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Towards Scalable Multi-View Reconstruction
of Geometry and Materials

Carolin Schmitt‡ Božidar Antić Andrei Neculai Joo Ho Lee‡ Andreas Geiger

Abstract—In this paper, we propose a novel method for joint recovery of camera pose, object geometry and spatially-varying
Bidirectional Reflectance Distribution Function (svBRDF) of 3D scenes that exceed object-scale and hence cannot be captured with
stationary light stages. The input are high-resolution RGB-D images captured by a mobile, hand-held capture system with point lights
for active illumination. Compared to previous works that jointly estimate geometry and materials from a hand-held scanner, we formulate
this problem using a single objective function that can be minimized using off-the-shelf gradient-based solvers. To facilitate scalability to
large numbers of observation views and optimization variables, we introduce a distributed optimization algorithm that reconstructs 2.5D
keyframe-based representations of the scene. A novel multi-view consistency regularizer effectively synchronizes neighboring keyframes
such that the local optimization results allow for seamless integration into a globally consistent 3D model. We provide a study on the
importance of each component in our formulation and show that our method compares favorably to baselines. We further demonstrate
that our method accurately reconstructs various objects and materials and allows for expansion to spatially larger scenes. We believe
that this work represents a significant step towards making geometry and material estimation from hand-held scanners scalable.
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1 INTRODUCTION

As AR/VR technologies are emerging, there is an increasing
demand for scanning casual scenes for immersive and interactive
virtual experiences. Both, for a high level of realism and to
increase robustness to varying illumination, it is beneficial to re-
construct material and reflectance properties alongside geometry.
Yet, 3D shape and appearance estimation is very challenging due
to sparse measurements, large computation and memory require-
ments and the interlaced and complex correlation of geometric
and photometric entities. Therefore, most works target only small
objects which are often captured using complex light stages in a
laboratory. However, in order to generate photo-realistic replica of
real environments for training embodied agents or telepresence,
this is insufficient. Instead, we require accurate geometry and
material reconstructions for large, complex scenes and the ability
to work with data from mobile scanners that capture scenes from
arbitrary viewpoints.

Ideally, object geometry and material properties are inferred
jointly: a good model of light transport allows for recovering
geometric detail using shading cues. An accurate shape model,
in turn, facilitates the estimation of material properties. This is
particularly relevant for shiny surfaces and detailed geometries.
Yet joint optimization of geometry and material from a handheld
device poses an inverse rendering problem and is ill-posed and
under-determined. Existing approaches assume fixed camera poses
[1], [2] or leverage sophisticated pipelines [3], [4], [5], [6] which
decompose the problem into smaller problems using multiple
decoupled objectives and optimization algorithms that treat ge-
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ometry and materials separately. In this work, we provide a novel
formulation for this problem which does not rely on sophisticated
pipelines or decoupled objective functions.

In order to process larger multi-object scenes, a scalable scene
representation is mandatory. Unfortunately, reconstructing large
scenes captured from many viewpoints at high resolution (e.g.,
4K) quickly becomes intractable. We therefore propose to use
local 2.5D scene representations and an optimization scheme that
encourages global consistency between them. By optimizing in
2.5D, the proposed model has a constant memory footprint inde-
pendent of the scene size and allows for reconstructing geometry
and materials at larger scales, see Fig. 1.
We summarize the contributions of this paper as follows:

• We demonstrate that joint optimization of camera pose,
object geometry and materials is possible using a single
objective function and off-the-shelf gradient-based solvers.

• We propose a distributed optimization scheme over a set of
2.5D scene representations that enables accurate integra-
tion of 2.5D reconstructions to full 3D models. We show
that despite overlapping fields of view, regularizing multi-
view consistency is crucial to attain globally accurate
reconstructions without visual artifacts.

• We provide a study on the importance of each component
in our formulation and a comparison to multiple baselines.

• We demonstrate that our model can be used to reconstruct
scenes exceeding object-level that include multiple objects
with various different materials.

• We provide videos of our reconstructed models and
make our source code and dataset publicly available at
https://sites.google.com/view/material-fusion/.

This journal paper is an extension of a conference paper
published at CVPR 2020 [7] which jointly estimates pose, ge-
ometry and svBRDF from handheld data in 2.5D. In Section 7.3
we demonstrate that simple fusion of the 2.5D parameter maps

https://sites.google.com/view/material-fusion/
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Fig. 1: Globally Consistent Material and Geometry Reconstruction. Given RGB-D images from a mobile hand-held scanner
(left), the proposed method uses local 2.5D representations to iteratively reconstruct globally consistent poses, geometry and material
parameter maps that can be integreated into a 3D representation which features per voxel normals and material parameters (middle).
This allows for rendering novel views under unseen illumination (right). Our approach can handle both multiple-object scenes and very
specular materials.

produced by [7] is insufficient to obtain an accurate and consis-
tent 3D model. We therefore extend our previous model with a
distributed multi-view optimization stage which enables fusion of
2.5D representations of geometry and materials into consistent 3D
models.

Further, in comparison to [7], we 1) model the specular BRDF
parameters per pixel for a richer and more flexible material repre-
sentation, 2) refine the regularization terms to account for the new
material model and better ensure proximity to the measurements,
3) provide a thorough ablation study of our global multi-view
consistent optimization scheme, 4) add qualitative comparisons
to [7] and [5], and 5) show reconstruction results for additional
objects and scenes that demonstrate the scalability of our method.

2 RELATED WORK

We now discuss the most related work on geometry, material as
well as joint geometry and material estimation. We further provide
an overview on geometry estimation at scale.

2.1 Geometry Estimation
Multi-View Stereo (MVS) reconstruction techniques [8], [9],
[10], [11], [12], [13], [14] recover the 3D geometry of an object
from multiple input images by matching feature correspondences
across views or by optimizing photo-consistency. As they ignore
physical light transport, they cannot recover material properties.
Furthermore, they are only able to recover geometry for surfaces
which are sufficiently textured.

Shape from Shading (SfS) techniques exploit shading cues
for reconstructing [15], [16], [17], [18], [19] or for refining [20],
[21], [22], [23] 3D geometry from one or multiple images by
relating surface normals to image intensities through Lambert’s
law. While early SfS approaches were restricted to objects made of
a single Lambertian material, modern reincarnations of these mod-
els [24], [25], [26] are also able to infer non-Lambertian materials
and lighting. Unfortunately, reconstructing geometry from a single
image is a highly ill-posed problem, requiring strong assumptions
about the surface geometry. Moreover, textured objects often cause
ambiguities as intensity changes can be caused by changes in
either surface orientation or surface albedo.

Photometric Stereo (PS) approaches [27], [28], [29], [30],
[31], [32], [33] assume three or more images captured with a
static camera while varying illumination or object pose [34], [35]
to resolve the aforementioned ambiguities. In contrast to early
PS approaches which often assumed orthographic cameras and
distant light sources, newer works have considered the more
practical setup of near light sources [36], [37], [38], [39] and
perspective projection [40], [41], [42]. To handle non-Lambertian
surfaces, robust error functions have been suggested [43], [44]
and the problem has been formulated using specularity-invariant
image ratios [45], [46], [47], [48]. The advantages of PS (accurate
normals) and MVS (global geometry) have also been combined
by integrating normals from PS and geometry from MVS [49],
[50], [51], [52], [53], [54], [55], [56] into a single consistent
reconstruction. However, many classical PS approaches are not
capable of estimating material properties other than albedo and
most PS approaches require a fixed camera which restricts their
applicability to lab environments. In contrast, here we are inter-
ested in recovering shape and surface materials of larger scenes
using a handheld mobile scanner.

2.2 Material Estimation

Intrinsic Image Decomposition [24], [57], [58], [59] is the
problem of decomposing an image into its material-dependent
and light-dependent properties. However, only a small portion of
the 3D physical process is captured by these models and strong
regularizers must be exploited to solve the task. A more accurate
description of the reflective properties of materials is provided by
the Bidirectional Reflectance Distribution Function (BRDF) [60].

For known 3D geometry, the BRDF can be measured using
specialized light stages or gantries [61], [62], [63], [64], [65].
While this setup leads to accurate reflectance estimates, it is
typically expensive, stationary and only works for objects of
limited size. In contrast, recent works have demonstrated that
reflectance properties of flat surfaces can be acquired using an
ordinary mobile phone [66], [67], [68], [69]. While data collection
is easy and practical, these techniques are designed for capturing
flat textured surfaces and do not generalize to objects with more
complex geometries.
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More closely aligned with our goals are approaches that esti-
mate parametric BRDF models for scenes with known geometry
based on sparse measurements of the BRDF space [70], [71], [72],
[73], [74], [75], [76], [77], [78], [79]. While we also estimate a
parametric BRDF model and assume only sparse measurements
of the BRDF domain, we jointly optimize for camera pose, object
geometry and material parameters. As our experiments show,
joint optimization allows for recovering fine geometric structures
not present in the initial reconstruction while at the same time
improving material estimates compared to a sequential treatment
of both tasks.

