appearance variables associ-
ated with voxels intersecting ray r as illustrated in Fig. 2.
The ordering is defined by the distance to the respective
camera, i.e., we have i < j if the voxel associated with
(ori , a

r
i ) is closer to the camera from which ray r originates

than the voxel associated with (orj , a
r
j).

We model the image formation process by assigning the
appearance of the first occupied voxel along ray r to the
corresponding pixel. This process can be expressed as

Ir =

Nr∑
i=1

ori
∏
j<i

(1− orj) ari (1)



Figure 2: Probabilistic Graphical Model. Left: 2D slice
through 3D voxel grid with four rays and the associated
voxels marked in gray. Right: Factor graph for a single
ray with ray potential ψr and unary potentials ϕ.

where Ir is the intensity/color at the pixel corresponding to
ray r. The term ori

∏
j<i (1− orj) evaluates to 1 for the first

occupied voxel along the ray and 0 for all other voxels. Note
that the term

∏
j<i (1−orj) is an indicator for visibility; it is

1 if there exist no occupied voxel before the ith voxel, and
0 otherwise. Hence, the summation amounts to the color of
the first occupied voxel. In the next section, we use this im-
age formation model to estimate the marginal probabilities
of voxel occupancy and color from the pixel observations.

3.2. Probabilistic Model

We phrase the problem of volumetric 3D reconstruction
as inference in a Markov random field. Let o = {oi|i ∈
X} and a = {ai|i ∈ X} denote the sets of all occupancy
and appearance variables. We specify the joint distribution
over o and a in terms of its factorization into unary and ray
potentials

p(o,a) =
1

Z

∏
i∈X

ϕi(oi)︸ ︷︷ ︸
unary

∏
r∈R

ψr(or,ar)︸ ︷︷ ︸
ray

(2)

where Z denotes the partition function, X is the set of all
voxels and R denotes the set of viewing rays from all cam-
eras observing the scene. Fig. 2 (right) illustrates the corre-
sponding graphical model for a single ray.

The unary potentials encode our prior belief that, in
many natural scenes, most voxels are empty. Thus, we
model ϕi(oi) using a simple Bernoulli distribution

ϕi(oi) = γoi (1− γ)1−oi (3)

where γ is the prior probability that voxel i is occupied.
The ray potentials model the image generation process

as specified by Eq. 1:

ψr(or,ar) =

Nr∑
i=1

ori
∏
j<i

(1− orj) νr(ari ). (4)

Here, νr(a) denotes the probability of observing inten-
sity/color a at ray r. Assuming Gaussian noise, we model
νr(a) = N (a|Ir, σ).

4. Inference
In this section, we present our inference algorithm for

approximately computing the marginal distribution of oc-
cupancy and appearance of each voxel. We also propose a
natural objective function to evaluate our 3D model against
ground truth and show that the Bayes optimal solution for
this loss can be computed as a by-product of the proposed
inference algorithm.

4.1. Approximate Marginal Inference

For inference, we exploit the well-known sum-product
algorithm extended to mixed discrete-continuous distribu-
tions. Originally, the sum-product algorithm has been pro-
posed for computing marginals in tree-structured graphs.
However, it often also finds high quality solutions when the
graph has loops as in our case [22]. In this section, we first
briefly review the general sum-product algorithm and then
derive the necessary message equations for our model.

The sum-product algorithm for factor graphs works by
passing messages between factor and variable nodes [18].
In loopy graphs, messages are initialized to some prior dis-
tribution and then updated iteratively until convergence or
until a maximum number of iterations has been reached.
The factor-to-variable and variable-to-factor messages are
defined as

µf→x(x) =
∑
Xf\x

φf (Xf )
∏

y∈Xf\x

µy→f (y) (5)

µx→f (x) =
∏

g∈Fx\f

µg→x(x) (6)

where Xf denotes all variables associated with factor f and
Fx is the set of factors to which variable x connects. Upon
termination, the approximate marginal distribution of each
variable can be computed as the product of messages from
all neighboring factors:

p(x) ∝
∏
g∈Fx

µg→x(x). (7)

