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Abstract

In this supplementary document, we first provide details on the network archi-
tectures of our approach and the baselines in Section 1. Section 2 describes the
chosen hyperparameters for each dataset. In Section 3, we show additional results
and failure cases and discuss limitations of our approach. The supplementary
video shows synthesized animations in which we control the camera viewpoint and
interpolate between latent codes. We use the same mathematical notation as in the

paper.

1 Implementation

1.1 Generative Radiance Fields

The network architectures for our generator and our discriminator are specified in Table 1 and Table 2,
respectively. Following [9], for D instance normalization is applied to the features and spectral
normalization is applied to the weights. For gg we compute the final weights as exponential moving
average [15] with decay 0.999. In all experiments we set m = n = 128 and Ly = 3 -2 - 10,
Lq = 3-2-4 (i.e. we embed each of the three coordinates of x to dimension 10 and each of the three
coordinates of d to dimension 4. The factor 2 comes from the two periodic functions used in the
embedding, namely sinus and cosinus). For ray and point sampling we use K = 32 and N = 64,
respectively. We exponentially decrease the minimal scale (that determines the minimal receptive
field of the patches) as s = max (1, S exp(—0.0025¢)) where i denotes the training iteration. We
choose the camera matrix K and the camera’s distance to the origin empirically such that objects
approximately cover the entire image. As shown by our ablation study in Table 5 of the paper our
model is relatively robust to different choices of K.

3D Point Sampling: To approximate the intractable volumetric projection integral Mildenhall
et al. [8] propose a stratified sampling approach that allows to query the network at continuous
intervals instead of a discretized grid. More specifically, they partition each ray r into N evenly-
spaced bins and sample uniformly at random within each bin. Let r,.(7) = t + 7d,. denote the
straight line describing ray r and let 7,,, 7 define near and far plane of the camera, then:
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Layer Type Input Dimension Output Dimension  Activation Repetitions

i Linear Ly +m =189 256 Relu 1
®  Linear 256 256 Relu 3
Linear 256 + Ly +m 256 Relu 1
Linear 256 256 Relu 3

op Linear 256 1 Relu 1
Linear 256 256 - 1

cp Linear 256 + Lq +n =408 128 Relu 1
Linear 128 3 - 1

Table 1: Architecture of gy.

Layer Type Kernel Size Stride Activation Normalization Output Dimension

Conv 4 x4 2 LRelu Spec, IN 128
Conv 4 x 4 2 LRelu Spec, IN 256
Conv 4 x4 2 LRelu Spec, IN 512
Conv 4 x4 1 LRelu Spec, IN 1

Table 2: Architecture of D.

Volume Rendering: In addition to pixel color c,., volume rendering can also be used to render alpha
maps and depth maps, i.e. an alpha value «,- and a depth d,.:

N N
o = ZTfaﬁ. d, = ZTﬁaf.Tf: (2)
i=1 i=1

Implementation Details: Our PyTorch implementation is based on the code from https://github.
com/yenchenlin/nerf-pytorch.git and https://github.com/LMescheder/GAN_stability.git. To compute
FID and KID we adapt the code from https://github.com/abdulfatir/gan-metrics-pytorch.git.

1.2 Baselines

1.2.1 HoloGAN

We use the official implementation provided by the authors' and adhere to their training protocol:
We use the Adam optimizer and train with an initial learning rate of 0.0001 for experiments with
an image resolution of 642 pixels, and 0.00005 for higher resolutions. We use a batch size of 32,
train for 50 epochs, and linearly reduce the learning rate after the first 25 epochs. We further use the
identity regularizer and style discriminator loss for an image resolution of 1282 pixels and higher.
The only exception to this official training protocol we did is for the Chairs dataset. Here, we found
that adding the identity regularizer improves performance as it is necessary to achieve multi-view
consistent results, albeit the image resolution being 642. For the datasets Faces and Cats, we use the
pose ranges published by the authors as input. For the additional datasets which were not used by the
HoloGAN authors (Cars, Birds, Chairs), we use the same pose ranges as for our method as input.