2.3 Joint Geometry and Material Estimation

Several works have addressed the problem of jointly inferring
geometry and materials. By integrating shading cues with multi-
view constraints and an accurate model of materials and light
transport, this approach has the potential to deliver the most accu-
rate results. However, joint optimization of all relevant quantities
is a challenging task. Several works have considered extensions
of the classic PS setting [1], [80], [81], [82], [83], [84], [85],
[86], [87], [88], [89], [90]. While some of these approaches
consider multiple viewpoints and/or estimate spatially varying
BRDFs, all of them require multiple images from the same or
known viewpoints as input. In contrast, we are interested in
jointly estimating geometry and materials from mobile scanning
systems, enabling applications outside laboratory environments.

In 2011, [91] proposed to exploit low-cost and handheld scan-
ning devices such as a flash camera for reconstructing both BRDFs
and geometry from multi-view images. Like subsequent works
[92], [93], [94], [95] they are restricted to flat surfaces, simple
shapes or uniform materials. For single objects or small scenes
the following works estimate materials alongside geometry: Higo
et al. [3] estimate a depth, normal and diffuse albedo map of a
Lambertian object by graph-cut-based plane sweeping. Georgoulis
et al. [4] optimize 3D geometry and a data-driven BRDF model
in an alternating fashion. Nam et al. [5] refine a subdivided mesh
by alternatively updating positions, normals, and material prop-
erties. Finally, Li et al. [6] iteratively optimize for 3D geometry,
reflectance, camera pose and environment lighting. All these meth-
ods decompose the problem into smaller problems by splitting
the optimization variables by their property (i.e. geometry, mate-
rials, poses) and alternate the optimization over those properties
using multiple decoupled objectives. In contrast, we exploit that
spatially separated regions naturally decouple the corresponding
optimization variables and therefore, we decompose the problem
based on spatial regions instead of separate properties. This has
two advantages: 1) It enables us to optimize all parameters of each
region jointly and to use a single objective function. Consequently,
we can use all information encapsulated in the intricate interplay
of geometry and materials and reach high accurate reconstructions.
2) The separation into spatial regions allows us to distribute the
optimization over the local 2.5D representations of these regions
and thus, facilitates scalability to larger scenes.

Following our conference paper [7], Luan et al. [96] proposed
another method for jointly optimizing geometry and spatially-
varying reflectance. They represent the geometry of a single object
as a mesh and alternate the optimization over mesh vertices and
reflectance with re-meshing in a coarse-to-fine process. Hereby,
they use a co-located configuration of a hand-held camera and
point light which greatly simplifies the rendering process but

also restricts the sample space of the BRDF. In contrast, we
use multiple, alternating light sources in conjunction with explicit
shadow modeling to extract most information from the sparse set
of samples that is captured with a handheld setup.

Recently, neural scene representations [97], [98], [99]
, [100] have been trained to reconstruct surface normals and
reflectance properties of complex and multi-colored objects. Most
works are targeting object-centric scenarios with a fixed scanning
volume. [97] uses voxel representation of deep features that
encodes opacity, normals, and materials. Instead of storing deep
features discretely, [98] trains a neural network with positional
encoding to represent continuous 3D functions of scene properties.
To track the 2D topology of the 3D surfaces of the object, [99]
optimize the neural transform from the unit sphere to a 3D object.
Allowing for arbitrary topologies, [100] train MLPs to predict
SDF values and material parameters using a two-step hybrid
optimization scheme. For a scene with multiple objects, all these
methods either require to compromise reconstruction resolution
due to a fixed encoding which limits scalability. Or they are
designed to re-train the network individually for each object in
an object-centered unit-volume. This maximizes reconstruction
quality per object but at the cost of a global scene representation.
In contrast, for our method the resolution does not depend on the
scene size due to the local 2.5D representations and we optimize
all local representations in a single global world coordinate system
which does not require any reconfiguration of the representation
after initialization.

With our proposed method, we make a step towards recon-
structions of geometry, materials and poses beyond object-level.
For scalability, we optimize a set of 2.5D representations instead
of a single 3D representation since each local 2.5D representation
has constant requirements in terms of memory and optimization
variables, independent of the scene size. Furthermore, in contrast
to methods that assume watertight 3D shapes, our model is able to
reconstruct partially scanned 3D environments as it doesn’t require
closed shapes.

2.4 Differentiable Rendering

Differentiable rendering describes a rendering pipeline that allows
for computing image pixel changes wrt. scene parameters. It
is at the heart of most methods that aim to synthesize photo-
realistic images from real-world observations. The approaches are
manifold but many share a similar structure: Based on real 2D or
2.5D observations, inverse rendering is used to infer a parametric
representation of the 3D scene (e.g. for geometry, illumination or
BRDF). This scene representation is then rendered into images
by a forward rendering engine. In the following, we discuss four
method classes implementing this.

Classical inverse rendering approaches use non-learning-
based methods to optimize 2D or 3D scene parameters from obser-
vation images via gradient descent. [101], [102] use ’soft’ rasteri-
zation to differentiate a rasterizer, while [96], [103], [104], [105],
[106], [107], [108] propose solutions to differentiate through ray
casting. All these works use hand-designed rendering functions.
This limits the flexibility of the renderer (as compared to learning-
based approaches, discussed afterwards) but has the advantage of
physically-based rendering functions which are interpretable and
enable rendering a scene under changed conditions (e.g. novel
viewpoint, different illumination, or edited materials). In the
proposed pipeline, we use such a classical optimization approach
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with a hand-designed rendering engine since we aim for physically
correct reconstructions.

Neural inverse rendering pipelines [94], [109], [110], [111],
[112], [113], [114], [115], [116] train neural networks to predict
scene parameters from observations and then use an analytical
differentiable rendering layer to synthesize images. The network
has the potential to learn to ignore transient objects, adapt to
varying illumination conditions in the observations or disentangle
the parameters of complex scenes from data. But it also introduces
additional parameters and thus, requires data to train. Especially
when considering more complex reflectance settings, this is not
easy to obtain. In contrast, our approach does not require any
large dataset but solely takes the captures of a scene as input.

Neural rendering (or 2D neural rendering) refers to methods
that use classical surface or volume representations and replace
the differentiable rendering engine by a generative model to
learn the image formation function. Exemplary tasks are changing
the camera viewpoint [117], [118], [119], [120], [121], [122],
[123] or relighting [124], [125], [126]. The generative network
has the potential to synthesize high-quality novel images, learn
visibility constraints, deal with incomplete or inconsistent input
representations or depict complex illumination effects like inter-
reflections or multiple bounces. However, the rendering network
is non-deterministic and how to enforce physical plausibility of
the reconstructions is unclear – which is the goal of this paper.
Therefore, the proposed approach relies on a classical rendering
engine instead of a neural renderer.

Last, neural scene representations (or 3D neural rendering,
learnable 3D representations) encode the scene parameters in a
neural network and combine them with classical differentiable
rendering engines. A very well-known example is NeRF [127] and
its follow-ups. E.g. [128], [129], [130] enable relighting and [98],
[131], [132], [133], [134], [135], [136], [137], [138], [139] include
full BRDFs to encode material reflectance. All these approaches
are trained or fine-tuned per scene and require either prior knowl-
edge on materials, like pre-trained reflectance or transmittance
priors, or strong regularizers like compression to low dimensional
latent spaces. While our method is also optimized per scene,
we do not assume any prior knowledge on materials. Instead,
we predict material parameters per pixel and use regularizers to
propagate reflectance information across pixels. Additionally, our
2.5D representation is faster to optimize than an MLP, naturally
scales to large scenes and distributes modeling capacity equally
across all selected keyframes.

2.5 Geometry Estimation at Scale
To date, there exists no solution to reconstruct accurate geometry
and materials at scale. In this paragraph, we therefore review
existing work on scalable geometry-only reconstruction. Crucial
for a scalable model is a memory efficient scene representation
that allows for accurate and dense reconstructions.

