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Generator Testbed Discriminator Testbed

« 2D GANs achieve photorealistic image synthesis Idea: Analyze generator in isolated testbed. Idea: Analyze discriminator in isolated testbed.

 But generated images have artifacts in their spectrum
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 Key objective of GAN training not fulfilled

 Systematic issue across GAN-architectures Experiments
, . Is there a frequency bias over the course of training? Can the discriminator detect high frequencies?
% |s there a systematic frequency bias in the generator
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and/or the discriminator?
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Bed-of-nails upsampling: peak at high frequencies _ _ _ _
Bilinear/nearest neighbor upsampling: few high frequencies Can the generator compensate for upsampling artifacts? Is downsampling problematic?
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* Does the upsampling operation introduce a frequency
bias over the course of training?

* Can the learnable filters compensate for artifacts from | | | |
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Discriminator Main Findings
Some works propose additional training objectives but * Different upsampling operations bias the generator  The discriminator does not struggle with detecting high
the discriminator is not investigated in detail. towards different spectral properties frequencies per se but rather struggles with
* Can the discriminator detect high frequencies and * Checkerboard artifacts introduced by upsampling frequencies of low magnitude.
provide the necessary supervision? cannot explain the spectral discrepancies alone . The downsampling operations in the discrimiantor
* Is aliasing due to the downsampling operations as the generator Is able to compensate for these can impair the quality of the training signal it provides.
problematic? artifacts.
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