
VoxGRAF: Fast 3D-Aware Image Synthesis
with Sparse Voxel Grids

Katja Schwarz1 Axel Sauer1 Michael Niemeyer1 Yiyi Liao2 Andreas Geiger1

1University of Tübingen and Max Planck Institute for Intelligent Systems, Tübingen
2 Zhejiang University, China

Abstract

State-of-the-art 3D-aware generative models rely on coordinate-based MLPs to
parameterize 3D radiance fields. While demonstrating impressive results, querying
an MLP for every sample along each ray leads to slow rendering. Therefore,
existing approaches often render low-resolution feature maps and process them
with an upsampling network to obtain the final image. Albeit efficient, neural
rendering often entangles viewpoint and content such that changing the camera
pose results in unwanted changes of geometry or appearance. Motivated by recent
results in voxel-based novel view synthesis, we investigate the utility of sparse
voxel grid representations for fast and 3D-consistent generative modeling in this
paper. Our results demonstrate that monolithic MLPs can indeed be replaced by 3D
convolutions when combining sparse voxel grids with progressive growing, free
space pruning and appropriate regularization. To obtain a compact representation of
the scene and allow for scaling to higher voxel resolutions, our model disentangles
the foreground object (modeled in 3D) from the background (modeled in 2D). In
contrast to existing approaches, our method requires only a single forward pass
to generate a full 3D scene. It hence allows for efficient rendering from arbitrary
viewpoints while yielding 3D consistent results with high visual fidelity. Code and
models are available at https://github.com/autonomousvision/voxgraf.

1 Introduction

Generating photorealistic renderings of scenes at high resolution is a long-standing goal in computer
vision and graphics. The primary paradigm is to carefully design 3D models, which are then
rendered using realistic camera and illumination models. In recent years, the computer vision
community has made significant headway towards reducing these design efforts by approaching
content generation from a data-centric perspective. Generative Adversarial Networks (GANs) [10]
have emerged as a powerful class of generative models for photorealistic high-resolution image
synthesis [3, 19, 20, 22, 23, 39, 40]. One benefit of these 2D models is that they can be trained
with large collections of images which are readily available. However, scaling GANs to 3D is
non-trivial because 3D supervision is difficult to obtain. Recently, 3D-aware GANs have emerged to
address the gap between handcrafted 3D models and image synthesis with 2D GANs which lack 3D
constraints [5, 15, 26, 32, 33, 41]. 3D-aware GANs combine 3D generators, differentiable rendering
and adversarial training to synthesize novel images with explicit control over the camera pose and,
potentially, other scene properties like object shape and appearance.

Early 3D-aware GANs explored voxel-based 3D representations [15, 32]. To compensate for the
cubic memory growth of voxel grids, HoloGAN [32] generates features on a small 3D grid and
uses a neural network to map 3D features to a 2D image. While such a neural renderer allows
scaling to higher image resolutions, it may also entangle viewpoint and generated content [41].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/autonomousvision/voxgraf

Figure 1: 3D-aware image synthesis with sparse voxel grids. We investigate neural radiance fields
represented as sparse voxel grids in the context of 3D-aware generative modeling. While training
from unstructured image collections, our method allows for high quality image synthesis with explicit
control over the camera viewpoint. In contrast to previous works, our method generates a 3D scene in
a single forward pass allowing for more efficient and 3D-consistent rendering.

Consequently, early voxel-based approaches were either limited in image resolution or lacking 3D
consistency. About the same time, Neural Radiance Fields (NeRF) [30] emerged in the context of view
synthesis as a powerful alternative 3D representation. In their seminal work, Mildenhall et al. [30]
represent a scene as a function of color and density, parameterized by a coordinate-based MLP. The
predicted color and density values are then projected to an image with differentiable volume rendering.
GRAF [42] adapts NeRF’s coordinate-based representation to Generative Radiance Fields (GRAF)
and proposes a 3D-aware GAN using a coordinate-based MLP and volume rendering. This propelled
3D-aware image synthesis to higher image resolutions while better preserving 3D consistency due
to the physically-based and parameter-free rendering. These benefits led to the establishment of
coordinate-based MLPs as new de facto standard for 3D-aware image synthesis [5,34]. While recent
3D-aware GANs [5, 7, 11] have started to attain image fidelity and resolution similar to 2D GANs,
training and inference is computationally expensive as the MLP must be queried at multiple points
along each ray for volume rendering. However, querying 3D space densely is prohibitively costly.
For example, rendering an image at resolution 2562 using 48 sample points along each ray requires to
query the neural network 2562 · 48 ≈ 3M times. As a result, most recent works combine neural and
volume rendering to ease computational cost at high resolutions [33]. Consequently, viewpoint and
3D content are often entangled, such that changing the camera pose might result in unwanted changes
of the geometry or the appearance of the 3D scene. Further, for many downstream applications,
e.g. integrating assets into physics engines, it is desirable to generate 3D content at high resolution
directly. These shortcomings identify the need for a 3D representation that can be efficiently rendered
at high resolution with a model that is 3D-consistent by design.

Recently, there has been significant progress towards accelerated training of novel view synthesis
models for single scenes by removing the MLP from the representation. In particular, DVGO [44]
and Plenoxels [1] directly optimize a sparse voxel grid for novel-view synthesis, demonstrating that
the visual fidelity attained by NeRF [30] is not primarily attributed to its MLP-based representation
but rather to volumetric rendering and gradient-based optimization. In addition to impressive image
quality, [1, 44] obtain large rendering speedups due to their fast density and color queries. Taking
inspiration from these works, we revisit voxel-based representations for 3D-aware GANs [15, 32]
in the context of volumetric rendering. To circumvent the cubic memory growth that limits early
voxel-based approaches [15, 32], we explore sparse voxel grids for the generative settings, see Fig. 1.
We observe that sparsity is key to enable scaling the 3D representation to higher resolution and to
combine it with volume rendering. Specifically, we propose a 3D-aware GAN with a sparse voxel
grid generator at its core. As a result, our approach inherits fast rendering and trilinear interpolation
while being 3D-consistent by design, separating it from other recent 3D-aware GANs [4, 7, 11] which
require a forward pass for every point along each camera ray of every view. Another difference to

2

existing 3D-aware GANs is that sparsity is a built-in feature of our representation, mitigating the
need for exploiting sophisticated strategies to sample points along camera rays as in [5, 37, 47]. Our
final model achieves image fidelity similar to recent 3D-aware GANs leveraging neural rendering
while generating high-resolution geometry and improving 3D consistency. During inference, our
model only requires a single forward pass which takes up most of the inference time. Once the 3D
scene is generated, images can be rendered within milliseconds while existing approaches require
another forward pass which is two orders of magnitude slower. We refer to our model as VoxGRAF.