One approach is to keep the full reconstruction in memory
by supporting efficient compression of connected surface data.
[140] represent the scanned environment by a light-weight mesh
using plane primitives and [141] fits a multi-layer heightmap to a
volume of occupancy votes. Those representations support scene
completion and can scale efficiently to larger scenes, but fail to
reconstruct complex 3D structures. In the context of Image Based
Rendering (IBR), [142] calculate a global mesh from a pointcloud
reconstruction but then refine per-view depth maps, sacrificing
global consistency for local accuracy.

(a) Keyframes (b) Neighbor Views

Fig. 2: Keyframe and Neighbor View Selection: (a) Visualized
are all keyframes K (red, green) for the object ‘Sheep’ - they
represent the scene as a set of 2.5D maps for efficient optimization.
(b) Our method optimizes the parameter set of one keyframe k ∈
K (green) guided by photometric and geometric constraints from
neighboring observation viewsNk (blue cameras) and consistency
constraints from neighboring keyframes N̄k (orange lines).

Another approach is to use scene representations that allow
for subdivision into parts/segments or to introduce hierarchies to
facilitate memory efficient processing by keeping only relevant
scene parts in memory. Hereby, a common strategy is to first
reconstruct the geometry of individual and overlapping scene
segments, parts or frames and then integrate those segments in
3D world space while employing sophisticated pose registration,
alignment and outlier filtering techniques. Multiple implicit vol-
umetric models extent the seminal works of [143] or [144]
(which rely on memory inefficient regular voxel grids) to larger
environments by introducing efficient volumetric data structures
like volume windows [145], patch volumes [146], a hierarchical
volume structure [147] or spatial hashing [148], [149]. This
increases spatial efficiency. Non-volumetric approaches represent
scene segments by, e.g., per frame 2.5D depth maps [150], [151]
or 3D mesh fragments [152]. All aforementioned subdivision
methods enable final reconstructions which would exceed memory
limitations during processing. And most employ global pose or
texture refinements similar to [140], [153], [154]. The common
challenge of non-global geometry reconstruction methods is to
assure consistency between local reconstructions.

Our method represents the scene as a collection of
2.5D parameter maps from multiple keyframe views. This
representation is memory efficient and we actively encourage
consistency between overlapping regions. As demonstrated in
Section 7, this leads to accurate and well-aligned reconstructions,
eliminating the need for post-processing or refinement.

In the following 4 sections we describe our method in detail.
First, we introduce our scene representation and parameterizations
of the optimization variables in Section 3. We then present
the model formulation and optimization objective in Section 4
before discussing the multi-view consistent optimization scheme
in Section 5. The mesh generation step that integrates the 2.5D
optimization results into a full 3D model is explained in Section 6.

3 SCENE REPRESENTATION

Our goal is to reconstruct geometry, material properties and
camera poses from RGB-D data. Unfortunately, representing an
entire scene in memory is computationally demanding, in par-
ticular when using memory-limited but computationally efficient
GPUs for optimization. Towards scalable scene reconstruction,
we therefore exploit a keyframe-based 2.5D representation which



5

RGB-D 
Input

 Observations  &
Initial Parameters

2.5D Keyframe
 Optimization

     Projected 
Neighbor Maps

     Optimized 
Parameter Maps

Integrated 
    Mesh

Distributed MV-Consistent Optimization

Volumetric
   Fusion

View

View

View

Keyframe

Keyframe

Keyframe

Geometry

Normals

Diffuse Albedo

Specular Albedo

Roughness

Fig. 3: Pipeline Overview. The input to our model are n RGB-D images from which we select a subset of well distributed keyframes
K . For each keyframe k ∈ K , we select m neighboring observation views Nk and initialize the set of optimization parameters X k

0 .
During optimization, we then iterate the following rounds r (gray box): After optimizing each keyframe representation independently
for t iterations, we project the current parameter maps of all neighboring keyframes N̄k into each keyframe k and use the resulting set
X̄ k

r as additional constraint to the optimization of the next round r + 1. The sets of m̄ neighboring keyframes {N̄k}k are defined at
the start for all keyframes k. After r = T/t rounds, the resulting sets of optimized 2.5D parameter maps {X k,∗}k are integrated into
a full 3D model, represented by a mesh with per vertex normal, diffuse and specular albedo as well as roughness parameters.

locally describes and optimizes geometry, materials and poses.
In particular, we adopt alternating block coordinate optimization
of keyframes to minimize photometric errors while encouraging
consistency between adjacent keyframes using soft constraints. An
overview of our method is shown in Fig. 3.

The input to our model is an RGB-D sequence captured with
a handheld scanner, as shown in Fig. 6, that consists of a color
image Ii : R2 → R3 and a depth map Zi : R2 → R at each
frame i ∈ N = {1, . . . , n}. We assume that each image is
illuminated by exactly one point light source and that global and
ambient illumination effects are negligible. Moreover, we assume
the images to be undistorted, de-vignetted and the black frame to
be subtracted.

We represent the scene as a set of 2D parameter maps defined
at several keyframes of the RGB-D sequence. More specifically,
at each keyframe we store the geometry in terms of a depth
and normal map, and the materials as BRDF parameter maps.
Additionally, each keyframe is linked to a set of camera poses of
its respective neighbor views. In the following, we first describe
the process of keyframe and neighbor view selection, followed by
the representations for poses, geometry and materials.

3.1 Keyframe and Neighbor Selection

To represent the scene, we define a set of keyframes K ⊆ N
that capture the scene tightly. For each keyframe k ∈ K we
define two sets of neighboring views: The first set is the set of
neighboring observation viewsNk which provide photometric and
geometric constraints for the local 2.5D multi-view optimizations
over the parameter set of keyframe k. Second, we define a set of
neighboring keyframes N̄k from which we project the parameter
maps into keyframe k as a soft constraint during optimization
to enforce consistency of the local 2.5D reconstructions. And
since all keyframes are connected via the overall optimization
graph, these pairwise consistency constraints propagate globally
during optimization. As evidenced by our experiments, this term

is crucial for obtaining a consistent result when fusing all 2.5D
representations into a global 3D representation of the scene. All
sets of views are visualized in Fig. 2 for the capture of the object
‘Sheep’.

Keyframe Selection: To select a set of diverse keyframes
K ⊆ N , we iteratively compute the pairwise 3D Euclidean
distances between the camera centers of all views and remove
the view with the minimum distance to its nearest neighbor until
the desired number of keyframes has been reached. Generally,
the number of keyframes is a tradeoff between accuracy and
time and it grows with the scale of the scene. But increasing the
number of keyframes is unproblematic for our method since most
computations run per keyframe in parallel, with fixed memory
requirements independent of the scene size. We ablate the number
of keyframes in Section 7.2.

Neighboring Observation Views Nk: To optimize geome-
try, pose and spatially-varying material parameters, the set of
keyframe observations contains too little samples. Therefore, we
definem neighboring observation viewsNk ⊂ N withm = |Nk|
per keyframe k ∈ K and minimize the photoconsistency error
between these and the predictions of our model. To select the
neighbor observation views we only consider views that are within
a 40◦ cone around keyframe k with respect to (wrt.) the object
center. For larger scenes, we additionally remove views with a
view direction that deviates more than 45◦ from the keyframes’
view direction. We then choose m views that cover the cone
around keyframe k as uniformly as possible by removing the views
which are closest to their neighbors.

Neighboring Keyframes N̄k: For each keyframe k ∈ K , we
define a set of neighbor keyframes N̄k ⊆ K \ {k} of size
m̄ = |N̄k|. During optimization, we regularize the parameter
maps of keyframe k against those of all neighbor keyframes
i ∈ N̄k projected into k. This enforces consistent parameter
estimates across keyframes. To ensure that all neighbors i ∈ N̄k



6

share scene content with keyframe k, we sample them randomly
from all keyframes that fulfill two conditions: For keyframes i and
k, 1) define the middle point as the median of all initial geometry
points for objects and the first intersection point of the principal
ray of camera k with the initial geometry for scenes. Then the
two lines connecting each views’ camera position with the middle
point should form an angle of ≤ 60◦. And 2) for scenes, both
cameras’ view directions form an angle of ≤ 45◦. Note that per
keyframe, we sample up to m̄ neighboring keyframes, depending
on the availability of valid neighbors.

3.2 Keyframe Parameterizations
In this section, we formally describe the keyframe-based parame-
terization of our model in terms of poses, geometry and materials.
For each keyframe k ∈ K , we define its pixels Pk as the set of all
pixels of view k with a non-zero initial depth value. As we bound
the depth to be non-negative, this implies zkp > 0.

