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Abstract

Despite stereo matching accuracy has greatly improved
by deep learning in the last few years, recovering sharp
boundaries and high-resolution outputs efficiently remains
challenging. In this paper, we propose Stereo Mixture Den-
sity Networks (SMD-Nets), a simple yet effective learning
framework compatible with a wide class of 2D and 3D
architectures which ameliorates both issues. Specifically,
we exploit bimodal mixture densities as output representa-
tion and show that this allows for sharp and precise dis-
parity estimates near discontinuities while explicitly mod-
eling the aleatoric uncertainty inherent in the observations.
Moreover, we formulate disparity estimation as a continu-
ous problem in the image domain, allowing our model to
query disparities at arbitrary spatial precision. We carry
out comprehensive experiments on a new high-resolution
and highly realistic synthetic stereo dataset, consisting of
stereo pairs at 8Mpx resolution, as well as on real-world
stereo datasets. Our experiments demonstrate increased
depth accuracy near object boundaries and prediction of ul-
tra high-resolution disparity maps on standard GPUs. We
demonstrate the flexibility of our technique by improving the
performance of a variety of stereo backbones.

1. Introduction

Stereo matching is a long standing and active research
topic in computer vision. It aims at recovering dense corre-
spondences between image pairs by estimating the dispar-
ity between matching pixels, required to infer depth through
triangulation. It also plays a crucial role in many areas like
3D mapping, scene understanding and robotics.

Traditional stereo matching algorithms apply hand-
crafted matching costs and engineered regularization strate-
gies. More recently, learning methods based on Convolu-
tional Neural Networks (CNNs) have proven to be supe-
rior, given the increasing availability of large stereo datasets

∗Work done as intern at MPI-IS.

(a) PSM [4]

(b) PSM [4] + Ours

Figure 1: Point Cloud Comparison between the stereo net-
work PSM [4] and our Stereo Mixture Density Network
(SMD-Net) on the UnrealStereo4K dataset. Notice how
SMD-Net notably alleviates bleeding artifacts near object
boundaries, resulting in more accurate 3D reconstructions.

[11, 10, 52]. Although such methods produce compelling
results, two major issues remain unsolved: predicting accu-
rate depth boundaries and generating high-resolution out-
puts with limited memory and computation.

The first issue is shown in Fig. 1a: As neural networks
are smooth function approximators, they often poorly re-
construct object boundaries, causing “bleeding” artifacts
(i.e., flying pixels) when converted to point clouds. These
artifacts can be detrimental to subsequent applications such
as 3D reconstruction or 3D object detection. Thus, while
being ignored by most commonly employed disparity met-
rics, accurate 3D reconstruction of contours is a desirable
property for any stereo matching algorithm.



Furthermore, existing methods are limited to discrete
predictions at pixel locations of a fixed resolution image
grid, while geometry is a piecewise continuous quantity
where object boundaries may not align with pixel centers.
Increasing the output resolution by adding extra upsampling
layers partially addresses this problem as this leads to a sig-
nificant increase in memory and computation.

In this work, we address both issues. Our key contri-
bution is to learn a representation that is precise at object
boundaries and scales to high output resolutions. In partic-
ular, we formulate the task as a continuous estimation prob-
lem and exploit bimodal mixture densities [2] as output rep-
resentation. Our simple formulation lets us (1) avoid bleed-
ing artifacts at depth discontinuities, (2) regress disparity
values at arbitrary spatial resolution with constant memory
and (3) provides a measure for aleatoric uncertainty.

We illustrate the boundary bleeding problem and our so-
lution to it in Fig. 2. While classical deep networks for
stereo regression suffer from smoothness bias and are in-
capable of representing sharp disparity discontinuities, the
proposed Stereo Mixture Density Networks (SMD-Nets) ef-
fectively address this issue. The key idea is to alter the
output representation adopting a mixture distribution such
that sharp discontinuities can be regressed despite the fact
that the underlying neural networks are only able to make
smooth predictions (note that all curves in Fig. 2b are indeed
smooth while the predicted disparity is discontinuous).

Furthermore, the proposed model is capable of regress-
ing disparity values at arbitrary continuous locations in the
image, effectively solving a stereo super-resolution task. In
combination with the proposed representation, this allows
for regressing sharp discontinuities at sub-pixel resolution
while keeping memory requirements constant.

In summary, we present: (i) A novel learning framework
for stereo matching that exploits compactly parameterized
bimodal mixture densities as output representation and can
be trained using a simple likelihood-based loss function. (ii)
A continuous function formulation aimed at estimating dis-
parities at arbitrary spatial resolution with constant mem-
ory footprint. (iii) A new large-scale synthetic binocular
stereo dataset with ground truth disparities at 3840 × 2160
resolution, comprising photo-realistic renderings of indoor
and outdoor environments. (iv) Extensive experiments on
several datasets demonstrating improved accuracy at depth
discontinuities for various backbones on binocular stereo,
monocular and active depth estimation tasks.

Our source code and dataset are available at https:
//github.com/fabiotosi92/SMD-Nets.