2 Related Work

2D GANs. Rapid progress on Generative Adversarial Networks [10] now enables photorealistic
synthesis up to megapixel resolution [3, 19, 21–23, 29, 40]. While the disentangled style-space
of StyleGANs [21–23] allows for control over the viewpoint of the generated images to some
extent [14, 27, 43, 52], gaining precise 3D-consistent control is still non-trivial due to its lack of
physical interpretation and operation in 2D. In contrast, in this work we aim for explicit control over
the camera pose by incorporating a 3D representation into the generator.

3D-Aware GANs. The first 3D-aware GANs, i.e. GANs that incorporate a 3D representation into the
generator model, were voxel-based approaches. Dense grid-based approaches [15,54] are limited to a
lower grid resolution due to their cubic memory growth. Other works combine lower-resolution grids
with neural rendering [26, 32] which scale to higher resolutions, but the generated images lack 3D
consistency [42]. Recently, GRAF [41] and π-GAN combine volume rendering and coordinate-based
representations [30] allowing to scale 3D-aware GANs with physically inspired rendering to high
resolutions. However, dense ray marching remains computationally expensive and limits image
fidelity. GIRAFFE [34] therefore proposes a hybrid rendering approach. They render a low-resolution
feature map with ray marching and use a neural renderer to decode it into a high-resolution image.
Due to efficiency, this approach has been widely adopted in subsequent works [4,11,18,36,48,51,53].
While some approaches try to counteract introduced inconsistencies, e.g. via dual discrimination [4]
or a reconstruction loss [11], we instead propose a model that is 3D-consistent by design and can
generate the 3D object at high-resolution.

As an alternative to hybrid rendering, GOF [47], ShadeGAN [37] and GRAM [7] focus on reducing
the number of query points for volume rendering. While aforementioned methods aim for reducing
the number of sample points as querying a large MLP is computationally expensive, we instead use a
sparse voxel grid as 3D representation. This allows us to speed up rendering without reducing the
sample size as feature querying via trilinear interpolation is fast and can be efficiently implemented
via custom CUDA kernels.

Sparse 3D Representations. As NeRF requires an optimization time in the order of multiple days
per scene, a series of follow-up works [28,38,45,50] propose techniques to speed up this process. The
recent works Plenoxels [1] and DVGO [44] demonstrate that sparse voxel grid representations can
achieve even faster convergence and higher rendering speed. In addition to efficient rendering, sparse
voxel grids enable fast trilinear interpolation when queried beyond their grid resolution. Building
on this representation, our approach inherits these benefits. We remark that very recently Instant-
NGP [31] achieves even faster rendering by combining small MLPs with a multi-resolution hash
table. Exploring this representation might be an interesting avenue for future extensions of our work.
Note that all of these works focus on novel-view-synthesis for single scenes and require multi-view
image supervision. Instead, we propose a generative model that trains with raw image collections and
that can generate multiple novel instances at inference.

3 Method

We first provide the necessary background by summarizing the currently dominating paradigm for
designing 3D-aware GANs which combines an MLP scene representation and volume rendering as
introduced in GRAF [42]. Next, we introduce our sparse voxel-based scene representation which
boosts rendering speed while retaining 3D-consistency by design. We refer to our model as VoxGRAF.

3

Figure 2: VoxGRAF. Conditioned on a camera pose ξ, the foreground generator Gfg
θf

maps a latent
code z to color values c ∈ R3×RG×RG×RG and densities σ ∈ R1×RG×RG×RG on a sparse voxel grid
of resolution RG. Given camera intrinsics K and a camera pose ξ′, a foreground image is obtained
using differentiable volume rendering [30]. The values at the sampling points along the camera
rays are computed by trilinearly interpolating the voxel grid [1]. The background is generated by a
2D GAN Gbg

θb
and combined with the foreground using alpha composition. The discriminator Dφ

compares the generated image Î to the real image Ireal.

3.1 3D-aware GANs with Coordinate-Based Scene Representations

Recent 3D-aware GANs typically consist of a learned coordinate-based MLP as 3D generator, a
deterministic volume rendering step potentially combined with a learned neural renderer in the 2D
image domain, and a learned 2D discriminator. Let GMLP

ψ denote the 3D generator parameterized by
a coordinate-based MLP with learnable parameters ψ. The 3D generator predicts a radiance field
defined by color c ∈ [0, 1] and density values σ ∈ R+. The radiance field is defined at any 3D
point x ∈ R3 and for any viewing direction d ∈ S2. To model different 3D scenes, the generator is
additionally conditioned on an M -dimensional latent variable z ∈ N (0,1). The inputs x and d are
projected to higher-dimensional features γ(x) ∈ Lx and γ(d) ∈ Ld with a fixed positional encoding
to overcome the MLP’s smoothness bias and model high-frequency content γ(·) [30, 46]. Formally,

GMLP
ψ : RLx × RLd × RM → R3 × R+ (γ(x), γ(d), z) 7→ (c, σ) (1)

In this paper, we challenge this paradigm and investigate a sparse 3D CNN instead of a coordinate-
based MLP as generator, as described in the next section.

The radiance field is rendered by approximating the intractable volumetric projection integral via
numerical integration. First, the generator is queried at N sampling points along each camera ray r
yielding colors and densities {(cir, σir)}Ni=1. For each camera ray r, these points are projected to an
RGB color value cr and optionally an alpha mask ar using alpha composition

π : (R3 × R+)N → R3 {(cir, σir)} 7→ cr

cr =

N∑
i=1

T ir α
i
r c

i
r ar =

N∑
i=1

T ir α
i
r T ir =

i−1∏
j=1

(
1− αjr

)
αir = 1− exp

(
−σirδir

)
(2)

where T ir and αir denote the transmittance and alpha value of sample point i along ray r and
δir =

∥∥xi+1
r − xir

∥∥
2

is the distance between neighboring sample points. As volume rendering has
proven a powerful tool for high-fidelity reconstruction, VoxGRAF retains this rendering mechanism
but reduces its computational cost by leveraging sparse scene representations.

3.2 VoxGRAF: Generating Radiance Fields on Sparse Voxel Grids

Our goal is to design a 3D-aware GAN based on a sparse scene representation that allows for efficient
rendering. Fig. 2 shows an overview over our approach. In contrast to recent works [4, 7, 47], we do
not use a coordinate-based MLP to parameterize the radiance field. Instead, inspired by recent work
on novel view synthesis [1, 44], we generate values on a sparse voxel grid using a 3D convolutional
neural network. Therefore, our generator requires only a single forward pass to generate a 3D scene.
To disentangle 3D content from the background we combine a 3D foreground generator Gfg

θf
with a

2D background generator Gbg
θb

. Gfg
θf

takes a camera matrix K, camera pose ξ and a latent code z

4

(a) Pruning (b) Progressive Growing

Figure 3: Pruning and Progressive Growing. A sparse representation is key for scaling voxel
grids to high resolution. To sparsify the generated voxel grids, we combine density-based pruning (a)
and progressive growing (b) while training our model. See text for details.

as input and predicts colors c and density values σ on a sparse voxel grid. For unstructured images,
camera matrix K and pose ξ can be determined e.g. with an off-the-shelf pose detector as done in [5].
Volume rendering yields a foreground image and an alpha mask. The background generator maps the
latent code z to a background image which is then combined with the foreground image using alpha
composition. We train our model in an adversarial setting using a 2D discriminator on the full image.