3.2.1 Camera Parameterization
We use a perspective pinhole camera model and assume constant
intrinsic camera parameters that have been calibrated in advance
using established calibration procedures [155]. We denote the
projective mapping for observation i ∈ Nk and keyframe k ∈ K
as: πk

i : R3 → R2 and represent the extrinsic component (camera
pose) of this mapping in world coordinates by a unit quaternion
qk
i ∈ SO(3) and a translation vector tki ∈ R3. Note that we use

a redundant representation (i.e., the camera pose of an observation
neighboring multiple keyframes is represented once per keyframe)
to enable memory efficient optimization, one keyframe at a time,
while enforcing consistency via additional soft constraints.

3.2.2 Geometry Parameterization
We parameterize geometry in terms of both depth and normal
maps and enforce consistency between them using soft constraints.

Depth Map: For each pixel p ∈ Pk of keyframe k at 2D location(
ukp, v

k
p

)T
and associated depth zkp , the 3D point location xk

p is
given by

xk
p =

(
πk
k

)−1(
ukp, v

k
p , z

k
p

)
(1)

where
(
πk
k

)−1
denotes the inverse projection which takes a pixel

coordinate and depth value and returns the 3D point in world
coordinates.

Normal Map: We represent normals as 3D vectors {nk
p}p∈Pk

.
During optimization, we only estimate an angular change wrt. the
normal of the previous iteration to avoid both the unit vector
constraint and the gimbal lock problem.

3.2.3 Material Parameterization
To model reflectance properties, we use a parametric version of the
spatially varying Bidirectional Reflectance Distribution Function
fp(np,ωin,ωout) and estimate its parameters per pixel/point p ∈
Pk and keyframe k.

svBRDF: The svBRDF fp(·) models the fraction of light that
is reflected from incoming light direction ωin to outgoing light
direction ωout given the surface normal nk

p at each point p ∈ Pk.
We use a modified version of the Cook-Torrance model [156]

fkp (nk
p,ωin,ωout) = dk

p + skp
D(rkp) G(nk

p,ωin,ωout, r
k
p)

4(nk
p · ωin)(nk

p · ωout)
(2)

with Disney’s GTR model [157] for the microfacet slope distribu-
tion D(·) and Mitsuba’s Smith’s function [158] for the geometric
attenuation factor G(·). The parameters of the svBRDF are given
by the diffuse albedo dk

p ∈ R3, specular albedo skp ∈ R and
surface roughness rkp ∈ R for pixel/point p ∈ Pk and keyframe
k. As in prior work [5], we ignore the Fresnel effect which cannot
be observed using an active handheld illumination setup.

4 OPTIMIZATION OBJECTIVE

To jointly optimize geometry, materials and pose parameters
for each keyframe k ∈ K , we minimize the photometric
error between rendered predictions and neighbor view
observations while employing multiple additional loss functions
for regularization.

For a single keyframe k and its pixels/points p ∈ Pk and
neighbor observation views i ∈ Nk, we wish to estimate the depth
zkp , geometric surface normals nk

p , svBRDF parameters dk
p, r

k
p , s

k
p

as well as the camera poses πk
i . Denoting the parameter set as

X = {{zkp ,nk
p,d

k
p, r

k
p , s

k
p}p∈Pk

, {πk
i }i∈Nk

}k∈K

we define our objective function as follows

X ∗ = argmin
X

ψP + ψD + ψC + ψG + ψM (3)

The individual terms encourage photo-consistency ψP , depth-
consistency ψD and multi-view consistency ψC , impose regular-
ization on the geometry ψG and enforce material smoothness ψM.
Note that we omit the dependency on X and the relative weights
between the individual terms for clarity. The full formulation can
be found in the supplement.

4.1 Photo and Depth Consistency

We introduce the photo and depth consistency terms in the follow-
ing. For better readability, we denote Ii(πk

i (xk
p)) as the observa-

tion Ii at the 2D location where 3D point xk
p is observed in image

i. For fractional image coordinates, we use bilinear interpolation.
Similarly, we write Zi(π

k
i (xk

p)) for depth measurements.

Photo Consistency: The photo-consistency term ensures that
the prediction of our model matches the observation Ii for every
neighbor view i ∈ Nk and all visible and illuminated (ϕki

p = 1)
pixels p:

ψP(X ) =∑
i∈Nk

∑
p∈Pk

∥∥∥ϕki
p wi

p

[
Ii(πk

i (xk
p))−Ri(x

k
p,n

k
p, f

k
p )
] ∥∥∥

1
(4)

Here, Ri denotes the rendering equation [159] for image i. Since
we assume a single point light source, Ri simplifies to

Ri(x
k
p,n

k
p, f

k
p ) =

fkp

(
nk
p,ω

i
in(x

k
p),ωk

out(x
k
p)
) ai(x

k
p)nkT

p ωi
in(x

k
p)

di(xk
p)

2 L (5)

where ωi
in(x

k
p) and ωk

out(x
k
p) denote the in- and out-going light

directions for the surface point xk
p , ai(xk

p) is the angle-dependent
light attenuation, di(xk

p) the distance between xk
p and the light

source and L denotes the radiant intensity of the light. To down-
weight observations at grazing angles, we use a weightwi

p ∝ ni
pl

i
p
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proportional to the angle between the surface normal ni
p and light

direction lip.
We calculate the visibility term ϕki

p ∈ {0, 1} of surface point
xk
p in observation view i by reconstructing a rough 3D model

of the scene using volumetric fusion of the depth observations
and performing a zbuffer test to validate if 3D point xk

p is both
visible in view i and illuminated by the (calibrated) light source
corresponding to keyframe k.

Depth Consistency: We further constrain the depth estimate
{zkp}p against the depth measurements Zi of all neighboring
views i ∈ Nk:

ψD(X ) =
∑
i∈Nk

∑
p∈Pk

ϕki
p

∥∥∥ zip −Zi(π
k
i (xk

p))
∥∥∥2

2
(6)

Here, zip denotes the depth of the 3D point xk
p of keyframe k

when projected to the neighbor view i via πk
i (xk

p). As above, ϕki
p

ensures that surface point xk
p is visible in image i.

Note that our model is able to significantly improve upon the
initial coarse geometry provided by the structured light sensor by
exploiting shading cues. However, as these cues are related to
depth variations (i.e., normals) rather than absolute depth, they do
not fully constrain the 3D shape of the object. Our experiments
demonstrate that combining complementary depth and shading
cues yields reconstructions which are both locally detailed and
globally consistent.

4.2 Multi-View Consistency
Since our representation is composed of multiple 2.5D views, we
must ensure consistency between them. Towards this goal, we
augment our objective with a multi-view consistency term which
encourages the current parameter estimates {zkp ,dk

p, r
k
p , s

k
p}p∈Pk

,
{tkj ,qk

j }j∈Nk
of keyframe k to agree with those of neighboring

keyframes {z̄kp , d̄k
p, r̄

k
p , s̄

k
p}p∈Pk

, {t̄i, q̄i}i∈N̄k
projected into the

current keyframe:

ψC(X ) =
1

|Pk|
∑
p∈Pk

∥∥xk
p − x̄k

p

∥∥
2

+
∥∥dk

p − d̄k
p

∥∥
1

+
∣∣rkp − r̄kp ∣∣+

∣∣skp − s̄kp∣∣
+

1

n

∑
i∈N̄k

∑
j∈Ni∩Nk

∥∥tkj − tij
∥∥

1
+
∥∥∥((qi

j

)−1 ⊗ qk
j

)
v

∥∥∥
1

(7)

Hereby, the projected neighbor parameters {z̄kp , d̄k
p, r̄

k
p , s̄

k
p}p∈Pk

for each surface point xk
p are computed as follows

(̄·)kp =
1∑

i ϕ
ki
p wi

p

∑
i∈N̄k

ϕki
p wi

p interp
(
{(·)iq}q, πi(xk

p)
)

(8)

where N̄k is the set of neighboring keyframes, ϕki
p denotes

visibility as defined above, andwi
p = ni

pl
i
p downweights estimates

at grazing angles. The mapping interp : R|P | × R2 → R takes a
neighboring parameter map {(·)iq}q∈Pi and a projected 2D pixel
location πi(xk

p) and outputs the bilinearly interpolated parameter
value. The poses of all neighboring keyframes {t̄i, q̄i}i∈N̄k

are
defined as

t̄i =
{
tij | j ∈ Ni ∩Nk

}
and q̄i =

{
qi
j | j ∈ Ni ∩Nk

}
(9)

The ⊗ operator in the last term of (7) denotes the Hamiltonian
product for quaternions and calculates the composed rotation.

Furthermore, (·)v denotes the vector part of the quaternion which
equals zero for the identity. Note that we only calculate the pose
loss term for cameras which are part of the observations for both
the current keyframe k and the neighboring keyframes i, i.e.,
j ∈ Ni ∩Nk.