2. Related Work
Deep Stereo Matching: Stereo has a long history in com-
puter vision [41]. With the rise of deep learning, CNN based
methods for stereo were pioneered in [56] with the aim of

replacing the traditional matching cost computation.
More recent works attempt to solve the stereo match-

ing task without hand-crafted post processing steps. They
can be categorized into 2D architectures and 3D architec-
tures. In the first category, [22, 32, 15, 53, 54, 46, 1]
extend the seminal DispNet [24], an end-to-end network
for disparity regression. The second class, instead, con-
sists of architectures that explicitly construct 3D feature
cost volumes by means of concatenation/feature difference
[4, 18, 47, 48, 8, 57, 49, 55, 29, 3, 7, 45, 50, 21] and group-
wise correlation [14]. A thorough review of these works can
be found in [36]. We stress once again how such networks,
although achieving state-of-the-art results on most stereo
benchmarks, suffer from severe over-smoothing at object
discontinuities which are not captured by commonly em-
ployed disparity metrics, but which matter for many down-
stream applications. Therefore, the ideas proposed in this
work to address this issue are orthogonal to the aforemen-
tioned networks and can be advantageously combined with
nearly any stereo backbone.

Disparity Output Representation: Standard stereo net-
works directly regress a scalar disparity at every pixel. This
output representation suffers from over-smoothing and does
not expose the underlying aleatoric uncertainty. The latter
problem can be addressed by modeling the disparity using
a parametric distribution, e.g., a Gaussian or Laplacian dis-
tribution [16, 25] while the over-smoothing issue remains
unsolved. A key result of our work is to demonstrate that re-
placing the unimodal output representation with a bimodal
one is sufficient to significantly alleviate this problem.

Another line of methods estimate a non-parametric dis-
tribution over a set of discrete disparity values. However,
this approach leads to inaccurate results when the estimated
distribution is multi-modal [17]. Some works tackle the
problem by enforcing a unimodal constraint during train-
ing [5, 58]. In contrast, we explicitly model the bimodal
nature of the distribution at object boundaries by adopting a
simple and effective bimodal representation. In concurrent
work, [9] also predicts multi-modal distributions supervised
by a heuristically designed multi-modal ground truth over
a set of depth values. In contrast to them, our bimodal ap-
proach can be learned by maximizing the likelihood without
requiring direct supervision on the distribution itself.

Continuous Function Representation: Existing deep
stereo networks use fully convolutional neural networks and
make predictions at discrete pixel locations. Recently, con-
tinuous function representations have gained attention in
many areas, including 3D reconstruction [27, 33, 6, 39, 44,
30, 35], texture estimation [31], image synthesis [28, 42]
and semantic segmentation [20]. To the best of our knowl-
edge, we are the first to adopt a continuous function repre-
sentation for disparity estimation, allowing us to predict a
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Figure 2: Overcoming the Smoothness Bias with Mixture Density Networks. For clarity, we visualize the disparity d only
for a single image row. (a) Classical deep networks for stereo regression suffer from smoothness bias and hence continuously
interpolate object boundaries. In addition, disparity values are typically predicted at discrete spatial locations. (b) In this
work, we propose to use a bimodal Laplacian mixture distribution (illustrated in gray) with weight π as output representation
which can be queried at any continuous spatial location x. This allows our model to accurately capture uncertainty close
to depth discontinuities while at inference time recovering sharp edges by selecting the mode with the highest probability
density. In this example, the first mode (µ1, b1) models the background and the second mode (µ2, b2) models the foreground
disparity close to the discontinuity. When the probability density of the foreground mode becomes larger than the probability
density of the background mode, the most likely disparity sharply transitions from the background to the foreground value.

disparity value at any continuous pixel location. In contrast
to works that allow for high-resolution stereo matching by
designing memory efficient architectures [51, 13], our sim-
ple output representation is able to exploit ground truth dis-
parity maps at a higher resolution than the input stereo pair,
thus effectively learning stereo super-resolution.

3. Method
Fig. 3 illustrates our model. We first encode a stereo pair

into a feature map using a convolutional backbone (left).
Next, we estimate parameters of a mixture density distribu-
tion at any continuous 2D location via a multi-layer percep-
tron head, taking the bilinearly interpolated feature vector
as input (middle). From this, we obtain a disparity as well
as uncertainty map (right). We now explain our model, loss
function and training protocol in detail.

3.1. Problem Statement

Let I ∈ RW×H×6 denote an RGB stereo pair for which
we aim to predict a disparity map D at arbitrary resolution.
As shown in Fig. 2, classical stereo regression networks suf-
fer from over-smoothing due to the smoothness bias of neu-
ral networks. In this work, we exploit a mixture distribution
as output representation [2] to overcome this limitation.

More specifically, we propose to use a bimodal Lapla-
cian mixture distribution with weight π and two modes
(µ1, b1), (µ2, b2) to model the continuous probability dis-
tribution over disparities at a particular pixel. Using two
modes allows our model to capture both the foreground as
well as the background disparity at object boundaries. At
inference time, we recover sharp object boundaries by se-

lecting the mode with the highest density value. Thus, our
model is able to transition from one disparity to another in
a discontinuous fashion while at the same time relying only
on the regression of functions (π, µ1, b1, µ2, b2) which are
smooth with respect to the image domain and which there-
fore can easily be represented using neural networks.