Unfortunately, the application of these message equations
to our graphical model (Eq. 2) is not straightforward. First,
the ray potentials involve both discrete and continuous vari-
ables. While the sum-product equations can be adapted to
the continuous domain by replacing sums with integrals,
tractable continuous message representations have to be
found and the arising integrals need to be calculated effi-
ciently. A second challenge is due to the large number of
variables connecting to each ray potential. A naı̈ve applica-
tion of the sum-product algorithm would require summing
over 2N states for each ray factor-to-variable message in
Eq. 5, which is intractable for typical values of N , which
are on the order of hundreds. We show that the special al-
gebraic form of the ray potentials in Eq. 4 can be exploited



to reduce this complexity to linear time.
The messages from and to the unary factors, i.e. µϕi→oi

and µoi→ϕi , as well as the messages from occupancy vari-
ables to ray factors, µoi→ψr

, are simple and can be calcu-
lated using Eq. 5+6. In the following, we will thus focus on
the remaining messages: µψr→oi , µψr→ai and µai→ψr

. We
consider a single ray r, dropping the subscript for clarity.
Occupancy messages: Before presenting the general form
of the message equations, we provide some intuition by an-
alyzing the equations for the first voxel along the ray, o1.
For o1 = 1, the factor-to-variable message reads as

µψ→o1(o1 = 1) =
∑
o2

· · ·
∑
oN

∫
a1

. . .

∫
aN

ψ(o,a)

×
N∏
i=2

µ(oi)

N∏
i=1

µ(ai) (8)

where we have abbreviated the incoming occupancy and ap-
pearance messages by µ(oi) = µoi→ψ(oi) and µ(ai) =
µai→ψ(ai), respectively. Given that the first voxel is oc-
cupied, the ray potential ψ in Eq. 4 simplifies to ψ(o1 =
1, o2, ...oN ,a) = ν(a1), resulting in

µψ→o1(o1 = 1) =

[∫
a1

ν(a1)µ(a1) da1

]
×
∑
o2

· · ·
∑
oN

∫
a2

. . .

∫
aN

N∏
i=2

µ(oi)

N∏
i=2

µ(ai). (9)

Provided that the incoming messages are normalized such
that they integrate (or sum) to 1, all terms in the second line
in Eq. 9 evaluate to 1 and the message simplifies to:

µψ→o1(o1 = 1) =

∫
a1

ν(a1)µ(a1) da1. (10)

This integral has an intuitive interpretation: it measures the
correlation between the observed color, ν(a1), and the be-
lief about the voxel’s appearance according to the other
image measurements, µ(a1). If projections of a voxel
yield similar colors in multiple images (indicating photo-
consistency), the value of the integral will be high and will
increase the probability of occupancy for this voxel. We
address how to compute integrals of this form in Section 5.

Similarly, for the case where the first voxel is empty, i.e.
o1 = 0, we obtain

µψ→o1(o1 = 0) =

N∑
j=2

µ(oj = 1)

j−1∏
k=2

µ(ok = 0) ρj (11)

where we use the shorthand notation:

ρi =

∫
ai

ν(ai)µ(ai) dai. (12)

Note that, owing to the special form of the ray potentials,

this message involves only a single sum over the voxel in-
dices and is therefore tractable as well. We provide the full
derivation in the supplementary document. Intuitively, this
equation measures how well the voxels after the first voxel
explain the observed pixel intensity assuming that the first
voxel is empty. If a voxel j > 1 is likely to be occupied
(µ(oj = 1) is high), visible (

∏j−1
k=2 µ(ok = 0) is high), and

matches the appearance of the pixel (ρi is high), then this
voxel is likely to be the first visible surface voxel and there-
fore all voxels in front (including the first voxel) should be
empty. In this case, the value of Eq. 11 is high, thereby
lowering the probability of occupancy for the first voxel.

By following an inductive argument (see supplementary
document for details), the general occupancy message equa-
tions for voxel i can be written as:

µψ→oi(oi = 1) = (13)
i−1∑
j=1

µ(oj = 1)

j−1∏
k=1

µ(ok = 0) ρj +

i−1∏
k=1

µ(ok = 0) ρi

and

µψ→oi(oi = 0) =

i−1∑
j=1

µ(oj = 1)

j−1∏
k=1

µ(ok = 0) ρj (14)

+
1

µ(oi = 0)

N∑
j=i+1

µ(oj = 1)

j−1∏
k=1

µ(ok = 0) ρj .

The message equations have an intuitive interpretation: The
messages cause the probability of occupancy for photo-
consistent voxels to increase. The occupancy probability
of voxels between the camera and the likely surface voxel
are decreased. For voxels that are likely to be occluded,
the messages turn out to be uninformative; i.e. µψ→oi(oi =
1) = µψ→oi(oi = 0). Importantly, the ray potential mes-
sages can be computed efficiently, in linear time, as op-
posed to the exponential complexity of general high-order
cliques.