4.3 Geometry Regularization
Our geometry regularizers encourage geometric consistency ψGC
and normal smoothness ψN as follows:

ψG = ψGC + ψN (10)

As above, we omitted the dependency on X and relative weights
of the individual terms for clarity.

Geometric Consistency: We enforce consistency between depth
{zkp} and normals {nk

p} by maximizing the inner product between
the estimated normals {nk

p} and the cross product of the surface
tangents at {xk

p}:

ψGC(X ) = −
∑
p

(
nk
p

)T ∂zk
p

∂x ×
∂zk

p

∂y∥∥∥∂zk
p

∂x ×
∂zk

p

∂y

∥∥∥
2

(11)

where the surface tangent
∂zk

p

∂x is given by

∂zkp
∂x
∝
[
1, 0,∇Zk(πk(xk

p))T [f/zp, 0]
T
]T

(12)

with∇Zk(πk(xk
p)) the gradient of the depth map estimated using

finite differences. We refer to [7] for details.

Normal Smoothness: We further encourage normals of adjacent
pixels p ∼ q to be similar:

ψN (X ) =
∑
p∼q

ekpq
∥∥nk

p − nk
q

∥∥
1

(13)

Here, ekpq is an edge-aware weighting term based on a Canny
filter [160] to reduce the smoothing at pixels close to edges in the
albedo map and facilitate detailed geometry reconstruction.

4.4 Material Smoothness
To enforce propagation of reflectance parameters across pixels, we
constrain the specular albedo {skp}p and roughness {rkp}p maps
against a bilaterally smoothed version of themselves:

ψM(X ) =
∑
p

∥∥∥∥∥skp −
∑

q s
k
q w

k
q g

k
pq∑

q w
k
q g

k
pq

∥∥∥∥∥
1

+

∥∥∥∥∥rkp −
∑

q r
k
q w

k
q g

k
pq∑

q w
k
q g

k
pq

∥∥∥∥∥
1

(14)

Assuming that nearby pixels with similar diffuse behavior also
exhibit similar specular behavior, we use a Gaussian kernel gkpq
with both the 3D location x and diffuse albedo d at pixels p and
q as features:

gkpq = exp

(
−

(xk
p − xk

q )2
2

2σ2
1

−
(dk

p − dk
q )2

2

2σ2
2

)
(15)

The weight wk
q = maxi cos−1(nkT

q hki
q ) with half-vector hki

q

increases the contribution of pixels q which are observed close
to perfect mirror reflection in any view i and are therefore
most informative for specular material estimation. We use the
permutohedral lattice [161] for efficient evaluation of Eq. (14).
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Data: Color and depth images {Ii,Zi}i∈N .
Result: MeshM featuring per-vertex normals and BRDF

parameters.

Initialize ∀k ∈ K: // Section 5.3
X k

0 = {zkp ,nk
p,d

k
p, r

k
p , s

k
p}p∈Pk

and {πk
i }i∈Nk

X̄ k
0 = None

t = 100, T = 2000
rounds = T/t

Multi-View Consistent Optimization:
for r = 1 to rounds do

for keyframe k ∈ K do

Optimize X k
r−1 given X̄ k

r−1 for t iterations:
X k

r = X k,∗
r−1 // Eq. (3)

Project neighbor parameter maps: // Eq. (8)
X̄ k

r = {z̄kp , d̄k
p, r̄

k
p , s̄

k
p}p∈Pk

and {π̄k
i }i∈N̄k

end
end

Mesh Generation: // Section 6
Fuse all final keyframe parameter maps {X k

r=T/t}k∈K
into a meshM by volumetric fusion and marching cubes.

Algorithm 1: Pseudo-Code of the proposed Algorithm.

5 OPTIMIZATION

Direct optimization of the global objective in Eq. (3) does not scale
to larger scenes due to the large amount of data (variables and
observations) that need to be stored and GPU memory limitations.
Instead, we decompose the global reconstruction into multiple
keyframe reconstructions and perform decentralized, frame-wise
block coordinate descent in parallel on multiple processes. With
this distributed optimization strategy, we drastically reduce the
memory footprint since we only ever need to store one block in
memory at a time per process. To keep locally adjacent blocks
consistent, we periodically share the state of optimization vari-
ables between neighboring keyframes and regularize differences
in the reconstructed models. An overview of the full optimization
algorithm is given in Algorithm 1.

In the following, we first motivate our decentralized optimiza-
tion strategy and then elaborate on the block coordinate descent
algorithm. Subsequently, we provide details about the parameter
initialization and our implementation.

5.1 Decentralized Optimization

For large computational problems, a distributed optimization
strategy that allows for multiple processes and parallelization is
essential. As per [162], distributed methods can be categorized into
centralized and decentralized algorithms, depending on whether
the processes read and update a central copy of the optimiza-
tion variables or work on independent local copies. Centralized
algorithms require consistent transaction management such as
semaphores, cause additional computational cost for centralization
and distribution, and exhibit less stable optimization behavior due
to potentially contradicting updates to the central optimization
variables by different processes. Therefore we implement a decen-
tralized algorithm that facilitates accurate local reconstructions. As
this might result in multiple different estimates per variable, we

introduce a soft regularizer to establish synchronization between
processes and encourage consistency across spatially nearby re-
gions. We reduce the communication overhead by employing a
strategy similar to [163] and letting each process independently
perform a set of base optimization steps in between synchro-
nization. In the following, we call this set of optimization steps
performed for all processes a “round”.

5.2 Block Coordinate Descent Optimization
For optimization, we represent the target scene as a set of 2.5D
parameter maps induced by the keyframes. The keyframes can be
viewed as blocks of variables over which we iterate as described
in the following:

We start the first round by optimizing over every
block/keyframe for t iterations independently using gradient de-
scent. Given these intermediate optimization states {X k

1 }k of
all keyframes in K , the current parameter map estimates are
projected into neighboring keyframes. We refer to them as {X̄ k

1 }k.
They are used in the subsequent round when the parameters of
all blocks/keyframes are re-optimized for t iterations with the
additional multi-view consistency regularizer. We iterate these
rounds of optimizing for {X k

r }k and calculating {X̄ k
r }k for

a total of T/t rounds and T iterations. During the first half
of optimization, we use a higher geometric smoothing regular-
izer to help bootstrapping the parameter maps. Thereafter, the
smoothness regularization is reduced to allow for carving out fine
geometric details and modeling sharp specular highlights during
the remaining iterations.

5.3 Initialization
We initialize the poses using the SfM pipeline COLMAP [14],
[164]. For the depth initialization we pre-integrate the rather
coarse data of an active stereo setup into a fused 3D geometry
using volumetric fusion [165] and render an initial depth map
per keyframe k ∈ K , see Fig. 10 for an example of the initial
geometry. Initial diffuse albedo and normal maps can be com-
puted in closed form assuming a Lambertian scene. Towards this
goal, we follow [3] and robustly filter outliers due to specularities
using RANSAC. Both specular albedo and roughness parameter
maps are initialized by sampling randomly and uniformly from the
intervals [0.05, 0.25] and [0.1, 0.9], respectively.

5.4 Implementation details
We have implemented the rendering function Ri using Py-
Torch [166], exploiting PyTorch’s GPU acceleration and auto-
differentiation capabilities. For our experiments we use |K| = 24
keyframes, m = 20 neighboring observation views and m̄ = 10
neighboring keyframes. We project parameter maps into neigh-
boring keyframes every t = 100 iterations and optimize for
T = 2000 iterations in total. Please see the supplement for more
details about the optimization.

6 MESH GENERATION

In order to obtain a full 3D reconstruction of geometry and
materials we use a memory efficient, voxel hashing based im-
plementation of volumetric fusion [143] as seen in [148]. Since
predictions are most accurate for pixels observed frontally, we
weight each pixel contribution by the cosine between surface
normal and viewing direction. We extract the final mesh from
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Fixed Poses Full Model

Photometric Test Error 1.210 1.138

Estimation Crop Error Structure Normals

Fig. 4: Pose Optimization in 2.5D, results from Schmitt et al. [7].
Compared to using the input poses (top), optimizing the poses
(bottom) improves reconstruction quality significantly.

Material Regularizer Geometry Regularizer
Fig. 5: Loss Regularizers in 2.5D, results from Schmitt et al. [7].
Shown are Reconstructions of held-out test views. Without regu-
larization (top), appearance and geometry is inconsistent or noisy.
Using the regularization terms (bottom), information is propagated
across the object, successfully generalizing to new illumination
conditions on the test set.

the TSDF via marching cubes [167]. As we impose consistency
across keyframes during optimization, the fused parameter maps
are consistent without need for extra post-processing/alignment
steps. Finally, the resulting mesh allows for extracting a texture
map for each svBRDF parameter using Blender and exporting the
mesh into the OBJ file format. During all our experiments, we use
a voxel size of 0.5 - 2mm.