3.2. Stereo Mixture Density Networks

We now formally describe our model. Let

Ψθ : RW×H×6 → RW×H×D (1)

denote a stereo backbone network with parameters θ as
shown in Fig. 3 (left). Ψθ takes as input the stereo pair I and
outputs aD-dimensional feature map, represented in the do-
main of the reference image (e.g. the left image of a stereo
pair). Examples for such networks are standard 2D convo-
lutional networks, or networks which perform 3D convolu-
tions. For the 2D networks, the stereo pair can be concate-
nated as input or processed by means of siamese towers with
shared weights as typically done for 3D architectures. Sim-
ilarly, this generic formulation also applies to the structured
light setting (e.g., Kinect setting where I ∈ RW×H ) and the
monocular depth estimation problem (I ∈ RW×H×3).

As geometry is a piecewise continuous quantity, we ap-
ply a deterministic transformation to obtain feature points
for any continuous location in RW×H . More specifically,
for every continuous 2D location x ∈ R2, we bilinearly in-
terpolate the features from its four nearest pixel locations
in the feature map RW×H×D. More formally, we describe
this transformation as:

ψ : R2 × RW×H×D → RD (2)



Stereo Backbone SMD Head

Figure 3: Method Overview. We assume a 2D or 3D stereo backbone network Ψθ which takes as input a stereo pair I (either
concatenated or processed by siamese towers), and outputs a D-dimensional feature map in the domain of the reference
image. Given any continuous 2D location x, we query its feature from the feature map via bilinear interpolation as denoted
by ψ. The interpolated feature vector is then fed into a multi-layer perceptron fθ to estimate a five-dimensional vector
(π, µ1, b1, µ2, b2) which represents the parameters of a bimodal distribution. N denotes the number of points randomly
sampled at continuous 2D locations during training and the number of pixels during inference. On the right we show maps
of µ1, µ2, π, 1− π, uncertainty h and predicted disparity d̂.

Finally, we employ a multi-layer perceptron to map this
abstract feature representation to a five-dimensional vector
(π, µ1, b1, µ2, b2) which represents the parameters of a uni-
variate bimodal mixture distribution:

fθ : RD → R5 (3)

Note that we have re-used the parameter symbol θ to sim-
plify notation. In the following, we use θ to denote all
parameters of our model. We refer to fθ(ψ(·, ·)) as SMD
Head, see Fig. 3 for an illustration.

To robustly model a distribution over disparities which
can express two modes close to disparity discontinuities, we
choose a bimodal Laplacian mixture as output representa-
tion:

p(d) =
π

2 b1
e−
|d−µ1|
b1 +

1− π
2 b2

e−
|d−µ2|
b2 (4)

In summary, our model can be compactly expressed as:

p(d|x, I, θ) = p(d|fθ (ψ(x,Ψθ(I)))) (5)

At inference time, we determine the final disparity d̂ by
choosing the mode with the highest density value:

d̂ = argmax
d∈{µ1,µ2}

p(d) (6)

Note that our formulation allows to query the disparity
d̂ ∈ R at any continuous 2D pixel location, enabling ultra
high-resolution predictions with sharply delineated object
boundaries. This is illustrated in Fig. 4.

Our model also allows for capturing the aleatoric uncer-
tainty of the predicted disparity by evaluating the differen-
tial entropy of the continuous mixture distribution as:

h = −
∫
p(d) log p(d) dd (7)

In practice, we use numerical quadrature to obtain an ap-
proximation of the integral.

3.3. Loss Function

We consider the supervised setting and train our model
by minimizing the negative log-likelihood loss:

LNLL(θ) = −Ed,x,I log p(d|x, I, θ) (8)

where the input I is randomly sampled from the dataset,
x is a random pixel location in the continuous image do-
main Ω = [0,W − 1]× [0, H − 1], sampled as described in
Sec. 3.4, and d is the ground truth disparity at location x.

3.4. Training Protocol

Sampling Strategy: While a naı̈ve strategy samples pixel
locations x randomly and uniformly from the image do-
main Ω, our framework also allows for exploiting custom
sampling strategies to focus on depth discontinuities dur-
ing training. We adopt a Depth Discontinuity Aware (DDA)
sampling approach during training that explicitly favors
points located near object boundaries while at the same time
maintaining a uniform coverage on the entire image space.
More specifically, given a ground truth disparity map at
training time, we first compute an object boundary mask
in which a pixel is considered to be part of the boundary if
its (4-connected) neighbors have a disparity that differs by
more than 1 from its own disparity. This mask is then di-
lated using a ρ × ρ kernel to enlarge the boundary region.
We report an analysis using different ρ values in the experi-
mental section. Given the total number of training pointsN ,
we randomly and uniformly select N/2 points from the do-
main of all pixels belonging to depth discontinuity regions
and N/2 points uniformly from the continuous domain of
all remaining pixels. At inference time, we leverage our
model to predict disparity values at each location of an (ar-
bitrary resolution) grid.