Foreground Generator. Our foreground generator builds on the popular StyleGAN2 architec-
ture [22] which achieves high fidelity in the 2D image domain. Conditioned on a camera pose
ξ ∈ RP , it maps a latent code z to color values c and density values σ on a sparse voxel grid

Gfg
θf

: RM × RP → R3×RG×RG×RG × R1×RG×RG×RG (z, ξ) 7→ (c, σ) (3)

where θf and RG denote the learnable parameters and the resolution of the voxel grid, respectively.
Note that in contrast to most existing coordinate-based 3D-aware GANs, see Eq. (1), we do not
condition the 3D generator on the view direction (per-ray). Instead, we follow [4] and condition it on
the pose ξ (per-image) to model directional dependencies. For rendering, we compute (cir, σ

i
r) via

trilinear interpolation of densities and colors stored at the nearest eight vertices [1]. We use the same
rendering formulation outlined in 3.1 and leverage custom CUDA kernels1 for efficiency.

To generate voxel grids instead of images, we replace all 2D operations of the StyleGAN2 generator
with their 3D equivalent, e.g., 3D modulated convolutions and 3D upsampling. At resolutions
beyond 323, we investigate sparse convolutions [13] instead of dense ones as they can be more
computationally efficient. We compare the computational efficiency of sparse convolutions2 to dense
convolutions for which we zero out the values of pruned voxels. For our architecture, using sparse
convolutions reduces the memory consumption but due to the computational overhead for managing
coordinates increases the runtime, see Table 1. To sparsify the representation, we combine progressive
growing [19] with pruning [1] as illustrated in Fig. 3a. Specifically, we start with training a dense
model at resolution 323. After sufficient training, we add the next layer of convolutions and prune its
inputs based on the rendered view. Intuitively, the next layer should only operate on voxels visible
in the rendered view to yield a sparse representation. Consequently, we prune voxels that are either
occluded or have a low density. Following Eq. (2), the rendered alpha value is ar =

∑N
i=1 T

i
r α

i
r.

Accordingly, occluded voxels (low transmittance Ti) and empty voxels (low density σi) do not
contribute to the final image. The pruning operator ρ discards all voxels along a camera ray r for
which transmittance T i or density σi is smaller than threshold τT or τσ , respectively. Let Vr denote
the set of voxels intersecting with ray r, then

ρ : Vr 7→ Vpr Vpr = {i ∈ Vr| (Ti > τT) ∧ (σi > τσ)} (4)

where Vpr is the set of the retained voxels. After pruning, we upsample the kept voxels via sparse
transposed convolutions. After the newly-added layer is sufficiently trained, we repeat this process
for the next added stage. Fig. 3b shows images and voxel grids at different resolutions. We implement
this on-the-fly pruning operation using efficient custom CUDA kernels.

1We build on the kernels from https://github.com/sxyu/svox2.git
2We use the Minkowski Engine library https://github.com/NVIDIA/MinkowskiEngine.git

5

https://github.com/sxyu/svox2.git
https://github.com/NVIDIA/MinkowskiEngine.git

In agreement with [4], we observe that it is crucial to account for view dependent effects or pose-
correlated attributes in the training data, like eyes always looking into the camera. We take two
measures to increase the flexibility of our model: Following [4], Gfg

θf
is conditioned on the pose ξ

which corresponds to the rendering pose ξ′ in 50% of the cases and is randomly chosen otherwise.
Formally, ξ ∼ pξ|p(ξ=ξ′)=0.5. At inference, the pose-conditioning is fixed to retain 3D consistency.
However, we find that pose conditioning alone is not always sufficient to account for strong cor-
relations in the data. Depending on the dataset, we optionally refine the rendered image with a
shallow 2D CNN with 2 hidden layers of dimension 16 and kernel size 3. While this refinement is
powerful enough to model dataset biases, it is considerably less flexible than the neural rendering used
in [5, 11, 33]: Our 2D CNN operates on the rendered image instead of rendered features at smaller
resolution. Operating on 3 channels at full resolution allows to keep its capacity at a minimum and,
due to not using any upsampling operation, results in a local receptive field.

Background Generator. We consider datasets with a single object per image. Modeling only the
object in 3D saves computation and is advantageous for potential downstream tasks, e.g., integrating
generated assets into new environments Hence, we model the object in 3D and generate the back-
ground of the image with a 2D GAN. Specifically, we use the StyleGAN2 generator [22] with reduced
channel size as modeling the background requires less capacity than generating the full image:

Gbg
θb

: RM → R3×RI×RI z 7→ Îbg (5)
We choose the same latent code z for foreground and background to allow for modeling correlations
like lighting between the two. Note that, unlike the foreground generator, the background generator
is not conditioned on the camera pose. As the background remains fixed when changing the camera
pose, the generator is encouraged to model pose-dependent content with the foreground generator
leading to disentanglement (see supp. mat. for qualitative disentanglement results).

The final image is obtained using alpha composition

Î = Îfgmask · Î
fg + (1− Îfgmask) · Îbg

The full generator is defined as

Gθ : RM × RP × RP × RK → R3×RI×RI (z, ξ, ξ′,K) 7→ Î (6)

Regularization. For fast rendering, it is crucial that most generated voxels are either fully opaque or
empty such that early stopping and empty space skipping are effective. By regularizing the variance
of the expected depth ẑr along each ray r, the foreground generator is encouraged to generate a single,
sharp surface:

ẑ =
∑
i

Tiαizi V ar(ẑ) =
1∑
i Tiαi

∑
j

Tjαj(zj − ẑ)2 (7)

LDV = λDV max(V ar(ẑ), τ) (8)
where τ is a hyperparameter that defines the thickness of the surface. We find that thresholding the loss
is important to avoid an empty foreground. In addition, we find that adding the grid TV regularization
LTV from [1] and fore- and background coverage regularization Lfgcvg and Lbgcvg from [49] further
stabilizes training (see sup. mat. for details). The full regularization term of our generator is

Lreg = LDV + LTV + Lfgcvg + Lbgcvg (9)

Discriminator. We use the StyleGAN2 discriminator and condition it on the camera pose as
proposed in [4]. Similarly, we find that conditioning guides the generator to learn correct 3D priors
and a canonical representation. Since rendering our sparse representation is fast, our discriminator is
able to operate on the full image and does not need to consider image patches as done in GRAF [42].