Appearance messages: The factor-to-variable appearance
messages can be written as (see supplementary document
for derivation):

µψ→ai(ai) =
∑
j 6=i

µ(oj = 1)
∏
k<j

µ(ok = 0) ρj︸ ︷︷ ︸
constant in ai

(15)

+ µ(oi = 1)
∏
k<i

µ(ok = 0)︸ ︷︷ ︸
weight

× ν(ai)︸ ︷︷ ︸
Gaussian

.

First of all, note that the message computation is again lin-
ear in the number of occupancy variables. Second, this mes-
sage has a special form: it can be written as a constant plus
a weighted Gaussian distribution. The constant measures
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Figure 3: Appearance message for different constants.

how well all voxels except i explain the image observation.
The weight measures how likely voxel i is to be the first
occupied voxel along the ray. Finally, the term ν(ai) mea-
sures the agreement between ai and the observed pixel color
I . This special form is highly advantageous since it admits
a very compact representation. In practice, we exploit the
scaling invariance of the message and store only the weight
divided by the constant.

We analyze the message for two cases. First, consider
the case when voxel i is the first visible voxel; i.e. oi = 1
and oj = 0,∀j < i. In this case, it can be verified that the
constant term vanishes and the weight evaluates to 1. Thus,
the message becomes the normal distribution centered at the
observed pixel color I (Fig. 3 left). This is intuitive since
the color of the pixel should match the observed voxel i.
Second, consider the case when the voxel is either empty or
occluded. In either case, it can be verified that the weight
is zero and the message becomes a flat distribution (Fig. 3
right). In other words, the pixel observation is not informa-
tive for empty or occluded voxels, which is intuitive.

The variable-to-factor appearance messages, µai→ψ(ai),
and the appearance marginals, p(ai), are of continuous
form and thus more challenging to represent and compute
than their occupancy counterparts. Even for a 1D appear-
ance space, discretization is not an option as the fine level
of granularity required would quickly exceed the mem-
ory limits for large volumetric reconstructions. Instead,
we explicitly represent the current belief about the appear-
ance marginal, p(ai), at each iteration with a Mixture-of-
Gaussians (MoG). The MoG is a suitable approximation
for the appearance of many surfaces in natural scenes as
it can represent uni-modal (Lambertian surfaces), multi-
modal (reflective surfaces), as well as flat distributions
(empty or occluded voxels). Moreover, its multi-modal na-
ture helps to cope with wrong observations during the initial
iterations when visibility/occlusion relationships are not yet
resolved. Finally, the MoG can be stored compactly using
the mean, variance and weight of its modes. After each
message update, we update the MoG distribution that ap-
proximates p(ai) as

p(ai)
new ∝ p(ai)old ×

µnew
ψ→ai(ai)

µold
ψ→ai(ai)

(16)

using a Monte Carlo approach as detailed in Section 5.
Finally, the variable-to-factor message, µai→ψ(ai), can

be obtained from p(ai) via:

µai→ψ(ai) =
∏

g∈Fai
\ψ

µg→ai(ai) ∝
p(ai)

µψ→ai(ai)
. (17)

4.2. Bayes Optimal Depth Prediction

Given a ground truth model or ground truth depth maps,
a natural measure of reconstruction performance is the sum
of depth errors at each pixel of the input images. While
other performance measures (e.g., based on meshes) are ap-
plicable as well, we consider this simple metric as it is able
to directly measure the performance of the volumetric rep-
resentation without need for additional meshing steps.

Let ∆(·, ·) denote the loss function that measures the
pixel-wise absolute depth error summed over all images.
Since ∆(·, ·) decomposes over images and pixels, we will
consider a single ray and depthD in the following. Accord-
ing to Bayes decision theory, the optimal depth D∗ is given
by the depth D that minimizes the expected loss:

D∗ = arg min
D

Ep(D′)[∆(D,D′)]. (18)

For the `1-loss, ∆(D,D′) = |D − D′|, considered in this
paper, the minimizer to Eq. 18 is given byD∗ where p(D <
D∗) = p(D ≥ D∗) = 0.5, i.e. the median of p(D) [22].

Similar to the image formation equation (Eq. 1), the
depth forward process (i.e. rendering) can be specified as

D =

N∑
i=1

oi
∏
j<i

(1− oj) di (19)

where di denotes the depth of voxel i along an arbitrary
ray. According to our graphical model, the depth distribu-
tion can be written as (see supplementary document for the
derivation)

p(D = di) ∝ µ(oi = 1)

i−1∏
j=1

µ(oj = 0) ρi. (20)

Intuitively, voxel i is at the observed depth if the voxel is
likely occupied, visible, and explains the observed pixel in-
tensity. Note that this equation highly resembles the mes-
sage equations (Eq. 13, Eq. 14) and it can be easily com-
puted as a by-product of the inference algorithm.