Stereo Super-Resolution: Our continuous formulation al-
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Figure 4: Ultra High-resolution Estimation. Comparison
of our model using the PSM backbone at 128Mpx resolution
(top) to the original PSM at 0.5Mpx resolution (bottom),
both taking stereo pairs at 0.5Mpx resolution as input. Each
column shows a different zoom-level. Note how our method
leads to sharper boundaries and high resolution outputs.

lows us to exploit ground truth at higher resolution than the
input I, which we refer to as stereo super-resolution. In
contrast, classical stereo methods cannot realize arbitrary
super-resolution without changing their architecture.

4. Experimental Results

In this section, we first describe the datasets used for
evaluation and implementation details. We then present an
extensive evaluation that demonstrates the benefits of the
proposed SMD Head in combination with different stereo
backbones on several distinct tasks.

4.1. Datasets

UnrealStereo4K: Motivated by the lack of large-scale, re-
alistic and high-resolution stereo datasets, we introduce a
new photo-realistic binocular stereo dataset at 3840× 2160
resolution with pixel-accurate ground truth. We create this
synthetic dataset using the popular game engine Unreal En-
gine combined with the open-source plugin UnrealCV [37].
We additionally create a synthetic active monocular dataset
(mimicking the Kinect setup) at 4112× 3008 resolution by
warping a gray-scale reference dot pattern to each image,
following [38]. We split the dataset into 7720 training pairs,
80 validation pairs and 200 in-domain test pairs. To evalu-
ate the generalization ability of our method, we also create
an out-of-domain test set by rendering 200 stereo pairs from
an unseen scene. Similarly, the active dataset contains 3856
training images, 40 validation images, 100 test images.

RealActive4K: We further collect a small real-world ac-
tive dataset of an indoor room with a Kinect-like stereo sen-
sor, including 2570 images at a resolution 4112×3008 pix-
els from which we use 2500 for training, 20 for validation
and 50 for testing. We perform Block Matching with left-
right consistency check to use as co-supervision for training
models jointly on synthetic (UnrealStereo4K) and real data.

KITTI 2015 [26]: The KITTI dataset is a collection of
real-world stereo images depicting driving scenarios. It
contains 200 training pairs with sparse ground truth depth
maps collected by a LiDAR and 200 testing pairs. We di-
vide the KITTI training set into 160 training stereo pairs and
40 validation stereo pairs, following [45].

Middlebury v3 [40]: Middlebury v3 is a small high-
resolution stereo dataset depicting indoor scenes under con-
trolled lighting conditions containing 10 training pairs and
10 testing pairs with dense ground truth disparities.

4.2. Implementation Details

Architecture: In principle, our SMD Head is compati-
ble with any stereo backbone ψθ from the literature. In our
implementation, we build on top of two state-of-the-art 3D
stereo architectures: Pyramid Stereo Matching (PSM) net-
work [4] and Hierarchical Stereo Matching (HSM) network
[51]. PSM is a well-known and popular stereo network
while HSM represents a method with good trade-off be-
tween accuracy and computation. Moreover, we also adopt
a naı̈ve U-Net structure [12] that takes as input concatenated
images of a stereo pair in order to show the effectiveness of
our model on 2D architectures. For the aforementioned net-
works, we follow the official code provided by the authors.

Our SMD Head fθ is implemented as a multi-layer per-
ceptron (MLP) following [39]. More specifically, the num-
ber of neurons is (D, 1024, 512, 256, 128, 5). We use sine
activations [44] except for the last layer that uses a sigmoid
activation for regressing the five-parameter output. For the
3D backbone, we select the matching probabilities from the
cost volume in combination with features of Ψθ at different
resolutions as input to our SMD Head. For the 2D backbone
case, instead, we select features from different layers of the
decoder. We refer the reader to the supplementary material
for details.

Training: We implement our approach in PyTorch [34]
and use Adam with β1 = 0.9 and β2 = 0.999 as opti-
mizer [19]. We train all models from scratch using a sin-
gle NVIDIA V100 GPU. During training, we use random
crops from I as input to the stereo backbone and sample
N = 50, 000 training points from each crop. We scale the
ground truth disparity to [0, 1] for each dataset for numer-
ical stability. Moreover, for RGB inputs we perform chro-
matic augmentations on the fly, including random bright-
ness, gamma and color shifts sampled from uniform distri-
butions. We further apply horizontal and vertical random
flipping while adapting the ground truth disparities accord-
ingly. Please see the supplementary material for details re-
garding the training procedure for each dataset.

Evaluation Metrics: Following [5], we evaluate the Soft
Edge Error (SEEk) metric on pixels belonging to object



boundaries, defined as the minimum absolute error between
the predicted disparity and the corresponding local ground
truth patch of size k × k (k = {3, 5} in our experiments).
Intuitively, SEE penalizes over-smoothing artifacts stronger
compared to small misalignments in a local window, where
the former is more harmful to subsequent applications.

