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Figure 1: Illustration. Based on images captured from a
handheld scanner with point light illumination, we jointly
optimize for the camera poses, the surface geometry and
spatially varying materials using a single objective function.

Ideally, object geometry and material properties are in-
ferred jointly: a good model of light transport allows for re-
covering geometric detail using shading cues. An accurate
shape model, in turn, facilitates the estimation of material
properties. This is particularly relevant for shiny surfaces
where small changes in the geometry greatly impact the ap-
pearance and location of specular ref ections. Yet joint opti-
mization of these quantities (shown in Fig. 1) is challenging.

Several works have addressed this problem by assuming
multiple images from a static camera [16, 21, 23, 28, 105]
which is impractical for mobile scanning applications. Only
a few works consider the challenging problem of joint ge-
ometry and material estimation from a handheld device
[20, 24, 57]. However, existing approaches assume known
camera poses and leverage sophisticated pipelines, decom-
posing the problem into smaller problems using multiple
decoupled objectives and optimization algorithms that treat
geometry and materials separately. Furthermore the number
of base materials must be provided and/or pre-processing is
required to cluster the object surface accordingly.
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Motivation
Structured light sensing (e.g. Kinect) enabled large-scale 3D 
reconstructions. Yet, the level of realism is limited since physical 
light transport is not modeled. Illumination effects such as 
specular reflections or shadows are baked into the texture.

Reflections and geometry are linked strongly. To use 
that mutual information, object geometry and material properties 
are best inferred jointly. We propose a novel formulation for 
joint pose, geometry and svBRDF estimation.  

While existing approaches use alternating optimization procedures, 
we propose a single objective that can be optimized using 
off-the-shelf gradient-based solvers.

2.5D scene representation based on one reference view:

Optimized variables:

        integrates material assignments into the optimization process as a differentiable 
regularizer. This naturally leads to a semantically meaningful material segmentation.

Refining the initial poses is crucial for recovering fine texture details. 
Top: using input poses, bottom: optimizing the poses.

Geometric Evaluation

The explicit shadow and occlusion modeling enables 
reconstructing strongly non-convex scenes.

A single objective function minimized by off-the-shelf gradient-based solvers.

         number of specular base materials; independently determined by our model.

[R|t]

, , ,
Geometry      Normals    Appearance       Camera Poses

Diffuse Specular

Qualitatively and quantitatively, the proposed method recovers 
more details with less noise and a lower error than the baselines.
   -  Proposed (disjoint): alternating instead of joint optimization of geometry and materials.
   -  Artec Spider scans serve as ground truth.

Materials         Geometry
Traditionally accurate geometry reconstruction 
requires known appearance properties.

Likewise, accurate appearance estimation 
requires very well known geometry.

Joint estimation of geometry and materials 
requires only a rough initialization for both.

Input RGB    Initial Depth and Appearance        Refined Geometry, Normals and Appearance 

Handheld Sensor

Custom built sensor rig.

RGB input images captured under 
known point light illumination.

Complete but coarse initial depth.

+ Fully portable, no laboratory setup for material estimation
+ For arbitrary geometry, no prior assumptions like planarity
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Figure 5: Pose Optimization. Compared to using the input
poses (top), optimizing the poses (bottom) improves recon-
structions, both quantitatively and qualitatively. The photo-
metric error is reported for regions with and without specu-
lar highlights. See the supplement for more details.
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Figure 6: Loss Regular izers. Without the regularization
(top), the appearance is inconsistent within homogeneous
areas of the object. Using the regularization losses (bottom),
we are able to propagate the information and successfully
generalize to new illumination conditions on the test set.

Mater ial Segmentation: Decomposing the appearance of
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Figure 9: Qualitative Geometry Compar ison. We show, for
surface normals rather than the estimated normals np) and
We observe that the photometric approaches recover far mor
structure for Higo et al. [24] is rather noisy, while the disj
disambiguating texture and geometry for very f ne details. W

duck pineapple girl gnome sheep hydrant rabbit
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) TSDF Fusion 0.81 1.24 1.11 0.73 0.79 1.35 2.16

Higo et al. 2.65 1.05 1.59 1.60 2.09 1.81 2.85
Proposed (disjoint) 0.81 1.00 1.06 0.65 0.64 1.18 2.25

Proposed 0.80 1.00 1.00 0.64 0.57 1.16 2.16

A
A

E
(◦

) TSDF Fusion 6.75 12.09 11.40 7.64 8.38 11.67 24.42
Higo et al. 7.77 10.62 11.30 9.24 8.65 15.27 27.67

Proposed (disjoint) 6.01 9.13 9.81 6.41 6.66 9.59 23.01
Proposed 5.17 8.98 8.73 5.74 5.60 8.50 23.50

Table 1: Quantitative Geometry Compar ison. We report
both the average euclidean accuracy and average angular
error, as discussed in Section 4.1. Please refer to the sup-
plement for a more detailed table.

updates. We also evaluate the improvement over the initial
TSDF fusion using the implementation of Zeng et al. [98].

Our experimental evaluation2 is shown in Fig. 9 and Ta-
ble 1. We see that TSDF fusion, a purely geometric ap-
proach reconstructs the general surface well but misses

TSDF Fusion        Higo et al.    Proposed (disjoint)    Proposed