3.3 Training

Given images I from the data distribution pD with known camera extrinsics ξI and intrinsics KI and
latent codes z ∈ N (0,1), we train our model using a GAN objective with R1-regularization [29]

V (θ, φ) = Ez∼N (0,1),ξ,ξ′∼pξ
[
f(−Dφ

(
Gθ(z, ξ, ξ

′,K), ξ′
)
)
]

(10)

+ EI∼pD

[
f(Dφ(I, ξI)) − λ‖∇Dφ(I, ξI)‖

2
]

(11)

6

where f(t) = − log(1 + exp(−t)) and λ controls the strength of the R1-regularizer. Gθ and Dφ are
trained with alternating gradient descent combining the GAN objective with the regularization terms:

min
θ

max
φ

V (θ, φ) + Lreg(θ) (12)

In practice, we optimize the generator with a non-saturating variant of Eq. (12) [10]. We train our
approach with Adam [24] using a batch size of 64 at grid resolutionRG = 32, 64 and 32 atRG = 128.
We use a learning rate of 0.0025 for the generator and 0.002 for the discriminator. For faster training,
we first grow RI from 32 to 128 while keeping RG at 32. Then, we alternately increase the grid
resolution and the image resolution until the dataset resolution and RG = 128 are reached. For
synthetic datasets, i.e. Carla [42], we do not add any refinement layers. Depending on the dataset, we
train our models for 3 to 7 days on 8 Tesla V100 GPUs. Details on the network architectures can be
found in the supplemental material.

4 Results

Datasets. We validate our approach on standard benchmark datasets for 3D-aware image synthesis.
The synthetic Carla dataset [9, 41] contains 10k images and camera poses of 18 car models with
randomly sampled colors. FFHQ [22] comprises 70k aligned face images. AFHQv2 Cats [6] consists
of 4834 cat faces. Following [5], we estimate camera poses for both datasets with off-the-shelf pose
estimators [8,25] and augment all datasets with horizontal flips. Due to the limited number of images
in AFHQv2 and Carla, we use adaptive discriminator augmentation [20] for these datasets.

Evaluation Metrics. We measure image fidelity by calculating the Fréchet Inception Distance
(FID) [16] between 20k generated images and the full dataset. For all runtime comparisons, we report
times on a single Tesla V100 GPU with a batch size of 1.

4.1 Ablation Study

Sparsity Memory tGfg+bg tπ
[%] [GB] [ms] [ms]

w/o LDV 74 1.4 229 7
w LDV 95 0.9 198 4
w LDV† 95 1.1 58 4

Table 1: Regularization. We compare sparsity
and rendering time with and without depth vari-
ance regularization LDV on FFHQ with RG =
128 andRI = 128. † denotes an architecture with
dense convolutions where values of pruned voxels
are set to zero.

We investigate the sparsity of the generated voxel
grids and validate the importance of the depth
variance loss, see Eq. (8). Sparsity is evaluated
by fusing the pruned voxel grids from 16 equally
spaced camera views and reporting the number
of empty voxels divided by the total number of
voxels R3

G. Table 1 shows results averaged over
100 instances. The depth variance loss increases
sparsity from 74% to 95%, lowering the memory
consumption. With the sparser representation,
the times needed for scene generation tGfg+bg
and rendering tπ are reduced significantly. We
further compare an implementation with dense instead of sparse convolutions where we zero out the
values of pruned voxels. While this increases memory consumption, it reduces the runtime due to
the computational overhead of managing coordinates for sparse convolutions. We prioritize faster
training over memory and hence train our models with dense convolutions where we set values of
pruned voxels to zero.

4.2 Baseline Comparison

Baselines. We group the baselines into two categories: (i) methods that render low-resolution
features and use 2D-upsampling, i.e. a neural renderer, to obtain the final image, e.g. StyleNeRF [11],
and (ii) methods that render the 3D representation directly at the final image resolution, e.g. π-
GAN [5]. VoxGRAF falls into the second group. We use the official code release for all methods.
Further, we reference numbers reported by concurrent works GRAM [7] and EG3D [4].

Qualitative Results. Fig. 4 shows samples from multiple views for StyleNeRF, GRAM and
VoxGRAF on FFHQ at resolution 2562. StyleNeRF can generate additional faces or strands of hair
across views, as indicated by the red frames in Fig. 4. These inconsistencies under viewpoint changes

7

G
R
A
M

S
ty
le
N
eR
F

V
ox
G
R
A
F

Figure 4: Qualitative Comparison on Multi-View Consistency. We compare multi-view consis-
tency of state-of-the-art baselines and our method. While StyleNeRF’s powerful neural renderer can
introduce multi-view inconsistencies (appearing faces, moving strands of hair), GRAM’s manifold
representation becomes visible in layered artifacts for steeper viewing angles. In contrast, our method
leads to more multi-view consistent results.

FFHQ [22] AFHQ [6] Carla [42]
RI = 2562 RI = 2562 RI = 1282

GIRAFFE [34] 31.5 16.1 –
VolumeGAN [48] 9.1 – 7.9
StyleNeRF [11] 8.0 – –
EG3D [4] 4.8 3.9 –
GRAF [42] 71 121 41
π-GAN [5] 85 47 29.2
GOF [47] 69.2 54.1 29.3
GRAM [7] 17.9 18.5 26.3
VoxGRAF 9.6 9.6 6.7

Table 2: Quantitative Comparison. We com-
pare against state-of-the-art methods with a neu-
ral rendering pipeline (first block) and without
one (second block). We report FID [16] between
20k generated images and the full dataset.

RI = 1282 RI = 2562

GIRAFFE [33] – 5
StyleNeRF [11] – 49
EG3D∗ [4] – 27
GRAF [42] 219 878
π-GAN [5] 154 608
GOF [47] 199 742
GRAM [7] 136 418
VoxGRAF 58 + 3 58 + 6

Table 3: Rendering times. We report time in
ms per image. Note that our method allows for
separating scene generation (first number) and
rendering (second number) which is useful for
real-time rendering applications. ∗EG3D is evalu-
ated on a faster GPU (RTX 3090 GPU) compared
to the others (Tesla V100 GPU).

are introduced by StyleNeRF’s powerful neural renderer. GRAM achieves more consistent results,
but its plane representation creates stripe artifacts for large viewpoint ranges. Due to the shallow 2D
CNN, VoxGRAF can model the dataset bias of eyes looking into the camera but otherwise achieves
high 3D-consistency even under large viewing angles. Additional samples of our method and the
corresponding sparse voxel grids for all datasets are provided in Fig. 1 and Fig. 5.

Quantitative Results. Table 2 reports FID on all datasets. As expected, methods that use neural
rendering with upsampling, i.e., StyleNeRF and EG3D, perform best in terms of image fidelity. This
is expected as a neural renderer can add flexibility. But, as shown in Fig. 4, for StyleNeRF it reduces
3D-consistency. Among methods without a neural renderer, VoxGRAF significantly improves over
π-GAN and GOF and surpasses the current state-of-the-art approach GRAM.

8

Figure 5: Qualitative Results for our Method. We show generated images at resolution 2562 for
FFHQ [22] and AFHQ [6] and samples at resolution 1282 for Carla [42].