In the official implementation, two generator architectures are provided for an output resolution of
642 and 1282, respectively. To train HoloGAN on image resolutions of 256 and 5122, we extend the
architecture used for an image resolution of 1282 by one or two transposed convolutional layers with
adaptive instance normalization and leakly ReL U activation, respectively, and, similar to the previous
layers, and apply the style discriminator loss to these intermediate outputs as well.
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HoloGAN Generator Architecture

Layer Type Kernel Size Stride Activation Normalization Output Dimension
UpConv 3x3x3 2 LRelu AdaIN 8 x 8 x 8 x 256
UpConv 3x3x3 2 LRelu AdaIN 16 x 16 x 16 x 128
3D Transformation - - - - 16 x 16 x 16 x 128
Conv 3x3x3 1 LRelu AdalN 16 x 16 x 16 x 64
Conv I x3x3 1 LRelu AdalN 16 x 16 x 16 x 64
Concatenation - - - - 16 x 16 x (16 - 64)
Conv 1x1 1 LRelu - 16 x 16 x 512
UpConv 4x4 2 LRelu AdaIN 32 x 32 x 256
UpConv 4x4 2 LRelu AdalN 64 x 64 x 64
UpConv 4 x4 2 LRelu AdalN 128 x 128 x 32
UpConv 4 x4 1 Tanh - 128 x 128 x 3

HoloGAN w/o 3D Conv Generator Architecture

Layer Type Kernel Size Stride Activation Normalization Output Dimension
UpConv 3x3x3 2 LRelu AdalN 8 X 8 x 8 x 256
UpConv 3x3x3 2 LRelu AdaIN 16 x 16 x 16 x 128
3D Transformation - - - - 16 x 16 x 16 x 128
Concatenation - - - - 16 x 16 x (16 - 128)
Conv 1x1 1 LRelu - 16 x 16 x 512
UpConv 4x4 2 LRelu AdaIN 32 x 32 x 256
UpConv 4x4 2 LRelu AdalN 64 x 64 x 64
UpConv 4x4 2 LRelu AdaIN 128 x 128 x 32
UpConv 4 x4 1 Tanh - 128 x 128 x 3

Table 3: HoloGAN Generator Architectures.

1.2.2 HoloGAN w/o 3D Conv

We further use a modified version of HoloGAN in our experiments. As evidenced by our experiments
HoloGAN fails in disentangling viewpoint from appearance at high resolution, varying different style
aspects like facial expression or even completely ignoring the pose input. We identify the learnable
projection as the underlying cause for this behavior and therefore reduce its number of learnable
parameters in our modified version. More specifically, we keep the same generator architecture except
for the two 3D convolutional layers in the projection unit which we remove entirely. These two layers
are used in HoloGAN after the rigid-body transformation and before the 3D to 2D projection. Please
see Table 3 for a detailed comparison of the original generator and our modified version, both for an
image resolution of 1282 pixels.

1.3 PLATONICGAN

PLATONICGAN encodes an input image into a latent code which is then fed into a generator to create
a 3D volume. The 3D volume is rendered onto the 2D image plane using differentiable volumetric
rendering. An adversarial loss is defined on the 2D images rendered at randomly sampled camera
viewpoints. Further, PLATONICGAN adds a reconstruction loss (sum of squared differences) on
generated and input image. In addition to 2D images, PLATONICGAN requires instance masks for
training.

We use the official implementation provided by the authors”. For experiments on the Cars and Birds
datasets we use the hyperparameters for ShapeNet from the original implementation. Specifically, we
train the network with Wasserstein loss and gradient penalty [2], a batch size of 16, and a learning
rate of 0.000001 and 0.0025 for discriminator and generator, respectively. The reconstruction loss is
weighted with factor 100 and the convolutional layers in discriminator and generator use 128 feature

"https://github.com/thunguyenphuoc/HoloGAN
*https://github.com/henzler/platonicgan
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Name Type # Images Resolution Azimuth Elevation Radius Near, Far Field of View

Cars  [1] Synthetic 10000  64>-512% 0°-360° 0°-85° 10 7.5,12.5 30°
Chairs [11] Synthetic 152680 64> 0°-360° 0°-90° 10 7.5,12.5 30°