5. Implementation

This section provides the details of our implementation.
The ray-factor messages are initialized to uniform distribu-
tions. We estimate an initial belief for each appearance vari-
able by fitting a MoG distribution (using the EM algorithm)
to all the pixel colors that the voxel projects to. This ap-
pearance initialization helps bootstrap the inference process
and leads to faster convergence. After the initialization, the



sum-product algorithm is iterated until convergence.
The presented sum-product belief propagation algorithm

is implemented using an asynchronous message passing
schedule that is suitable for parallel execution on a GPU.
Images are processed one at a time, where each pixel/ray in
the image is assigned a thread. All threads simultaneously
compute the incoming messages to their ray-factor based
on Eq. 6, and then compute the outgoing messages to each
occupancy and appearance variable along their ray (Eq. 13,
Eq. 14, Eq. 15). Our current implementation can process
a 1 MP image in about 7 seconds for a scene with roughly
30 million voxels. This allows us to process hundreds of
images with a fine discretization of the voxel grid.

We implemented our algorithm using an octree. The oc-
tree allows allocating high resolution cells only near sur-
faces and therefore saves significant amounts of processing
in comparison to a regular voxel grid. In particular, we use
shallow octrees amenable to GPU processing proposed by
Miller et al. [21]. The inference procedure and octree re-
finement are carried out in an alternating fashion. Further
details can be found in the supplementary document.

The occupancy and appearance beliefs of each voxel are
updated based on the new messages computed at each it-
eration. For the occupancy variables, this belief update is
straightforward based on Eq. 7. For the appearance vari-
ables, we follow a sampling approach. The belief update
equation (Eq. 16) suggests the new MoG distribution will
have modes similar to that of the old MoG distribution
and/or similar to the mode of µnew

ψ→ai(ai). Note that both
µnew
ψ→ai(ai) and µold

ψ→ai(ai) have the same mode. Therefore,
a mixture of p(ai)old and µnew

ψ→ai(ai) constitutes a reason-
able proposal distribution. We draw a total of 128 samples
from w p(ai)

old + (1− w)µnew
ψ→ai(ai) where w = 0.5. The

samples are weighted according to the right hand side of
Eq. 16 and EM is used to fit the new MoG as an estimate of
p(ai)

new. The EM algorithm is initialized with the param-
eters of p(ai)old and iterated until the MoG parameters do
not change or a maximum number of iterations (250 for our
experiments) are reached. For all experiments, we use MoG
with three modes, which we found sufficient for represent-
ing the intensities of our gray scale input images.

The integrals that arise during message computation, i.e.
Eq. 12, cannot be computed in closed form. We compute an
approximation using Monte Carlo integration. The details
can be found in the supplementary document.

6. Experimental Evaluation

We evaluate our algorithm on three challenging aerial
datasets with LIDAR ground truth and compare the results
to the state-of-the-art in terms of reconstruction accuracy
as well as its ability to expose uncertainty in the recon-
struction. As baselines, we use the algorithms of Liu and

(a) (b)

(c) (d)
Figure 4: (a,b) Example images from the BARUS&HOLLEY
and DOWNTOWN datasets taken from [27]. (c,d) Depth map
renderings of the LIDAR ground truth.

Cooper (“LC”) [20] and Pollard and Mundy (“PM”) [23],
both of which have achieved some of the best volumetric
reconstruction results for general 3D scenes [5, 20, 30].

We use the publicly available code of the PM algorithm
in the VXL project1 and we have reimplemented the LC
algorithm as described in [20]. To enable a direct compari-
son, we have omitted the pairwise smoothness factors in the
original LC formulation as neither PM nor the proposed al-
gorithm contains any spatial regularization. However, note
that pairwise smoothness terms could be easily integrated
into our approach.

The original LC algorithm estimates the color of each
voxel as the mean pixel color from which it is visible. We
found this procedure to be sensitive to outliers during the
first iterations, when visibility/occlusion relationships are
not yet resolved. We also implemented a more robust, im-
proved version where the appearance is modeled using a
MoG distribution and estimated via EM. The mean of the
dominant mode in the MoG is selected as the appearance
estimate. We refer to this algorithm as “LC with MoG”.