While not our main focus, we also report the End Point
Error (EPE) as the standard error metric obtained by av-
eraging the absolute difference between predictions and
ground truth disparity values to evaluate the overall perfor-
mance. For both SEE and EPE, we compute the average
(Avg) and σ(∆) metrics, with the latter one representing
the percentage of pixels having errors greater than ∆.

4.3. Ablation Study

We first examine the impact of different components
and training choices of the proposed SMD-Nets on the in-
domain UnrealStereo4K test set. Unless specified other-
wise, we use 960×540 as resolution for the binocular input
I and 3840×2160 for the corresponding ground truth, used
for both supervision and testing purposes. The active input
images consist of random dot patterns where the dots be-
come indistinguishable at low resolution (e.g., 960 × 540).
Therefore we use 2056 × 1504 as active input size while
keeping the ground truth dimension at 4112× 3008.

Output Representation: In Tab. 1, we evaluate the effec-
tiveness of our mixture density output representation across
both, 2D and 3D stereo backbones on multiple tasks includ-
ing binocular stereo, monocular depth and active depth. We
adopt U-Net and PSM on the binocular stereo dataset as
representatives of 2D and 3D backbones and report results
of HSM in the supplementary for the sake of space. We also
use the same U-Net backbone for a monocular depth estima-
tion task by replacing the input with only the reference im-
age of a binocular stereo pair to show the advantage of our
method on various tasks. For the active setup, we choose
HSM as it represents a network designed specifically for
high-resolution inputs which takes as input the monocular
active image and the fixed reference dot pattern.

We compare our bimodal distribution to two other out-
put representations, standard disparity regression and a uni-
modal Laplacian distribution [16]. For fairness, we imple-
ment these baselines by replacing the last layer of our SMD
Head to predict the disparity d or the unimodal parameters
(µ, b), respectively, where the former is trained with a stan-
dard L1 loss while the latter with a negative log-likelihood
loss. For all cases we use the proposed bilinear feature in-
terpolation and the naı̈ve random sampling strategy.

Tab. 1 shows that the proposed method effectively ad-
dresses the over-smoothing problem at object boundaries,
achieving the lowest SEE for all backbones on all tasks,
compared to both the standard disparity regression and the
unimodal representation. Moreover, we observe that the

Ψθ Dim. SEE3 SEE5 EPE
Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)

B
in

oc
ul

ar
St

er
eo U-Net

(2D )
[12]

1 2.15 41.69 24.16 2.03 39.65 22.98 1.48 8.18
2 2.38 42.28 25.74 2.26 40.42 24.57 1.97 10.44
5 1.57 30.06 14.77 1.45 28.05 16.57 1.28 5.94

PSM
(3D)
[4]

1 1.98 36.32 20.35 1.85 34.42 19.21 1.10 5.52
2 2.50 39.40 23.63 2.37 37.57 22.51 1.88 7.73
5 1.52 26.98 12.68 1.38 24.93 11.49 1.11 4.80

M
on

o. U-Net
(2D)
[12]

1 3.29 60.18 41.37 3.25 58.49 40.08 4.21 35.92
2 4.01 61.06 43.19 3.86 59.40 41.90 5.49 41.88
5 2.92 51.32 32.33 2.78 49.54 31.06 4.06 30.59

A
ct

iv
e HSM

(3D)
[51]

1 3.40 47.87 24.80 3.18 46.14 23.76 1.29 5.84
2 4.93 57.05 33.44 4.69 55.47 32.41 2.83 10.70
5 2.69 41.84 17.35 2.43 39.83 16.17 1.42 5.48

Table 1: Output Representation analysis on the Unreal-
Stereo4K test set. “Dim.” refers to the output dimension
of the SMD Head where 1 indicates the point estimate d,
2 the unimodal output representation (µ, b) [16] and 5 our
bimodal formulation (π, µ1, b1, µ2, b2).

Sampling ρ
SEE3 SEE5 EPE

Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)
Random - 1.52 26.98 12.68 1.38 24.93 11.49 1.11 4.80

DDA 0 1.34 21.62 9.77 1.19 19.58 8.59 1.08 4.44
DDA 10 1.13 18.64 8.69 0.98 16.67 7.55 0.92 3.88
DDA 20 1.30 20.42 9.88 1.15 18.40 8.71 1.11 4.44

Table 2: Sampling Strategy analysis on the Unreal-
Stereo4K test set using the PSM backbone.

Eval. GT Training GT SEE3 SEE5 EPE
Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)

960× 540 960× 540 1.19 20.36 9.16 0.93 16.55 7.08 1.02 4.30
960× 540 3840× 2160 0.98 15.42 7.05 0.78 12.44 5.54 0.89 3.81

3840× 2160 960× 540 1.33 23.35 10.82 1.19 21.34 9.63 1.03 4.30
3840× 2160 3840× 2160 1.13 18.64 8.69 0.98 16.67 7.55 0.92 3.88

Table 3: Ground Truth Resolution analysis on the Unre-
alStereo4K test set using the PSM backbone.

unimodal representation sacrifices EPE for capturing the
uncertainty, while our method is on par with the standard L1
regression. On the stereo dataset, the 3D backbone (PSM)
consistently outperforms the 2D backbone (U-Net), there-
fore we use PSM for the following ablation experiments.