6] 202599 64°-128> o o o_gro i o
Faces . Real 30000 25625192 0°-90°  70°-85° 9.5-105 7.5,12.5 10
Cats  [16] Real 9407 642 0°-70°  70°-85° 10 7.5,12.5 10°
Birds [I13] Real 8444 642 0°-360° 60°-95° 9-11  7.5,12.5 30°

Table 4: Datasets and Hyperparameter Choices.

channels. For the Chairs dataset, we change the learning rates of discriminator and generator to
0.000005 and 0.00125 to stabilize training. For both the Faces and Cats datasets, we reduce the
learning rate of the generator further to 0.00075 as otherwise we observe that training becomes
unstable almost immediately.

To better match the viewpoint distribution of our training images, we sample camera poses on the
upper hemisphere, while the original implementation uses the full sphere. Note, that changing this
is not trivial as, due to the reconstruction loss, PLATONICGAN learns the 3D object in the camera
coordinate system of the input image and not in the world coordinate system. To ensure that we
sample camera poses on the upper hemisphere in the world coordinate system, we have to account
for this coordinate transformation. For the Chairs and Cars datasets the ground truth camera pose
of the images is known. In this case, we simply transform the learned 3D object back to the world
coordinate system before we sample the camera viewpoint. For the Faces, Cats and Birds datasets
this cannot be done as the ground truth camera poses are unknown. However, for Faces and Cats
the camera poses of the images are in a very small range. Hence, we sample the camera pose in the
camera coordinates for these datasets. For Birds, we follow the authors’ suggestion and only sample
camera poses with random azimuth but fixed polar angle.

2 Datasets

Table 4 lists all used datasets and the corresponding choices of our hyperparameters. Note, that we
choose slightly different angular ranges for Faces and Cats compared to [9]. As our method adheres
more closely to the given camera poses we use smaller ranges that are more consistent with the
viewpoints we observe in the datasets. We now provide additional information for rendering and
preprocessing.

Cars: For rendering the ground truth data, we create scenes with a single centered car using the
Carla Driving simulator [1]. Camera poses are sampled uniformly on the upper hemisphere using
0°-360° and 0°-85° for azimuth and polar angle, respectively. The camera radius is set to 10 and the
field of view of the camera is 30°.

Chairs: We follow the rendering protocol from [10] and composite the images on white background.

Faces: Similar to [9], we crop the images around the center and apply random horizontal flipping
to the images during training. We crop the images to size 1082 and 650 pixels for celebA and
celebA-HQ, respectively.

Cats: We follow the preprocessing protocol from https://github.com/microe/angora-blue/blob/
master/cascade_training/describe.py for cropping the cat faces.

Birds: We use the instance masks by Ryan Farrell® to composite the birds on white background.
Similar to [4] we remove images with less than 7 visible keypoints. Further, we make use of the
instance masks to filter the images. Firstly, as the provided masks are not binary but rather contain
confidence values, we discard images in which more than 25% of the mask have a confidence lower
than 85%. Next, we discard images in which the mask occupies more than 1% of the image boarder
to avoid cropped close ups from birds and remove images in which the masks are split into multiple
parts, to avoid occluded objects.

3https://students.cs.byu.edu/~farrell/
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3 Results

3.1 Ablations

Pos. Enc. FID Image Size  Time per Image ¢ [s]

Ly La | Cars CelebA 642 o1

60 24 | 41 35 1282 0.4

30 12 54 44 2562 1.6

R 109 5122 6.2
Table 5: Positional Encoding. Ablation study Table 6: Runtime at Inference for generating
comparing different dimensions used in the a single frame at different image resolutions.

positional encoding in terms of FID score.

Positional Encoding: The FID scores in Table 5 suggest that our approach benefits from the
positional encoding ~y(+). This finding is in agreement with the results from [8]. In particular for
Faces, this embedding is crucial as this dataset contains many high-frequency details. We observe
that otherwise the discriminator quickly becomes too strong leading to mode collapse, even when
reducing its learning rate by a factor of ten.