Runtime Comparison. Lastly, we compare the rendering times at inference for methods with and
methods without a neural renderer. In contrast to all baselines, VoxGRAF requires only a single
forward pass to generate the scene, which can then be rendered from different viewpoints efficiently.
Note that at inference, voxels are pruned solely based on their density to amortize the rendering
costs per scene. We find that this does not visibly affect the rendered images. We report the times
for generating the scene and rendering one view separately in Table 3. One of the earliest works,
GIRAFFE, is the fastest among all approaches as it renders a low-resolution feature volume and uses
comparably small neural networks. StyleNeRF significantly increases the neural renderer’s size to
improve image fidelity, which comes at the cost of speed compared to GIRAFFE. Yet, StyleNeRF is
the fastest approach for generating a single image among the best-performing methods. However, a
potential application of 3D-aware GANs is generating novel views of a single instance in real-time.
In this setting, at resolution 2562, VoxGRAF generates novel views at 167 FPS, whereas StyleNeRF
runs at 20 FPS as its rendering costs are not amortized per scene.

5 Limitations and Discussion

In this work, we investigate sparse voxel grids as representation for 3D-aware image synthesis. We
find that the key to generating sparse voxel grids is to combine progressive growing, pruning, and
regularization to encourage a sharp surface that can be rendered efficiently. Our approach outperforms
all methods that do not employ a neural renderer. Instead of discarding neural rendering entirely,
we find it advantageous to utilize a shallow CNN for refinement. This CNN can model dataset bias
but is significantly weaker than standard neural rendering approaches that upsample low resolution
feature maps. Our approach can reduce the gap to models that build heavily on neural rendering, yet
a trade-off between 3D-consistency and image fidelity remains. Whether a certain amount of neural
rendering is inherently needed to reach best performance is an important direction for future research.
Lastly, the speed of our method depends on the sparsity of the modeled scene. Therefore, rendering
times will likely increase on more complex datasets than those commonly used in literature.

9

Acknowledgments and Disclosure of Funding

We acknowledge the financial support by the BMWi in the project KI Delta Learning (project number
19A19013O), the support from the BMBF through the Tuebingen AI Center (FKZ:01IS18039A),
and the support of the DFG under Germany’s Excellence Strategy (EXC number 2064/1 - Project
number 390727645). Andreas Geiger and Michael Niemeyer were supported by the ERC
Starting Grant LEGO-3D (850533). We thank the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) for supporting Katja Schwarz and Michael Niemeyer. This
work was supported by an NVIDIA research gift. We thank Christian Reiser for the helpful
discussions and suggestions. Lastly, we would like to thank Nicolas Guenther for his general support.

References

[1] Alex Yu and Sara Fridovich-Keil, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa. Plenoxels:
Radiance fields without neural networks. Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2022. 2, 3, 4, 5, 6, 14, 15

[2] M. Binkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demystifying MMD gans. In Proc.
of the International Conf. on Learning Representations (ICLR), 2018. 19

[3] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity natural
image synthesis. In Proc. of the International Conf. on Learning Representations (ICLR), 2019.
1, 3

[4] E. R. Chan, C. Z. Lin, M. A. Chan, K. Nagano, B. Pan, S. D. Mello, O. Gallo, L. Guibas,
J. Tremblay, S. Khamis, T. Karras, and G. Wetzstein. Efficient geometry-aware 3D generative
adversarial networks. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2022. 2, 3, 4, 5, 6, 7, 8, 14, 15, 16, 18, 19

[5] E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein. Pi-gan: Periodic implicit
generative adversarial networks for 3d-aware image synthesis. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021. 1, 2, 3, 5, 6, 7, 8, 15, 16

[6] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha. Stargan v2: Diverse image synthesis for multiple domains.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2020. 7, 8, 9, 15,
16, 19, 21

[7] Y. Deng, J. Yang, J. Xiang, and X. Tong. Gram: Generative radiance manifolds for 3d-aware
image generation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
2022. 2, 3, 4, 7, 8, 15, 16, 19

[8] Y. Deng, J. Yang, S. Xu, D. Chen, Y. Jia, and X. Tong. Accurate 3d face reconstruction with
weakly-supervised learning: From single image to image set. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2019. 7

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving
simulator. In Proc. Conf. on Robot Learning (CoRL), 2017. 7

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,
and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing
Systems (NIPS), 2014. 1, 3, 7

[11] J. Gu, L. Liu, P. Wang, and C. Theobalt. Stylenerf: A style-based 3d-aware generator for
high-resolution image synthesis. Proc. of the International Conf. on Learning Representations
(ICLR), 2022. 2, 3, 6, 7, 8, 15, 16, 19

[12] J. Gwak, C. B. Choy, A. Garg, M. Chandraker, and S. Savarese. Weakly supervised generative
adversarial networks for 3d reconstruction. arXiv.org, 1705.10904, 2017. 14

[13] J. Gwak, C. B. Choy, and S. Savarese. Generative sparse detection networks for 3d single-shot
object detection. In Proc. of the European Conf. on Computer Vision (ECCV), 2020. 5

[14] E. Härkönen, A. Hertzmann, J. Lehtinen, and S. Paris. Ganspace: Discovering interpretable
GAN controls. arXiv.org, 2020. 3

[15] P. Henzler, N. J. Mitra, , and T. Ritschel. Escaping plato’s cave: 3d shape from adversarial
rendering. In Proc. of the IEEE International Conf. on Computer Vision (ICCV), 2019. 1, 2, 3

[16] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In Advances in Neural Information
Processing Systems (NIPS), 2017. 7, 8, 16

10

[17] A. Jain, B. Mildenhall, J. T. Barron, P. Abbeel, and B. Poole. Zero-shot text-guided object
generation with dream fields. Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2022. 14

[18] K. Jo, G. Shim, S. Jung, S. Yang, and J. Choo. Cg-nerf: Conditional generative neural radiance
fields. arXiv.org, 2021. 3

[19] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for improved quality,
stability, and variation. In Proc. of the International Conf. on Learning Representations (ICLR),
2018. 1, 3, 5, 15

[20] T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila. Training generative
adversarial networks with limited data. In Advances in Neural Information Processing Systems
(NeurIPS), 2020. 1, 7, 15

[21] T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila. Alias-
free generative adversarial networks. In Advances in Neural Information Processing Systems
(NeurIPS), 2021. 3, 14

[22] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial
networks. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2019. 1,
3, 5, 6, 7, 8, 9, 14, 15, 16, 19, 20

[23] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving
the image quality of StyleGAN. Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2020. 1, 3

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proc. of the
International Conf. on Learning Representations (ICLR), 2015. 7

[25] T. B. Lee. Cat hipsterizer, 2018. 7
[26] Y. Liao, K. Schwarz, L. Mescheder, and A. Geiger. Towards unsupervised learning of generative

models for 3d controllable image synthesis. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2020. 1, 3