We present a quantitative evaluation of all four algo-
rithms in terms of reconstruction accuracy by comparing
the results to LIDAR ground truth. We also provide a qual-
itative analysis of the occupancy probabilities computed by
our algorithm. For the purposes of this paper, we omit eval-
uation on the relatively easy Middlebury multi-view bench-
mark [30] as it contains single isolated objects against a uni-
form background with little ambiguity in the 3D reconstruc-
tion. All of the methods investigated by us are able to pro-
duce reasonable results on this dataset [5, 20, 30]. Instead,
our evaluation focuses on three complex real-world scenes
that contain significant ambiguities due to large textureless
regions, shadows and highly reflective surfaces.

1http://vxl.sourceforge.net/

http://vxl.sourceforge.net/
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Figure 5: Percentage of correctly estimated pixels in the
BARUS&HOLLEY (a,b) and CAPITOL (c,d) datasets. The
legend for all figures is the same as in (a). Figures (a) and
(c) quantify performance for the entire scenes whereas (b,d)
focus on the textureless roof region for BARUS&HOLLEY
and on the grass lawn for CAPITOL.

Datasets: We use three aerial datasets from Restrepo et al.
[27] and adopt their naming convention: we refer to the se-
quences as DOWNTOWN, BARUS&HOLLEY and CAPITOL.
Sample images from these datasets are shown in Fig. 1a, 4a,
and 4b. The images are 1280x720 pixels in size and have
an approximate resolution of 30 cm/pixel. 180 views are
available for DOWNTOWN, 240 views for CAPITOL and 226
views for BARUS&HOLLEY.

The datasets provide ground truth point clouds obtained
from airborne LIDAR [27]. While the LIDAR points are
quite dense and precise, they lack coverage on the sides of
the buildings. We extrude the points to the ground plane
in order to create a more complete ground truth, assum-
ing mostly non-concave surfaces. Note that this assump-
tion mostly holds for these datasets. Trees are the main ex-
ception but, since they occupy a negligible fraction of the
scene, this does not significantly affect evaluation. The re-
sulting point clouds are then triangulated to obtain a dense
surface ground truth, see Fig. 4c and 4d for examples.

We empirically set the occupancy prior to a low value
since most voxels are empty in the datasets. Ideally this
parameter should be inferred from training data. We use
γ = 0.001 for BARUS&HOLLEY and CAPITOL, and γ =
0.05 for DOWNTOWN since it has more occupied surface
voxels. The effect of γ for the quantitative experiments will
be studied in future work.
Evaluation Protocol: We evaluate the reconstruction accu-
racy as the absolute depth error over all pixels and images
with respect to the ground truth depth maps. For each in-
put camera ray, each algorithm’s result is used to compute a
depth estimate and compared to the ground truth depth. For

the LC algorithm’s MAP solution, the depth estimate is the
depth of the first occupied voxel along the ray. For our al-
gorithm, we compute the estimate according to Section 4.2.
As Pollard and Mundy do not provide a method to compute
depth estimates, we follow Crispell [6] and use the expected
depth D∗ = Ep(D)[D] as the prediction.
Experimental Results: Fig. 5a, 5c and 8a show the per-
centage of correctly estimated pixels w.r.t. the error thresh-
old. Our algorithm achieves lower error compared to the
other algorithms in both CAPITOL and BARUS&HOLLEY,
and produces comparable results for DOWNTOWN.

We visualize the errors in Fig. 6 and Fig. 7. For all three
competing algorithms, the dominant locations of error are
featureless surfaces: the rooftop in BARUS&HOLLEY and
the grass lawn in CAPITOL. All three algorithms yield sim-
ilar results for these regions: the reconstructions tend to
“bulge out” as can be seen in the error maps. Since these
featureless surfaces are flat in reality, PM and LC’s recon-
structions contain gross errors. We explain the reasons for
this behavior below.

The LC algorithm computes a MAP estimate which
prefers the surface to lie on the outermost layer of the am-
biguous region (see Fig. 1c) because any other solution
would be occluded by this photo-consistent layer of vox-
els, thus resulting in a higher energy. PM’s Bayes update
equation increases the occupancy probability of voxels that
are both visible and photo-consistent. Initially, all vox-
els in the ambiguous region meet this criteria equally well.
However, after repeated updates, the interior voxels become
occluded and their occupancy probability is no longer in-
creased. Voxels at the outermost layer of the ambiguous
region remain visible, thus their occupancy probability con-
tinuously increases until it reaches 1. We visualize the occu-
pancy probabilities inferred by the PM algorithm in Fig. 7f
by color coding each voxel according to its probability. The
color scale is shown in Fig. 1c. It can be seen that the outer
visible layer of the ambiguous featureless region has high
probability values similar to that of the textured building
surface.