Runtime at Inference: We measure the runtime for synthesizing a single image on a GeForce GTX
1080 Ti with batches of 8 images. The results in Table 6 show, that the runtime grows approximately
linearly with the number of pixels, i.e., grows by a factor of 4 when both image width and height are
doubled.

3.2 COLMAP

We evaluate the multi-view consistency of different methods by running a Multi-View-Stereo (MVS)
algorithm on the generated images. The reconstruction quality reflects the multi-view consistency as
the dense reconstruction relies on consistency across views. The MVS algorithm requires camera
poses as input and we apply a Structure-from-Motion (SfM) algorithm to estimate the camera poses
from the rendered images. This ensures a fair comparison to HoloGAN as the rendered images of
HoloGAN do not necessarily stick to the input camera poses due to its learnable projection. We use
COLMAP [12] for both, SfM and MVS estimation.

We conduct experiments on the Cars and Faces datasets at an image resolution of 2562 pixels. For
Cars, we generate 400 images from the trained models for each instance using randomly sampled
camera poses. We use 200 images for each face instance considering its smaller viewpoint range.
Fig. 1 illustrates the camera poses estimated by the SfM algorithm using images from different
methods on Cars. Our generated images allow for accurate pose estimation while the pose estimation
for both HoloGAN variants fails on a large number of frames due to incorrect correspondences across
different images. Similar to our observation on 2D images, HoloGAN w/o 3D leads to better pose
estimates compared to the original HoloGAN. On face images, as shown in Fig. 2, the estimated
camera poses are very far away from the object for both Hologan variants and do not recover the full
azimuth range used for generating the input images. In contrast, the synthesized images from our
method allow for recovering the correct camera distribution.

We further show the reconstructed point clouds for Cars and Faces in Fig. 3 and Fig. 4, respectively.
As illustrated in Fig. 3a, the original HoloGAN leads to either an extremely sparse point cloud or a
planar object on the Cars dataset. The latter is caused by providing multiple nearly identical images
as input to COLMAP. This is evidenced in Fig. 6 of the main paper where the input poses can be
completely ignored in HoloGAN for Cars at image resolution 2562. For HoloGAN w/o 3D on Cars in
Fig. 3b, the MVS algorithm fails to reconstruct the full object due to the limited number of estimated
poses. The partially reconstructed object is also noisy as can be seen from the rotated point cloud.
In contrast, our generated images allow for complete and accurate 3D reconstruction of the cars as
shown in Fig. 3c. We observe that COLMAP sometimes struggles to distinguish the left and the right
side of the car and reconstructs a car missing one side (bottom row in Fig. 3c). However, this is due
to the symmetric structure of the car instead of inconsistent multi-view images.
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(a) HoloGAN (b) HoloGAN w/o 3D (c) Ours

Figure 1: Camera Poses estimated on synthesized Car images using COLMAP. The input camera
poses for generating the corresponding images are sampled randomly within the angular range of the
dataset. The pose estimates of our generated images correctly recover the distribution of the input
camera poses.

(a) HoloGAN (b) HoloGAN w/o 3D (c) Ours

Figure 2: Camera Poses estimated on synthesized Face images using COLMAP. The input camera
poses for generating the corresponding images are sampled randomly within the angular range of the
dataset. The pose estimates from our generated images correctly recover the distribution of the input
camera poses.

Fig. 4 suggests that COLMAP struggles to reconstruct a plausible face model from both HoloGAN
variants. It instead estimates a planar structure or a noisy point cloud for each face instance as can be
seen from the rotated point cloud. The result suggests that our model has a stronger inductive bias to
learn a 3D structure. In contrast, HoloGAN generates plausible images from different viewpoints,
but they do not correspond directly to the underling 3D structure. This also results in noise in the
reconstructed point clouds in Fig. 4a and Fig. 4b. Our method instead leads to a smooth 3D point
cloud with a plausible shape of a human face.

3.3 KID

In addition to the FID values in the main paper, we report KID values from the comparison to the
baseline methods in Table 7 at resolution 642 and in Table 8 at higher resolutions. For all experiments
the KID values behave similarly to the corresponding FID values discussed in the main paper.