[27] H. Ling, K. Kreis, D. Li, S. W. Kim, A. Torralba, and S. Fidler. Editgan: High-precision
semantic image editing. In Advances in Neural Information Processing Systems (NeurIPS),
2021. 3

[28] L. Liu, J. Gu, K. Z. Lin, T. Chua, and C. Theobalt. Neural sparse voxel fields. In Advances in
Neural Information Processing Systems (NeurIPS), 2020. 3

[29] L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for gans do actually
converge? In Proc. of the International Conf. on Machine learning (ICML), 2018. 3, 6, 15

[30] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF:
Representing scenes as neural radiance fields for view synthesis. In Proc. of the European Conf.
on Computer Vision (ECCV), 2020. 2, 3, 4

[31] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a
multiresolution hash encoding. ACM Trans. on Graphics, 2022. 3

[32] T. Nguyen-Phuoc, C. Li, L. Theis, C. Richardt, and Y.-L. Yang. Hologan: Unsupervised
learning of 3d representations from natural images. In Proc. of the IEEE International Conf. on
Computer Vision (ICCV), 2019. 1, 2, 3

[33] M. Niemeyer and A. Geiger. Giraffe: Representing scenes as compositional generative neural
feature fields. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.
1, 2, 6, 8, 14, 15

[34] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable volumetric rendering:
Learning implicit 3d representations without 3d supervision. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2020. 2, 3, 8, 16

[35] M. Oechsle, L. Mescheder, M. Niemeyer, T. Strauss, and A. Geiger. Texture fields: Learning
texture representations in function space. In Proc. of the IEEE International Conf. on Computer
Vision (ICCV), 2019. 14

[36] R. Or-El, X. Luo, M. Shan, E. Shechtman, J. Park, and I. Kemelmacher. Stylesdf: High-
resolution 3d-consistent image and geometry generation. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2022. 3

[37] X. Pan, X. Xu, C. C. Loy, C. Theobalt, and B. Dai. A shading-guided generative implicit model
for shape-accurate 3d-aware image synthesis. In Advances in Neural Information Processing
Systems (NeurIPS), 2021. 3

11

[38] C. Reiser, S. Peng, Y. Liao, and A. Geiger. Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In Proc. of the IEEE International Conf. on Computer Vision (ICCV),
2021. 3

[39] A. Sauer, K. Chitta, J. Müller, and A. Geiger. Projected gans converge faster. In Advances in
Neural Information Processing Systems (NeurIPS), 2021. 1

[40] A. Sauer, K. Schwarz, and A. Geiger. Stylegan-xl: Scaling stylegan to large diverse datasets.
ACM Trans. on Graphics, 2022. 1, 3

[41] K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger. GRAF: generative radiance fields for
3d-aware image synthesis. Advances in Neural Information Processing Systems (NIPS), 2020.
1, 3, 7, 15

[42] K. Schwarz, Y. Liao, M. Niemeyer, and A. Geiger. Graf: Generative radiance fields for 3d-aware
image synthesis. In Advances in Neural Information Processing Systems (NeurIPS), 2020. 2, 3,
6, 7, 8, 9, 15, 16, 19, 22

[43] Y. Shi, D. Aggarwal, and A. K. Jain. Lifting 2d stylegan for 3d-aware face generation. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021. 3

[44] C. Sun, M. Sun, and H.-T. Chen. Direct voxel grid optimization: Super-fast convergence for
radiance fields reconstruction. Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2022. 2, 3, 4

[45] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai, A. Jacobson,
M. McGuire, and S. Fidler. Neural geometric level of detail: Real-time rendering with implicit
3D shapes. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021. 3

[46] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal, R. Ra-
mamoorthi, J. Barron, and R. Ng. Fourier features let networks learn high frequency functions
in low dimensional domains. In Advances in Neural Information Processing Systems (NeurIPS),
2020. 4

[47] X. Xu, X. Pan, D. Lin, and B. Dai. Generative occupancy fields for 3d surface-aware image
synthesis. In Advances in Neural Information Processing Systems (NeurIPS), 2021. 3, 4, 8, 14,
15, 16

[48] Y. Xu, S. Peng, C. Yang, Y. Shen, and B. Zhou. 3d-aware image synthesis via learning structural
and textural representations. Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2022. 3, 8, 16

[49] Y. Xue, Y. Li, K. K. Singh, and Y. J. Lee. GIRAFFE HD: A high-resolution 3d-aware generative
model. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2022. 6, 15

[50] A. Yu, R. Li, M. Tancik, H. Li, R. Ng, and A. Kanazawa. PlenOctrees for real-time rendering of
neural radiance fields. In Proc. of the IEEE International Conf. on Computer Vision (ICCV),
2021. 3

[51] J. Zhang, E. Sangineto, H. Tang, A. Siarohin, Z. Zhong, N. Sebe, and W. Wang. 3d-aware
semantic-guided generative model for human synthesis. arXiv.org, 2021. 3

[52] Y. Zhang, W. Chen, H. Ling, J. Gao, Y. Zhang, A. Torralba, and S. Fidler. Image gans meet
differentiable rendering for inverse graphics and interpretable 3d neural rendering. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021. 3

[53] P. Zhou, L. Xie, B. Ni, and Q. Tian. CIPS-3D: A 3D-Aware Generator of GANs Based on
Conditionally-Independent Pixel Synthesis. arXiv.org, 2021. 3

[54] J.-Y. Zhu, Z. Zhang, C. Zhang, J. Wu, A. Torralba, J. B. Tenenbaum, and W. T. Freeman. Visual
object networks: Image generation with disentangled 3D representations. Advances in Neural
Information Processing Systems (NIPS), 2018. 3

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

supplemental material.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

12

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We will provide
code upon acceptance.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [No] Multiple runs are computationally infeasible for our
models.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] We include total training time and
the type of GPU we used.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

A Implementation

Foreground Generator The foreground generator builds on the StyleGAN2 generator [22] replacing
2D operations with their 3D equivalent as described in the main paper. For faster training, we consider
the layers of StyleGAN2 instead of their alias-free version proposed in StyleGAN3 [21]. The mapping
network has 2 layers with 64 channels. Since 3D convolutions have more parameters than 2D
convolutions with the same channel size, we reduce the channel base3 from 32768 for StyleGAN2 to
4000. To facilitate progressive growing we choose an architecture with skip connections which adds
an upsampled version of the output grid of the previous layer to the input of the next layer. The skip
architecture is equivalent to the 2D variant proposed in [22].

Following [4], we condition the generator on a camera pose. Specifically, we condition the generator
on a rotation matrix and a translation vector, yielding a 12-dimensional vector as input to the
conditioning.