7 EXPERIMENTAL EVALUATION

The proposed method is an extension of the 2.5D reconstruction
algorithm presented by Schmitt et al. [7] to full 3D models. Due
to space limitations, we do not repeat all experiments conducted
in our conference paper, but instead review the main conclusions
and insights. For further details, we kindly refer the reader to [7].

In [7], we propose a formulation for joint recovery of camera
pose, object geometry and spatially-varying BRDF from handheld
capture data. Instead of using multiple decoupled objectives and
treating materials and geometry separately as done before, we
demonstrate in the conference paper that this problem can be
formulated using a single objective function and off-the-shelf
gradient-based solvers. Except for a few minor differences de-
scribed at the end of this section, this model corresponds to the
model described in Section 4 when excluding the multi-view con-
sistent optimization and instead optimizing only a single keyframe,
yielding a 2.5D result. As shown in the ablation study of Schmitt

Depth Sensor
RGB

Camera

Light Source

50 cm

Fig. 6: Sensor Rig. Our
custom-made handheld
capture device features a
high resolution RGB camera,
a Kinect-like active depth
sensor and 12 high-power
LEDs (modeled as point light
sources) that surround the
camera in two circles (with
radii 10 cm and 25 cm).

Observation Zoom-In Zoom-In Reconstruction

Fig. 7: Super-Resolution and Denoising (3D). With a hand-held
capture system, the measured observations exhibit image noise
and motion blur (left) which our model is able to remove. The
resulting reconstructions appear denoised and sharpened (right).

et al. [7], two components are particularly important for accurate
appearance and geometry reconstructions: 1) Optimizing poses
jointly with the other parameters is crucial for disambiguating
geometric properties from materials. We repeat the ablation results
in Fig. 4. 2) The proposed regularization terms for the geometric
parameters and material maps enable joint optimization over all
parameters using a single objective function. Hereby, the material
smoothness term is able to propagate material information over
large distances and compensates for the sparse measurements
of the BRDF per pixel. And the geometric consistency term
enforces consistency between depth and normals and prevents
high-frequency structure artifacts. The results are shown in Fig. 5.

In this paper, we demonstrate that simple fusion of multiple
2.5D reconstructions obtained using [7] is insufficient to obtain
accurate 3D models of an object. In particular, the geometry
from different keyframes does not align well enough and material
predictions from different viewpoints often differ noticeably due
to the ambiguities present in this inverse problem. We therefore
introduce a multi-view consistent optimization scheme in this
extension, and demonstrate that this enables consistent and
accurate reconstructions of 3D models. We further demonstrate
that this allows for modeling larger scenes beyond single objects.
In comparison to [7], we also make several minor improvements
to the model which we empirically found to be useful: 1) We
change the material model to a more flexible and practical
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Fixed Poses Full Model

Photometric Test Error 18.767 17.8035

TABLE 1: Pose Optimization (3D). Similar to our conclusions
in 2.5D (Schmitt et al. [7] and Fig. 4), pose optimization also
improves the fused 3D results of our full model.

No MV Consistency Full Model

Photometric Test Error 14.65 13.295

(a) RMSE on held-out test views, average over 3 objects.
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Geometry Normals Diff. Alb. Spec. Alb. Roughness

(b) Qualitative Comparison of Estimated Parameter Maps.

Fig. 8: The Multi-View Consistency Loss (3D) facilitates con-
sistent parameter predictions across keyframes resulting in more
accurate reconstructions (a). In (b) we show parameter maps of the
3D fused mesh. Without the multi-view consistency regularizer
(top), geometric artifacts are visible and the BRDF parameter
maps show patch-like structures as well as baked-in shading
information on very glossy object parts (e.g. beak and crown). In
contrast, with our loss (bottom), the mesh is clean and reflectance
maps are homogeneous per object part.

solution for larger scenes that does not require material clustering
and model selection, 2) we regularize the depth maps against all
neighboring depth maps instead of a single one to stay closer to
the measurements and 3) we include an edge-aware weighting
term in the normal smoothness loss to facilitate reconstruction of
small details.

In the following, we present the results of our extended model
in 3D and provide an evaluation on captures of real objects and
scenes from a custom built handheld sensor rig. We first introduce
our hardware system and the data capture procedure and then pro-
vide details on our evaluation protocol. Afterwards, we conduct an
ablation study of the components of our method. We then provide
qualitative and quantitative comparisons to related approaches and
conclude with reconstruction results for our captured dataset. Note
that unlike in [7] and in Fig. 4, 5, all of the following results show
fused 3D models unless explicitly stated otherwise. Further, we
present results of our method on synthetic data in the supplement.

7.1 Setup

For capturing data, we use a custom-built handheld sensor rig as
shown in Fig. 6. We thoroughly calibrate the system in advance,

t = 25 t = 100
(a) Multi-View Projection Frequency

|K| = 6 |K| = 24
(b) Number of Keyframes

m = 10 m = 20
(c) Number of Neighboring Observation Views per Keyframe

Fig. 9: Multi-View Optimization (3D). For multiple parameters
we show the average error over 3 objects wrt. the parameter on the
left, and example predictions on the right. Hereby, the left image is
a rendered result for the worst choice of parameters and the right
image shows a rendered result for our chosen parameters.

both geometrically and photometrically. We estimate camera in-
strinsics, response, distortion and vignetting, the relative positions
of the depth sensor and light sources wrt. the RGB camera, and
the angular attenuation behavior and radiant intensities of the light
sources.

We slowly move our sensor around the scene and alternate
the illumination such that each image is illuminated by exactly
one light source. We assume a completely darkened room with
negligible ambient light. Examples of captured raw data is shown
in Fig. 7 (left). Note that due to the handheld setup, we need
to accept a certain amount of image noise to trade-off motion
blur. But we show in Fig. 7 (right) that our model is able to
predict denoised and sharpened reconstructions. If the scene is
not sufficiently textured, we additionally add texture patterns to
the scene to ensure enough feature points and obtain more reliable
initial pose estimates.

We use full image resolution (4K) for all objects and half
image resolution (2K) for scenes due to GPU memory limitations.
For all our objects and scenes, we captured between 800 - 1400
images.

Evaluation Protocol: For quantitative evaluation, we render the
final model in 10 held-out test views and compute the photometric
loss with respect to the observation.

As our model can deviate from the coarse initial COLMAP
poses during optimization, we first align the test view poses to
the predicted model. Next, we compute the Root Mean Square
Error over all pixels that have a non-zero color prediction for each
test view and report the mean loss. Since for real capture data
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there exist no ground truth object masks, we define valid image
pixels as pixels with non-zero prediction (prediction mask). For
validation, we draw the observation masks by hand for multiple
objects and find that the RMS errors for both evaluation masks
differ by < 5%. Therefore, we use the prediction mask in the
following for all experiments for simplicity.

7.2 Ablation Study

In this section, we ablate the important parts of our model, both
qualitatively and quantitatively. An additional ablation on the loss
weights can be found in the supplementary.

Multi-View Consistency Loss: Multiple local reconstructions of
our method share the coarse but consistent captured depth maps,
but observe different samples of the reflectance function since
the captured images contain only sparse measurements thereof.
That implies that while the 2.5D keyframe optimizations lead to
consistent geometry with respect to immediate neighbors, they
may lead to inconsistencies wrt. keyframes that are not optimized.
And these inconsistencies cannot be resolved reliably using vol-
umetric fusion which merely averages multiple geometries. Thus,
there is no guarantee for consistent reconstruction results without
explicitly enforcing consistency between keyframes.

Fig. 8 demonstrates the effectiveness of the multiview con-
sistency loss. It encourages both regularization and propagation
between keyframes. Synchronization of parameter estimates dur-
ing optimization enables our method to find an equilibrium of
the variables which is consistent with not only its neighboring
observation views but also the neighboring observation views of
nearby keyframes. Hereby, these connections between neighboring
keyframes form a connected graph over all keyframes. Therefore,
consistency between any two keyframes can be penalized during
optimization, which is enforcing global consistency. Without the
multi-view consistency loss term, the fused model is not aligned
well enough to form one coherent surface or consistent BRDF
parameter maps. In contrast, we observe that our distributed
multi-view consistent optimization leads to globally consistent
results without blending artifacts as illustrated in Fig. 8b. We
note that, in particular, specular properties (specular albedo and
roughness) are robustly reconstructed despite the sparsely sampled
reflectance function and the high sensitivity of specular highlights
to angular configurations. This leads to lower reconstruction errors
as evidenced in Table 8a.

