MAX PLANCK INSTITUTE FOR INTELLIGENT SYSTEMS

Motivation

Structured light sensing (e.g. Kinect) enabled large-scale 3D reconstructions. Yet, the level of realism is limited since physical light transport is not modeled. Illumination effects such as specular reflections or shadows are baked into the texture.

Reflections and geometry are linked strongly. To use that mutual information, object geometry and material properties are best inferred jointly. We propose a novel formulation for joint pose, geometry and svBRDF estimation.

While existing approaches use alternating optimization procedures, we propose a **single objective** that can be optimized using off-the-shelf gradient-based solvers.

Handheld Sensor

Custom built sensor rig.

Complete but coarse initial depth.

+ Fully portable, no laboratory setup for material estimation + For arbitrary geometry, no prior assumptions like planarity

Traditionally accurate geometry reconstruction requires known appearance properties.

Likewise, accurate appearance estimation requires very well known geometry.

Joint estimation of geometry and materials requires only a rough initialization for both.

Input RGB

Initial Depth and Appearance

Refined Geometry, Normals and Appearance

https://github.com/autonomousvision/handheld svbrdf geometry

On Joint Estimation of Pose, Geometry and svBRDF from a Handheld Scanner

Joint Formulation

Optimized variables:

A single objective function minimized by off-the-shelf gradient-based solvers.

 $\mathcal{X}^* = \operatorname{argmin}_{\mathcal{X}}$

Material Assignments

 $\psi_{\mathcal{M}}$ integrates material assignments into the optimization process as a differentiable regularizer. This naturally leads to a semantically meaningful material segmentation.

T = number of specular base materials; independently determined by our model.

Carolin Schmitt^{1,2,*} Simon Donné^{1,2,*} Gernot Riegler³ Vladlen Koltun³ Andreas Geiger^{1,2} ¹MPI for Intelligent Systems, Tübingen ²University of Tübingen ³Intel Intelligent Systems Lab

Camera Poses

Diffuse Specular

geometry regularizer

 $\psi_{\mathcal{M}}$

material smoothness

	TSDF Fusion		Higo et al.	Propos	Proposed (disjoint		t) Proposed	
								10.0 mm
								1.0 mm 0.1
								mm
		duck	pineapple	girl	gnome	sheep	hydrant	rabbit
AEA (mm)	TSDF Fusion	0.81	1.24	1.11	0.73	0.79	1.35	2.16
	Higo et al.	2.65	1.05	1.59	1.60	2.09	1.81	2.85
	Proposed (disjoint)	0.81	1.00	1.06	0.65	0.64	1.18	2.25
	Proposed	0.80	1.00	1.00	0.64	0.57	1.16	2.16
AAE (°)	TSDF Fusion	6.75	12.09	11.40	7.64	8.38	11.67	24.42
	Higo et al.	7.77	10.62	11.30	9.24	8.65	15.27	27.67
	Proposed (disjoint)	6.01	9.13	9.81	6.41	6.66	9.59	23.01
	Proposed	5.17	8.98	8.73	5.74	5.60	8.50	23.50

The explicit shadow and occlusion modeling enables reconstructing strongly non-convex scenes.

Reconstruction

{carolin.schmitt, simon.donne}@tue.mpg.de

EBERHARD KARLS UNIVERSITÄT TUBINGEN imprs-is

Pose Ablation Study

Refining the initial poses is crucial for recovering fine texture details. Top: using input poses, bottom: optimizing the poses.

Geometric Evaluation

Qualitatively and quantitatively, the proposed method recovers more details with less noise and a lower error than the baselines. - Proposed (disjoint): alternating instead of joint optimization of geometry and materials. - Artec Spider scans serve as ground truth.

Geometry

Crops of Object Boundaries