3.4 Viewpoint Controllability

We provide additional results on viewpoint controllability for our method at image resolution 642
pixels in Fig. 5, Fig. 6 and Fig. 7. We show images and depth maps at resolution 2562 and 5122
pixels in Fig. 8, Fig. 9, Fig. 10 and Fig. 11. On all datasets our method is able to disentangle object
identity and camera viewpoint and even learns reasonable depth maps.
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Figure 3: 3D Reconstruction from synthesized images at resolution 2562. We show one example of
the generated images on the left column. The remaining columns show the reconstructed point cloud
from different viewpoints.



(c) Ours
Figure 4: 3D Reconstruction from synthesized images at resolution 2562. We show one example of
the generated images on the left column. The remaining columns show the reconstructed point cloud
from different viewpoints.



Cars Faces

128 256 512 128 256 512

Chairs Birds Cars Cats Faces

2D GANTII 315068 376 0.27 028 HoloGAN [9] 16.47 17.80 - 238 520 -
PLATONICGAN [3] 18.8 18.6 13.6 41.8 44.2 w/o 3D Conv 13.33 14.95 23.32 1.65 1.59 2.98

Ours 1.78 4.03 552 2.03 3.66 3.74
HoloGAN [9] 3.02 564 9.70 098 1.17 upsampled 624 993 - 584776
Ours 096 2.61 091 0.84 1.17 sampled - 434 708 - 3.63 450

Table 7: KID x 100 at image resolution 64%.  Table 8: KIDx 100 at image resolution 1282-5122.
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(a) Rotation (b) Elevation

Figure 5: Camera Pose Interpolations for Chairs at image resolution 642 pixels.
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(a) Rotation (b) Elevation

Figure 6: Camera Pose Interpolations for Birds at image resolution 642 pixels.
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Figure 7: Camera Pose Interpolations for Cats at image resolution 642 pixels.



(b) Elevation

Figure 8: Camera Pose Interpolations for Faces at image resolution 2562 pixels.
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(b) Elevation

Figure 9: Camera Pose Interpolations for Faces at image resolution 5122 pixels.
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(b) Elevation

Figure 10: Camera Pose Interpolations for Cars at image resolution 256 pixels.
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(b) Elevation

Figure 11: Camera Pose Interpolations for Cars at image resolution 5122 pixels.



3.5 Random Samples

We provide randomly sampled images from our model for all datasets at resolution 642 pixels in
Fig. 12. The results indicate that our model is able to generate a large variety of instances for each
dataset.

3.6 Limitations and Failure Cases

Lastly, we discuss failure cases and limitations of our approach. Fig. 13 shows two failure cases we
observe in our generated images. Firstly, on the Birds dataset the model sometimes fails to learn the
back of the bird correctly and instead adds a white patch on its back, see Fig. 13a, because the dataset
contains only few images from the back view. This could be prevented by using instance masks as
additional input channel to our discriminator. Secondly, on Cats the model learns an incorrect depth
for the cat faces resulting in the face being oriented “inwards”. The images in the Cats dataset only
show little angular variation and, due to cropping the cat faces, are close to an orthographic camera
projection. This makes depth estimation difficult and can create ambiguity, e.g., the rotation in Fig. 7
looks reasonable, albeit the incorrect depth. To resolve this issue, ground truth and generated depth
maps could be added as input to the discriminator.

Our approach is currently limited to scenes with single objects. The failure cases above suggest that
our approach could be extended to more complex scenes by adding more 2D supervision, e.g., depth
maps from stereo depth estimation, or by leveraging symmetry constraints similar to [14]. We plan to
analyze these effects in future work. Another interesting direction for future work is to reduce the
time needed for rendering during inference.
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Figure 12: Random Samples at image resolution 642 pixels.
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(a) The depth maps in the middle row reveal that the
bird has a white block on its back. This mostly affects (b) The cat face is pointed inwards. The colorbar for
the view from the back (orange frame) which appears the depth is shown in the bottom row from near (left)
split in the middle. to far (right).

Figure 13: Failure Cases at image resolution 642 pixels.
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