The foreground generator predicts color and density values on a sparse voxel grid. Following
Plenoxels [1], the generator outputs the coefficients of spherical harmonics. We choose spherical
harmonics of degree 0, i.e., a single coefficient for each color channel. For a sharp surface and
efficient rendering, the foreground generator needs to predict high values for the density. We facilitate
generating high values by multiplying the density output of the network with a factor of 30. A similar
idea was proposed in [1] where the learning rate for the density is set to a higher value than the
learning rate for the color.

Sparse Convolutions We investigate sparse convolutions [12] for the foreground generator but find
that the computational overhead of managing coordinates increases runtime for our architecture. We
therefore use dense convolutions and zero out values in the feature maps for pruned voxels. We also
compare the difference for both implementations on performance. In general, we observe similar
training behavior for both implementations. However, the faster dense implementation allows us to
train the model for 60M iterations compared to 30M for the model with sparse convolutions. This
improves FID from 14.4 for the sparse implementation to 9.0 for the dense implementation on FFHQ
256.

Background Generator We use the StyleGAN2 [22] generator with a 2-layer mapping network
with 64 channels, and a synthesis network with channel base 2048 and a maximum of 64 channels
per layer.

2D Refinement Layers Depending on the dataset, we optionally refine the rendered image with a
shallow 2D CNN with 2 hidden layers of dimension 16 and kernel size 3. To avoid texture sticking
under viewpoint changes we use alias-free layers [21] with critical sampling.

Regularization Without regularization, volume rendering is prone to result in semi-opaque voxels
and floating artifacts and struggles to accurately represent sharp surfaces [17, 33, 35, 47]. Therefore,
we regularize both the variance of the depth, as described in the main paper, and the total variation of
the predicted density. For the depth variance loss LDV , we set τ = (1.5δ0)

2 where δ0 is the size of
one voxel and λDV = 0.01.

Following Plenoxels [1], we regularize the total variation of the predicted density values in the set of
all voxels V for a compact, smooth geometry

LTV = λTV
1

|V|
∑
v∈V

√
∆2
x(σ) + ∆2

y(σ) + ∆2
z(σ) (13)

with ∆2
x(σ) shorthand for (σi,j,k − σi+1,j,k)2 and analogously for ∆2

y(σ) and ∆2
z(σ). For efficiency,

we evaluate the loss stochastically on random contiguous segments of voxels as proposed in [1] and
set λTV = 10−5 in all experiments.

3see https://github.com/NVlabs/stylegan3.git

14

https://github.com/NVlabs/stylegan3.git

To avoid that the full image is generated by either background or foreground generator, we use a
hinge loss on the mean mask value as proposed in GIRAFFE-HD [49]

Lfgcvg = λfgcvg max

(
0, ηfg − 1

|S|
∑
i∈S

Îfgmask[i]

)
(14)

Lbgcvg = λbgcvg max

(
0, ηbg − 1

|S|
∑
i∈S

1− Îfgmask[i]

)
(15)

where ηfg and ηbg denote the minimum fraction that should be covered by foreground and background,
respectively. To ensure that both models are used, we set ηfg = 0.4 for AFHQ [6] and FFHQ [22]
and ηfg = 0.1 for Carla [42] because Carla’s objects cover a much smaller fraction of the image. We
use ηbg = 0.1 and λfgcvg = λbgcvg = 0.1 for all datasets.

Discriminator We use the StyleGAN2 [22] discriminator with conditional input as in [4]. To
facilitate progressive growing we choose a skip architecture which adds a downsampled version of
the input image to the input of each layer as introduced in [22].

Rendering For efficient rendering, we leverage custom CUDA kernels building on the official code
release of [1]. We select equidistant sampling points for volume rendering in steps of 0.5 voxels but
skip voxels with σi < 10−10 and stop rendering early if Ti < 10−7 as in [1].

Implementation and Training Our code base builds on the official PyTorch implementation of
StyleGAN2 [22] available at https://github.com/NVlabs/stylegan3. Similar to StyleGAN2, we train
with equalized learning rates for the trainable parameters and a minibatch standard deviation layer at
the end of the discriminator [19] and apply an exponential moving average of the generator weights.
For faster training, we use mixed-precision for both the generator and the discriminator as proposed in
[20]. Unlike [22], we do not train with path regularization or style-mixing. To reduce computational
cost and overall memory usage R1-regularization [29] is applied only once every 4 minibatches. We
use a regularization strength of γ = 1 for all datasets. Due to the small size of AFHQ, we follow [20]
and finetune a generator that is pretrained on FFHQ with RI = 128 and RG = 32, i.e., before the
representation is pruned.

B Baselines

Qualitative Results We provide qualitative results for StyleNeRF [11] and GRAM [7] in both the
main paper and the supplemental material. For StyleNeRF, we obtain samples from the pretrained
FFHQ model available at https://github.com/facebookresearch/StyleNeRF.git. For GRAM, its authors
kindly provided unpublished code and pretrained models which we use for evaluation. In the
qualitative comparisons, i.e., Fig. 4 of the main paper and Fig. 8, we use a truncation of ψ = 0.7 for
all methods. For GRAM and our approach, we show samples from −40◦ to +40◦ which roughly
corresponds to 2 standard deviations of the pose distribution. We find that StyleNeRF does not
necessarily adhere to the input pose. Hence, we manually define the range to be −60◦ to +60◦ such
that the rendered images roughly align with the other methods.

Quantitative Results Table 2 of the main paper shows a quantitative comparison for all baselines
and our method in terms of FID. For EG3D [4] and GIRAFFE [33], we report the numbers from [4].
For StyleNeRF [11], we take the numbers from [11]. From [11] we further reference the results on
FFHQ and AFHQ for GRAF [41] and π-GAN [5] as these datasets were not considered in the original
publications. On Carla, we report the results from [41] and [5], respectively. For GOF [47], we
reference the numbers from [47] on Carla and train new models to obtain results on FFHQ and AFHQ
using the official code release available at https://github.com/SheldonTsui/GOF_NeurIPS2021.git.
For GRAM [7], we report the results from [7] for FFHQ. As AFHQ is not considered in [7], we train
GRAM on AFHQ using their unpublished code. Similar to our approach, we finetune a generator that
was pre-trained on FFHQ. We remark that across all reported values for FID the number of generated
image varies where most methods report values considering either 20k or 50k generated images. An
overview is provided in Table 4 which is discussed in more detail at the end of Section C.

15

https://github.com/NVlabs/stylegan3
https://github.com/facebookresearch/StyleNeRF.git
https://github.com/SheldonTsui/GOF_NeurIPS2021.git

Figure 6: Background disentanglement. We show generated images at resolution 2562 for
FFHQ [22] and AFHQ [6] with truncation ψ = 0.7.