Sampling Strategy: In Tab. 2, we show the impact of the
sampling strategy adopted during training. More specifi-
cally, we compare the naı̈ve uniform sampling strategy and
the proposed DDA approach using different dilation kernel
sizes ρ×ρ. As can be observed, DDA enables SMD-Nets to
focus on depth discontinuities, resulting in better SEE com-
pared to random point selection. Moreover, we observe that
sampling exactly at depth boundaries (i.e., ρ = 0) leads to
slightly degraded EPE and is less effective on SEE which
penalizes small misalignment in a local window. Instead,
setting ρ = 10 allows the network to focus on larger re-
gions near edges and results in the best performance, while
increasing ρ does not improve performance further. Finally,
it is worth to notice that this strategy also allows our model
to improve the overall performance, achieving lower EPE
metrics. In the following experiments, we thus adopt the
DDA strategy using ρ = 10 for our SMD-Nets.



Method
In-domain Out-of-domain

SEE3 SEE5 EPE SEE3 SEE5 EPE
Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(1) σ(2) σ(3) Avg σ(1) σ(3) Avg σ(1) σ(3) Avg σ(1) σ(2) σ(3)

PSM [4] 1.73 33.06 16.57 1.61 31.11 15.44 1.09 11.88 6.94 5.19 2.19 36.94 20.07 1.99 34.09 18.25 1.53 16.92 10.25 7.83
PSM [4] + BF [23] 1.65 30.93 15.26 1.52 28.92 14.10 1.10 11.81 6.95 5.23 2.16 35.64 19.16 1.95 32.76 17.32 1.56 18.89 10.28 7.89
PSM [4] + SM [5] 1.50 29.22 12.71 1.37 27.16 11.54 1.10 11.65 6.69 4.97 2.03 33.91 16.74 1.82 30.92 14.82 1.54 16.43 9.73 7.36
PSM [4] + CE + SM [5] 1.33 27.31 10.14 1.19 25.25 8.99 0.86 10.40 4.93 3.50 1.84 29.87 13.30 1.62 26.84 11.46 1.37 13.29 7.84 6.03
PSM [4] + Ours 1.13 18.64 8.69 0.98 16.67 7.55 0.92 8.24 5.06 3.88 1.59 24.58 12.54 1.38 21.63 10.73 1.27 12.11 7.69 6.06
HSM [51] 2.01 41.63 23.81 1.89 39.69 22.62 1.16 14.81 8.20 5.84 2.43 44.49 26.17 2.24 41.74 24.33 1.75 22.03 12.73 9.23
HSM [51] + BF [23] 1.88 39.68 21.70 1.77 37.67 20.49 1.19 14.78 8.21 5.88 2.39 43.60 24.14 2.19 40.82 23.28 1.80 22.05 12.79 9.33
HSM [51] + SM [5] 1.83 40.52 22.30 1.70 38.53 21.07 1.17 14.73 8.11 5.74 2.31 43.76 25.16 2.11 40.97 23.29 1.76 21.88 12.54 9.03
HSM [51] + CE + SM [5] 2.00 45.71 25.99 1.87 43.72 24.71 1.17 16.17 8.12 5.46 2.61 48.27 28.84 2.41 45.56 26.98 1.91 26.12 14.40 10.14
HSM [51] + Ours 1.31 24.31 10.81 1.17 22.30 9.67 1.00 11.40 6.09 4.34 2.03 34.82 17.75 1.82 31.88 15.83 1.66 19.16 10.72 7.77

Table 4: Comparison on UnrealStereo4K. All methods evaluated on ground truth at 3840×2160 given input size 960×540.

(a) PSM [4] (b) PSM [4] + CE + SM [5] (c) PSM + Ours (d) GT, Input
Figure 5: Qualitative Results on UnrealStereo4K. The first row shows the predicted disparity maps while the second row
depicts the corresponding error maps. We zoom-in a patch in all images to better perceive details near depth boundaries.

Ground Truth Resolution: Tab. 3 shows the results of our
model trained and tested on the stereo data using ground
truth maps at different resolutions, while maintaining the
input size at 960 × 540. Towards this goal, we train our
model adopting ground truth disparities 1) resized to the
same resolution as the input using nearest interpolation and
2) at the original resolution (i.e. 3840 × 2160). We notice
that sampling points from higher resolution disparity maps
always leads to better results compared to using low reso-
lution ground truth. We remark that the proposed model ef-
fectively leverages high resolution ground truth thanks to its
continuous formulation, without requiring additional mem-
ory compared to standard stereo networks based on CNNs.