Pose Optimization: Misaligned camera poses yield wrong corre-
spondences between view pairs and can cause various reconstruc-
tion artifacts such as ghosting, blur, and texture/geometry bleeding
between front and back surfaces. With respect to material recon-
struction, wrong pose estimates lead to errors in the prediction
of angular relations between the surface normals, view and light
directions. This causes estimated specular highlights to not align
with the mirror reflection direction and hence leads to highlights
not being recovered and bake-in effects of specular appearance
into predicted texture and normal maps. Such pose alignment
problems are particularly crucial when working with a moving
handheld scanner. Therefore, we optimize the camera poses jointly
with the other parameters leading to more consistent results and
lower reconstruction errors. We show these findings quantitatively
for our fused 3D models in Table 1, confirming the 2.5D results in
Fig. 4 from Schmitt et al. [7].

Multi-View Parameter Projection Frequency: In a single
optimization round, we optimize the parameters of all keyframes
for t iterations before synchronizing with neighboring keyframes.
Therefore, t balances local reconstruction quality and global
parameter consistency. A low number of t or high synchronization
frequency hinders the local optimizations to fit the neighboring
observations as shown in Fig. 9a (right), whereas a low frequency
or no synchronization (t = T ) prevents consistency among
the current parameter estimates of neighboring keyframes, as
discussed in Fig. 8. We found that t = 100 leads to both accurate
parameter estimates and consistent results across keyframes.

Number of Keyframes: Fig. 9b plots test accuracy against
the number of keyframes |K|. We observe that generally, more
keyframes lead to more accurate reconstructions and most affected
by a small number of keyframes is the quality of the predicted
highlights. This offers several insights as it indicates that 1) local
keyframe results are globally consistent also for larger numbers
of keyframes, 2) details are preserved and the geometry is not
noticeably blurred during mesh fusion and 3) synchronization
with neighboring keyframes is important for correct reflectance
estimation (with a reduced number of keyframes, the number
of possible neighboring keyframes decreases as well). We use
|K| = 24 in the following for all single objects as the performance
gain becomes very small thereafter.

Number of Neighboring Observation Views: Our goal is to
estimate the spatially varying BRDF but we only observe a very
sparse set of samples for each surface point x. As expected, we
see in Fig. 9c that reducing the number of neighboring obser-
vation views m worsens this problem. However, interestingly,
this effect is quite small and the error degrades gracefully. We
attribute this to our multi-view consistent optimization scheme
which regularly provides information from neighboring keyframes
during optimization. Therefore, given a sufficiently large number
of keyframes, our method produces accurate predictions already
for m = 20.

7.3 Comparisons to Existing Approaches

We compare our model with TSDF fusion [165], the 2.5D opti-
mization approach by Schmitt et al. [7] and the 3D reconstruction
method from Nam et al. [5]. Hereby, we qualitatively evaluate our
reconstructions in terms of geometric details, material modeling
as well as overall appearance prediction.

Geometry Reconstruction: In Fig. 10 we compare the geometry
reconstruction capabilities of our 3D model to the 2.5D method
by Schmitt et al. [7] and naı̈ve 3D TSDF fusion [165] of the raw
depth maps. We show that both photometric approaches are able to
recover fine geometric structures that are not present in the initial
reconstruction. Further, in contrast to Schmitt et al. [7], the pro-
posed method recovers the geometry for shiny and dark surfaces
like the eyes of the ‘Owl’. Such materials are very challenging
for photometric approaches since the signal-to-noise ratio of the
diffuse component is low and the signal from specular highlights
is very sparse. Since our multi-view consistent optimization shares
information between keyframes, it is often able to reconstruct such
problematic regions.

Comparison to Schmitt et al. [7]: We present a qualitative
and quantitative comparison to [7], the conference paper that we
extend in this paper. Since the method jointly reconstructs pose,
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Fig. 10: Qualitative Geometry Comparison (2.5D vs. 3D). We
show, for each object, the rendered depth map (shaded based on
estimated surface normals) for the 3D model after TSDF fusion,
the 2.5D model by Schmitt et al. and both a 2.5D keyframe as
well as the full 3D model of our proposed method. We observe
that the photometric approaches recover more details than naı̈ve
TSDF fusion of the input geometry. Thanks to our multi-view
consistent optimization scheme, the single keyframe result of the
proposed approach contains less textural artifacts in the geometry
than Schmitt et al. (see e.g. the ‘Globe’). Further, we observe that
for our model the resulting global 3D geometry is as detailed as the
geometry of the 2.5D keyframe, and additionally resolves artifacts
present in the local reconstruction, i.e. the eye of the ‘Owl’.

geometry and materials for local 2.5D scene representations, we
execute it independently on all keyframes in K and demonstrate
that integration of the results to a fused, global 3D mesh is in-
sufficient: The 2.5D parameter estimates are inconsistent, causing
patching artifacts and wrong appearance in the predictions of the
integrated 3D models, see Fig. 11a and Fig. 13. The integration
in 3D also reveals ambiguities in the estimation of geometric and
photometric parameters. Our case study in Fig. 12 shows that the
2.5D model is indeed prone to over-estimate specular reflection:
since the appearance is highly sensitive to angular changes in the
normals, very small deviations of the normals are sufficient to

Schmitt et al. [7] Proposed Observation
(Fused in 3D) (3D) (2D)
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(a) Qualitative Results for Held-Out Test Views

Girl Teapot Duck Gnome Globe

Schmitt et al. 15.196 43.755 31.212 64.032 92.765
Proposed 12.281 18.128 10.366 17.483 10.510

(b) Quantitative Results: Photometric Test Error

Fig. 11: Comparison to Schmitt et al. [7] (3D): For the same
set of keyframes, we executed the proposed method and the inde-
pendent 2.5D reconstructions as presented in the conference paper
[7]. We show both models after volumetric fusion, qualitatively (a)
and quantitatively (b) on held-out test views. While our method
leads to realistic appearance reconstructions, the predictions of
the method by Schmitt et al. (independent optimizations) cannot
resolve inconsistencies between keyframes and tend to over-
estimate specular parameters (see highlighted regions of ‘Duck’,
‘Gnome’ and ‘Girl’). Please see Fig. 12 for details.

strongly alter the appearance e.g. by removing specular highlights
from the predictions. Therefore, the model is able to “cheat”
by tilting normals away instead of decreasing the glossiness of
the material. In contrast, our method resolves such ambiguities
by incorporating information from neighboring keyframes and
encouraging multi-view consistency. Specifically, regularization
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Fig. 12: Reconstruction Ambiguities for Schmitt et al. [7]
(2.5D vs. 3D): Integration of independent 2.5D reconstructions,
as presented in the conference paper [7], into a fused 3D mesh
leads to incorrect appearance predictions, see Fig. 11. This can
be attributed to unresolved ambiguities between geometry and
materials: Shown are the normal maps and rendered predictions for
(left) a single 2.5D reconstruction as presented in [7], (middle) the
fused 3D mesh after integration of independent 2.5D reconstruc-
tions as shown in Fig. 11a, left column and (right) the fused 3D
mesh (as in the middle) with only the normal map loaded from the
2.5D keyframe (from the left). We observe that the appearance of
the 3D mesh (middle) shows artifacts. But when using the noisier
normal map from the 2.5D keyframe reconstruction, these artifacts
are reduced noticeably (right). That indicates that the model in
Schmitt et al. [7] cannot resolve ambiguities in the normal and
specular material estimation. It tends to over-estimate specular
parameters (e.g. on the face of the gnome) and slightly perturbs
the normal maps as compensation, resulting in good appearance.

against aggregated neighboring parameter maps prevents a bias
in the normals and leads to better material estimates. Fig. 11b
confirms significantly lower reconstruction errors for our model
on held-out test views.

Comparison to Nam et al. [5]: We compare our method with
that of Nam et al. [5] on a scene with multiple objects. As shown
in Fig. 13, their method reconstructs 3D appearance components
such as normals and diffuse albedo properly but does not manage
to recover the specular reflections of the given scene well. Since
they use base materials for reflectance modeling, this indicates that
the clustering into surface regions with distinct materials fails,
potentially due to an erroneous estimate of the number of base
materials. This leads to non-smooth predictions even for regions
with similar appearance and results in uneven specular highlights
and high-frequency artifacts. In contrast, our method reconstructs
materials and specular highlights well because our pixel-wise
material representation does not involve a model selection step.