In contrast, the occupancy probabilities inferred by our
algorithm (see Fig. 7g) results in a clear distinction. The
grass region and textureless patches on the building walls
are assigned low probability whereas textured surfaces re-
ceive high probability of occupancy. For ambiguous re-
gions, the image evidence is weak, i.e. the ray-potential
messages are close to uniform, and therefore, the beliefs
are dictated by the prior, which favors empty voxels. For
highly textured regions, the image evidence dominates the
prior and leads to high probability of occupancy. Similar ef-
fects can be observed for the BARUS&HOLLEY dataset in
Fig. 6f and Fig. 6g.

Since our algorithm assigns low probability of occu-
pancy uniformly over the ambiguous region, the predicted
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Figure 6: Analysis of errors for the BARUS&HOLLEY dataset. (a) Reference image. Heat-maps of depth error for LC (b),
LC with MoG (c), PM (d) and our algorithm (e). Cooler colors correspond to lower error. Errors for (b-d) are concentrated
on the featureless black rooftop, whereas our algorithm’s errors are mostly around the tree regions where the LIDAR ground
truth is possibly not accurate. Visualization of the occupancy probabilities computed by PM (f) and our algorithm (g).

(a) Image (b) LC (c) LC with MoG (d) PM (e) Our (f) PM Occ. (g) Our Occ.

Figure 7: Analysis of errors for the CAPITOL dataset. (a) Reference image. Heat-maps of depth error for LC (b), LC with
MoG (c), PM (d) and our algorithm (e). Cooler colors correspond to lower error. Visualization of the occupancy probabilities
for PM (f) and proposed algorithm’s reconstructions (g).

(Bayes optimal) depth, that is the median of the depth dis-
tribution (Section 4.2), is roughly in the middle of the re-
gion. This results in lower error than the PM and LC recon-
structions, which, by construction, prefer surfaces closest
to the camera. We confirm our hypothesis by evaluating all
four algorithms in the featureless regions only. Fig. 5b and
Fig. 5d show that the proposed algorithm is indeed signifi-
cantly more accurate in those regions.

Due to the absence of large textureless regions, the per-
formance of all algorithms is roughly the same for the
DOWNTOWN sequence as seen in Fig. 8a. The highly re-
flective building surfaces cause the largest errors. In partic-
ular, the building shown in Fig. 8b has a mirror like surface
that strongly violates the Lambertian surface assumption.
All algorithms yield similar large errors in this region. The
error map for our algorithm is shown in Fig. 8c. Occupancy
probabilities of our algorithm are visualized in Fig. 8e. The
building roof, which contains strong edge features, is local-
ized with high accuracy and the algorithm yields high oc-
cupancy probability, indicating strong image evidence. In
contrast, the building sides have large errors but also low
occupancy probability. The shadow regions are also as-
signed low probability since their behavior is similar to a
featureless surface. In contrast, Fig. 8d shows that the PM
algorithm assigns high occupancy to all estimated surface
voxels.

We encourage the reader to look at our project page for
additional resources 2.

2http://ps.is.tue.mpg.de/project/Volumetric_
Reconstruction
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Figure 8: (a) Error plots for the DOWNTOWN dataset. (b)
Reference image. (c) Heat-map of errors for our algo-
rithm. (d,e) Visualization of the voxel occupancy proba-
bilities computed by PM (d) and our algorithm (e).

7. Conclusions

In this paper, we have presented a novel probabilis-
tic method for volumetric reconstruction that faithfully
encodes reconstruction ambiguities while achieving high
quality 3D models. Our results show that the algorithm
compares favorably to the state-of-the-art both in terms
of reconstruction accuracy as well as in the ability to re-
veal reconstruction uncertainty. This is a key strength of
our approach relative to prior work. While we have uti-
lized weak prior information in this work, the proposed

http://ps.is.tue.mpg.de/project/Volumetric_Reconstruction
http://ps.is.tue.mpg.de/project/Volumetric_Reconstruction


probabilistic approach provides a foundation with which to
combine multi-view image data with a wide range of pri-
ors. Priors expressing spatial smoothness, temporal consis-
tency [12, 34] as well as semantic information [13, 14] can
be principally integrated into our probabilistic formulation.
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