4.4. Comparison to Existing Baselines

We now compare to several baselines [23, 5] which aim
to address the over-smoothing problem. Bilateral median
filtering (BF) is often adopted to sharpen disparity predic-
tions [23, 43]. Chen et al. [5] address the over-smoothing
problem of 3D stereo backbones using 1) a post-processing
step to extract a single-modal (SM) distribution from the
full discrete distribution; 2) a cross-entropy (CE) loss to en-
force a unimodal distribution during training. We reimple-
ment [5] as no official code is available. As [5] has been
proposed for 3D backbones only, we use PSM [4] and HSM
[51] as the stereo backbones in the following experiments.

UnrealStereo4K: Tab. 4 collects results obtained from dif-

ferent models on both in-domain and out-of-domain test
splits of the binocular UnrealStereo4K dataset. We use
the same input resolution of 960 × 540 for all methods.
While our baseline methods can only use supervision with
the same size as the input, we leverage our continuous
formulation to supervise SMD-Nets using ground truth at
3840 × 2160, on which we also evaluate all methods. For
our competitors, we upsample their outcome using nearest
neighbor interpolation during testing. Both original PSM
and HSM follow the same training setting of our SMD-Nets.

Tab. 4 suggests that BF [23] and SM [5] slightly improve
SEE on both backbones while leading to degraded perfor-
mance on EPE metrics. Using the CE loss combined with
SM [5] leads to effective improvement on both SEE and
EPE on the PSM backbone. Interestingly, we notice that
adopting the same CE + SM strategy leads to worse perfor-
mance on HSM. A possible explanation is that the CE loss
requires to trilinearly interpolate a matching cost probabil-
ity distribution to the full resolution W ×H ×Dmax (with
Dmax denoting the maximum disparity), where HSM pre-
dicts a less fine-grained cost distribution compared to PSM,
thus making the cross-entropy loss less effective. Moreover,
we remark that the CE loss is more expensive to compute,
compared to our simple continuous likelihood-based formu-
lation and CE + SM can only be applied on 3D backbones.
In contrast, our approach based on the bimodal output rep-
resentation notably outperforms our competitors on SEE on
both the in-domain and out-of-domain test sets, showing



Method SEE3 SEE5 EPE
Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)

PSM [4] 1.10 20.57 9.74 0.99 17.83 9.02 0.73 2.49
PSM [4] + CE + SM [5] 1.02 16.12 7.53 0.90 13.80 6.94 0.66 2.09
PSM [4] + Ours 0.90 13.09 6.66 0.79 10.93 6.01 0.59 1.95

Table 5: Comparison on KITTI 2015 Validation Set us-
ing boundaries extracted from instance segmentation masks
to evaluate on depth discontinuity regions.

Method All Areas Non Occluded
Bg Fg All Bg Fg All

GANet-deep [57] 1.48 3.46 1.81 1.34 3.11 1.63
HD3-Stereo [54] 1.70 3.63 2.02 1.56 3.43 1.87
GwcNet-g [14] 1.74 3.93 2.11 1.61 3.49 1.92
PSM [4] 1.86 4.62 2.31 1.71 4.31 2.14
PSM [4] + CE + SM [5] 1.54 4.33 2.14 1.70 3.90 1.93
PSM [4] + Ours 1.69 4.01 2.08 1.54 3.70 1.89

Table 6: Comparison on KITTI 2015 Test Set, evaluated
on the official online benchmark. All the reported numbers
represent official submissions from the authors.

Method SEE3 SEE5 EPE
Avg σ(1) σ(2) Avg σ(1) σ(2) Avg σ(3)

PSM [4] 3.35 46.50 29.40 2.61 41.04 24.87 4.12 17.43
PSM [4] + CE + SM [5] 2.62 34.80 19.02 1.83 28.92 14.11 2.80 12.12
PSM [4] + Ours 2.61 34.26 19.83 1.88 28.71 15.32 3.03 13.60

Table 7: Generalization on Middlebury v3. All models
are trained on UnrealStereo4K and evaluated on the training
set of Middlebury v3 dataset.

how our strategy predicts better disparities near boundaries.
Moreover, we highlight that we achieve consistently better
estimates on standard EPE metrics compared to the orig-
inal backbone while performing comparably to the CE +
SM baseline. Fig. 5 shows our gains at object boundaries.

KITTI 2015: We fine-tune all methods trained using Un-
realStereo4K on the KITTI 2015 training set. Since the pro-
vided ground truth disparities are sparse, we rely on the
naı̈ve random sampling strategy to train our model. On
the validation set, we evaluate SEE on boundaries of in-
stance segmentation maps from the KITTI dataset, follow-
ing the evaluation procedure described in [5]. Furthermore,
we predict disparities on the test set using the same fine-
tuned model and submit to the online benchmark. Tab. 5
and Tab. 6 show our results using PSM as backbone (we
provide additional results on the validation set adopting
HSM in the supplement). Note that our SMD-Net not only
achieves superior performance on both SEE and EPE met-
rics on the validation set compared to the original PSM and
[5] (Tab. 5), but also outperforms both on the test set and
is on par with state-of-the-art stereo networks on standard
metrics of the KITTI benchmark (Tab. 6).

4.5. Synthetic-to-Real Generalization

Lastly, we demonstrate how models trained on the syn-
thetic dataset generalize to the real-world domain for both
binocular stereo and active depth estimation.