7.4 Reconstruction Results
We show results of our method on captured objects in Fig. 15 and
the supplement and demonstrate the capabilities of our method
to reconstruct accurate geometry and materials for a variety of
real objects, scenes and materials. Please see videos of our re-
constructions here: https://sites.google.com/view/material-fusion/
And results on synthetic data can be found in the supplement.

Towards Scalable Scene Reconstructions: We demonstrate the
scalability of the proposed approach in Fig. 14. As shown, our
method reconstructs scenes on the scale of several meters at
a resolution of ≤ 2mm and recovers accurate appearance and
geometry, leading to realistic renderings of novel viewpoints and
illumination. But the ‘Office’ scene shows 2 limitations of our
model: Since we do not recover missing geometry or fill holes but
rely on the completeness of the input geometry, artifacts on the

‘Teapot’ and the ‘Mug’ can not be resolved. Additionally, we do
not model global illumination effects leading to small artifacts in
the diffuse albedo map.

7.5 Limitations
The proposed method refines depth maps but does not compete
missing geometry. Therefore, larger holes in the initial geometry
can not be filled, see e.g. the wall in the ’Office’, Fig. 14. Further,
we decided on a renderer that models a single light bounce to keep
computation tractable. That means that global illumination cannot
be modeled and inter-reflections cause local errors in the material
maps, as can be seen in Fig. 15. And last, the expressiveness of
our BRDF model is limited. While it is able to represent most
objects common in indoor rooms, it does not support anisotropic
reflections or subsurface scattering.

8 CONCLUSION

We have proposed a practical approach to estimating geometry
and materials from a handheld sensor for full 3D models that
exceed object-scale. Accurate camera poses are crucial to this
task, but are not readily available. To tackle this problem, we
propose a novel formulation which enables joint optimization of
poses, geometry and materials using a single objective. Towards
large-scale appearance and geometry reconstructions, we represent
the scene as 2.5D parameter maps for a set of keyframes and
introduce a distributed optimization scheme. We demonstrate
that our multi-view consistency regularization is key to enable
accurate integration of the local 2.5D reconstruction results into a
consistent 3D model. Our approach recovers accurate geometry
and material properties that are globally consistent across the
local representations. We demonstrate on multiple scenes with
larger compositions of multiple objects that our method takes a
step towards scalable multi-view reconstruction of geometry and
materials. In future work, we plan to extend our model to handle
ambient light and global illumination effects.
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[47] R. Mecca, Y. Quéau, F. Logothetis, and R. Cipolla, “A single-lobe
photometric stereo approach for heterogeneous material,” SIAM, vol. 9,
no. 4, pp. 1858–1888, 2016. 2

[48] M. K. Chandraker, J. Bai, and R. Ramamoorthi, “A theory of differential
photometric stereo for unknown isotropic brdfs,” in CVPR, 2011. 2

[49] Z. Lu, Y. Tai, M. Ben-Ezra, and M. S. Brown, “A framework for ultra
high resolution 3d imaging,” in CVPR, 2010. 2

[50] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi, “Efficiently
combining positions and normals for precise 3d geometry,” ACM Trans.
on Graphics, vol. 24, no. 3, pp. 536–543, 2005. 2

[51] N. Joshi and D. J. Kriegman, “Shape from varying illumination and
viewpoint,” in ICCV, 2007. 2

[52] H. Fan, L. Qi, J. Dong, G. Li, and H. Yu, “Dynamic 3d surface
reconstruction using a hand-held camera,” in IECON, 2018. 2

[53] J. Park, S. N. Sinha, Y. Matsushita, Y. Tai, and I. S. Kweon, “Robust
multiview photometric stereo using planar mesh parameterization,”
PAMI, vol. 39, no. 8, pp. 1591–1604, 2017. 2

[54] B. Shi, K. Inose, Y. Matsushita, P. Tan, S. Yeung, and K. Ikeuchi,
“Photometric stereo using internet images,” in 3DV, 2014. 2

[55] F. Logothetis, R. Mecca, and R. Cipolla, “A differential volumetric
approach to multi-view photometric stereo,” in ICCV, 2019. 2

[56] Y. Yoshiyasu and N. Yamazaki, “Topology-adaptive multi-view photo-
metric stereo,” in CVPR, 2011. 2

[57] H. Barrow, “Recovering intrinsic scene characteristics from images,”
CVS, pp. 3–26, 1978. 2

[58] P. V. Gehler, C. Rother, M. Kiefel, L. Zhang, and B. Schölkopf, “Re-
covering intrinsic images with a global sparsity prior on reflectance,” in
NIPS, 2011, pp. 765–773. 2

[59] Q. Chen and V. Koltun, “A simple model for intrinsic image decompo-
sition with depth cues,” in ICCV, 2013. 2

[60] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and
T. Limperis, “Geometrical considerations and nomenclature for re-
flectance,” in Radiometry. Jones and Bartlett Publishers, Inc., 1992,
ch. Geometrical Considerations and Nomenclature for Reflectance, pp.
94–145. 2

[61] W. Matusik, H. Pfister, M. Brand, and L. McMillan, “A data-driven
reflectance model,” ACM Trans. on Graphics, vol. 22, no. 3, pp. 759–
769, Jul. 2003. 2

[62] J. B. Nielsen, H. W. Jensen, and R. Ramamoorthi, “On optimal, minimal
BRDF sampling for reflectance acquisition,” ACM Trans. on Graphics,
vol. 34, no. 6, pp. 186:1–186:11, 2015. 2

[63] H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H. Seidel,
“Image-based reconstruction of spatial appearance and geometric de-
tail,” ACM Trans. on Graphics, vol. 22, no. 2, pp. 234–257, 2003. 2

[64] C. Schwartz, R. Sarlette, M. Weinmann, and R. Klein, “DOME II: A
parallelized BTF acquisition system,” in EUROGRAPHICS, 2013. 2

[65] M. Holroyd, J. Lawrence, and T. E. Zickler, “A coaxial optical scanner
for synchronous acquisition of 3d geometry and surface reflectance,”
ACM Trans. on Graphics, vol. 29, no. 4, pp. 99:1–99:12, 2010. 2

[66] R. A. Albert, D. Y. Chan, D. B. Goldman, and J. F. O’Brien, “Approx-
imate svbrdf estimation from mobile phone video,” in EUROGRAPH-
ICS, 2018. 2

[67] J. Rivière, P. Peers, and A. Ghosh, “Mobile surface reflectometry,”
Computer Graphics Forum, vol. 35, no. 1, pp. 191–202, 2016. 2

[68] M. Aittala, T. Weyrich, and J. Lehtinen, “Two-shot SVBRDF capture
for stationary materials,” ACM Trans. on Graphics, vol. 34, no. 4, pp.
110:1–110:13, 2015. 2

[69] Z. Xu, J. B. Nielsen, J. Yu, H. W. Jensen, and R. Ramamoorthi, “Min-
imal BRDF sampling for two-shot near-field reflectance acquisition,”
ACM Trans. on Graphics, vol. 35, no. 6, pp. 188:1–188:12, 2016. 2

[70] Y. Dong, G. Chen, P. Peers, J. Zhang, and X. Tong, “Appearance-from-
motion: recovering spatially varying surface reflectance under unknown
lighting,” ACM Trans. on Graphics, vol. 33, no. 6, pp. 193:1–193:12,
2014. 3

[71] J. J. Park, R. A. Newcombe, and S. M. Seitz, “Surface light field fusion,”
in 3DV, 2018. 3

[72] H. Wu and K. Zhou, “Appfusion: Interactive appearance acquisition
using a kinect sensor,” Computer Graphics Forum, vol. 34, no. 6, pp.
289–298, 2015. 3

[73] Z. Wu, S. Yeung, and P. Tan, “Towards building an RGBD-M scanner,”
arXiv.org, vol. 1603.03875, 2016. 3

[74] H. Wu, Z. Wang, and K. Zhou, “Simultaneous localization and appear-
ance estimation with a consumer RGB-D camera,” VCG, vol. 22, no. 8,
pp. 2012–2023, 2016. 3
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professor at ETH Zürich and a group leader at
the Max Planck Institute for Intelligent Systems.
He studied at KIT, EPFL and MIT, and received
his PhD degree in 2013 from the Karlsruhe Insti-
tute of Technology (KIT). He is an ELLIS fellow
and coordinates the ELLIS PhD and PostDoc
program. His research interests are at the in-
tersection of computer vision, machine learning
and robotics, with a particular focus on 3D scene

perception, deep representation learning, generative models and recon-
struction of 3D geoametry and materials.