FFHQ [22] AFHQ [6] Carla [42]
RI = 2562 RI = 2562 RI = 1282

GIRAFFE [34] 31.5† 16.1† –
VolumeGAN [48] 9.1† – 7.9†

StyleNeRF [11] 8.0† – –
EG3D [4] 4.8† 3.9† –
GRAF [42] 71† 121† 41∗1
π-GAN [5] 85† 47† 29.2∗2
GOF [47] 69.2 54.1 29.3
GRAM [7] 17.9 18.5 26.3
VoxGRAF 9.6 / 9.0† 9.6 / 9.4† 6.7 / 6.3†

Table 4: Quantitative Comparison. We report
FID [16] on the full dataset and explicitly anno-
tate the number of generated images for evalu-
ation. † denotes 50k generated images, ∗1 de-
notes 1k images (GRAF, Carla) and ∗2 denotes
8k images (π-GAN, Carla). Numbers without
annotation are calculated using 20k generated
images.

Figure 7: Failure Cases. Left: Some part of
the background is modeled with the foreground.
Middle: The whiskers are connected to the body
of the cat. Right: The hair is directed inward to
the head.

C Results

Background and Foreground Disentanglement. Fig. 6 illustrates foreground masks, foreground
and background image, and the image after alpha composition. As the background remains fixed
under viewpoint changes, the generator is encouraged to model pose-dependent content with the
foreground generator. The regularization in Eq. (14) and Eq. (15) encourages the generator to use
both the background and the foreground generator to synthesize the full image.

Multi-View Consistency. Corresponding to Fig. 4 of the main paper, we provide additional
qualitative comparisons on multi-view consistency in Fig. 8. For StyleNeRF [11], the red boxes
highlight inconsistencies, like changing eye shape (first row on the left), moving strands of hair
(second row, third row on the left) and distortion of the face shape (first and third row on the right).
For GRAM [7], red boxes indicate layered artifacts stemming from its manifold representation. In
contrast, our method leads to more multi-view consistent results.
We further include a quantitative evaluation on consistency in Table 6. We implemented our own
version of the depth and pose metric following the description in [4] as their evaluation code is
not publicly available. We report the results for our approach, GRAM, StyleNeRF and EG3D for

16

G
R
A
M

S
ty
le
N
eR
F

V
ox
G
R
A
F

Figure 8: Qualitative Comparison on Multi-View Consistency. We apply truncation with ψ = 0.7
for all methods.

17

Figure 9: Effect of Pose Conditioning. From left to right we vary the pose used for rendering ξ′ and
from top to bottom we vary the pose used for conditioning ξ. All samples are generated using the
same latent z.

reference. We also report the standard deviation across the 1024 samples used for evaluation. While
the results in Table 6 agree with our qualitative analysis of view consistency in Fig. 4 and the
supplementary video, we find that both metrics are very sensitive to the latent code and the sampled
poses, as indicated by the large standard deviations. As no established evaluation pipeline exists,
our results should not be directly compared to the numbers in [4] as the implementation and pose
sampling might differ.

Pose Conditioning. Fig. 9 illustrates the impact of the pose conditioning on the generated images.
Pose conditioning is not only used to model slight changes, e.g. of the eyes or the smile, but can alter
the general appearance of the generated instance. However, by fixing the pose conditioning during
inference, view-consistent images can be generated.

Regularization. We ablate the effect of regularization in terms of end-to-end performance measured
in FID. Table 5 shows that the regularizers do not significantly change FID. Nonetheless, LDV
speeds up training (see Table 1 of the main paper) and we find the remaining losses to be helpful for
stabilizing training.

18

Lreg w/o LDV w/o LTV w/o Lfgcvg w/o Lbgcvg
FID 14.2 14.8 15.1 14.6 14.8

Table 5: Impact of Regularization on FID. We
ablate the performance of all four regularizers
on models trained on FFHQ with RI = 128 and
RG = 64. While the regularizers do not signifi-
cantly impact end-to-end performance measured
in FID, we find that they can be helpful to stabi-
lize training.

Depth ↓ Pose ↓
StyleNeRF [11] – 0.051± 0.047
GRAM [7] 0.48± 0.24 0.013± 0.013
EG3D [4] 0.29± 0.30 0.0018± 0.0031
VoxGRAF 0.33± 0.23 0.00045± 0.00079

Table 6: View-Consistency. We re-implement
the depth and pose metric from [4]. While results
agree with the qualitative evaluation in Fig. 4 of
the main paper, the large standard deviations in-
dicate that both metrics are very sensitive to the
latent code and the sampled poses. Note that for
StyleNeRF depth can only be rendered at resolu-
tion 322 and we thus omit evaluating the Depth
metric for it.

Failure Cases. Fig. 7 illustrates failure cases of out method. For some samples, we observe that the
background and the foreground are not disentangled properly. The left column in Fig. 7 shows an
example where the foreground generates parts of the background, as indicated by the red boxes. In
turn, the background models the body of the person which should be part of the foreground. Learning
to disentangle background and foreground without direct supervision, e.g., instance masks, is often
ambiguous which makes it a challenging task. The middle column in Fig. 7 displays a common
failure case of our model on AFHQ: The whiskers of the cat are connected to its body. This is likely
a consequence from the depth variance and total variation regularization we apply to obtain a single
sharp surface and compact geometry. The right column in Fig. 7 shows an occasional failure on
FFHQ. For some samples, we observe that the hair is directed inward to the head instead of outward.
In the rendered image this effect is not visible which suggests that it likely results from ambiguity in
the training data.

Uncurated Samples. We provide additional samples of our method for FFHQ [22] in Fig. 10,
AFHQ [6] in Fig. 11, and Carla [42] in Fig. 12.

Quantitative Comparison. As FID is biased towards the number of images [2], we explicitly
annotate the number of generated images for the results reported in Table 2 of the main paper in
Table 4. Most works evaluate FID either using 20k or 50k generated images. We evaluate our method
for both cases. For our method and the considered datasets, the difference between using 20k or 50k
generated images is reasonably small.

D Societal Impact

This work considers the task of generating photorealistic renderings of scenes with data-driven
approaches which has potential downstream applications in virtual reality, augmented reality, gaming
and simulation. While many use-cases are possible, we believe that in the long run this line of
research could support designers in creating renderings of 3D models more efficiently. However,
generating photorealistic 3D-scenarios also bears the risk of manipulation, e.g., by creating edited
imagery of real people. Further, like all data-driven approaches, our method is susceptible to biases
in the training data. Such biases can, e.g., result in a lack of diversity for the generated faces and have
to be addressed before using this work for any downstream applications.

19

Figure 10: Uncurated Samples for FFHQ [22]. We use truncation with ψ = 0.7.

20

Figure 11: Uncurated Samples for AFHQ [6]. We use truncation with ψ = 0.7.

21

Figure 12: Uncurated Samples for Carla [42]. We use truncation with ψ = 0.7.

22

	Introduction
	Related Work
	Method
	3D-aware GANs with Coordinate-Based Scene Representations
	VoxGRAF: Generating Radiance Fields on Sparse Voxel Grids
	Training

	Results
	Ablation Study
	Baseline Comparison

	Limitations and Discussion
	Implementation
	Baselines
	Results
	Societal Impact