(a) Disparity Regression (L1) (b) SMD Head (Bimodal)

Figure 6: Generalization on RealActive4K using the HSM
backbone. The point clouds of standard disparity regres-
sion using L1 loss (a) show bleeding artifacts whereas our
bimodal distribution (b) leads to clean reconstructions.

Middlebury v3: Tab. 7 reports the performance of su-
pervised methods trained on the UnrealStereo4K and tested
without fine-tuning on the training set of the Middlebury v3
dataset. We evaluate them using the high-resolution ground
truth. Compared to the original PSM baseline, our SMD-
Net achieves much better generalization on both SEE and
EPE metrics while performing on par with [5].

RealActive4K: Moreover, we fine-tune our active depth
models jointly on active UnrealStereo4K and RealActive4K
with pseudo-ground truth from Block Matching. Fig. 6
shows that this allows for estimating sharp disparity edges
for real captures even though Block Matching does not pro-
vide supervision in these areas. In contrast, standard dispar-
ity regression fails to predict clean object boundaries.

5. Conclusion
In this paper, we propose SMD-Nets, a novel stereo

matching framework aimed at improving depth accuracy
near object boundaries and suited for disparity super-
resolution. By exploiting bimodal mixture densities as
output representation combined with a continuous function
formulation, our method is capable of predicting sharp
and precise disparity values at arbitrary spatial resolution,
notably alleviating the common over-smoothing problem in
learning-based stereo networks. Our model is compatible
with a broad spectrum of 2D and 3D stereo backbones.
Our extensive experiments demonstrate the advantages
of our strategy on a new high-resolution synthetic stereo
dataset and on real-world stereo pairs. We plan to extend
our bimodal output representation to other regression tasks
such as optical flow and self-supervised depth estimation.
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Greg Krathwohl, Nera Nešić, Xi Wang, and Porter West-
ling. High-resolution stereo datasets with subpixel-accurate

ground truth. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2014. 5

[41] Daniel Scharstein and Richard Szeliski. A taxonomy and
evaluation of dense two-frame stereo correspondence algo-
rithms. International Journal of Computer Vision (IJCV),
47(1-3):7–42, 2002. 2

[42] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. GRAF: generative radiance fields for 3d-aware im-
age synthesis. Advances in Neural Information Processing
Systems (NIPS), 2020. 2

[43] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin
Huang. 3d photography using context-aware layered depth
inpainting. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020. 7

[44] Vincent Sitzmann, Julien N. P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. Ad-
vances in Neural Information Processing Systems (NIPS),
2020. 2, 5

[45] Xiao Song, Xu Zhao, Liangji Fang, Hanwen Hu, and Yizhou
Yu. Edgestereo: An effective multi-task learning network for
stereo matching and edge detection. International Journal of
Computer Vision (IJCV), pages 1–21, 2020. 2, 5

[46] Alessio Tonioni, Fabio Tosi, Matteo Poggi, Stefano Mat-
toccia, and Luigi Di Stefano. Real-time self-adaptive deep
stereo. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019. 2

[47] Stepan Tulyakov, Anton Ivanov, and Francois Fleuret. Prac-
tical deep stereo (pds): Toward applications-friendly deep
stereo matching. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2018. 2

[48] Yan Wang, Zihang Lai, Gao Huang, Brian H Wang, Laurens
Van Der Maaten, Mark Campbell, and Kilian Q Weinberger.
Anytime stereo image depth estimation on mobile devices. In
Proc. IEEE International Conf. on Robotics and Automation
(ICRA), 2019. 2

[49] Zhenyao Wu, Xinyi Wu, Xiaoping Zhang, Song Wang, and
Lili Ju. Semantic stereo matching with pyramid cost vol-
umes. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2019. 2

[50] Haofei Xu and Juyong Zhang. Aanet: Adaptive aggregation
network for efficient stereo matching. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2020.
2

[51] Gengshan Yang, Joshua Manela, Michael Happold, and
Deva Ramanan. Hierarchical deep stereo matching on high-
resolution images. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019. 3, 5, 6, 7

[52] Guorun Yang, Xiao Song, Chaoqin Huang, Zhidong Deng,
Jianping Shi, and Bolei Zhou. Drivingstereo: A large-scale
dataset for stereo matching in autonomous driving scenarios.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2019. 1

[53] Guorun Yang, Hengshuang Zhao, Jianping Shi, Zhidong
Deng, and Jiaya Jia. Segstereo: Exploiting semantic infor-
mation for disparity estimation. In Proc. of the European
Conf. on Computer Vision (ECCV), 2018. 2



[54] Zhichao Yin, Trevor Darrell, and Fisher Yu. Hierarchical
discrete distribution decomposition for match density esti-
mation. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2019. 2, 8

[55] Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Ge-
off Pleiss, Bharath Hariharan, Mark Campbell, and Kilian Q
Weinberger. Pseudo-lidar++: Accurate depth for 3d object
detection in autonomous driving. Proc. of the International
Conf. on Learning Representations (ICLR), 2020. 2
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