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In this supplemental document, we elaborate on the current limita-
tions, describe the procedure to increase the resolution of ImageNet
to one megapixel, and specify the implementation details of our
approach. The supplemental video shows additional samples and
interpolations. We use the same mathematical notation as in the
paper.

A LIMITATIONS
Architectural Limitations. First, StyleGAN-XL is three times larger

than StyleGAN3, constituting a higher computational overhead
when used as a starting point for finetuning. Therefore, it will be
worth exploring GAN distillationmethods [Chang and Lu 2020] that
trade-off performance for model size. Second, StyleGAN-XL uses
translation-equivariant layers of StyleGAN3-T. As described above,
StyleGAN3-R tends to produce overly symmetrical images and
adds significant computational overhead. Finding a more efficient
rotational-equivariant architecture is an important future direc-
tion. Second, we find StyleGAN3, and consequently, StyleGAN-XL,
harder to edit, e.g., high-quality edits viaW are noticeably easier
to achieve with StyleGAN2. As already observed in [Karras et al.
2021], StyleGAN3’s semantic controllability is reduced for the sake
of equivariance. However, techniques using the StyleSpace [Wu et al.
2021], e.g., StyleMC [Kocasari et al. 2022], tend to yield better results
in our experiments, confirming the findings of concurrent work
by [Alaluf et al. 2022]. Furthermore, we remark that our framework
can also easily be used with StyleGAN2 layers.

Comparison to Diffusion Models. Our model is larger than earlier
StyleGANs, yet it is still several orders of magnitudes faster than
ADM; we compare inference speeds in the supplementary. Low
data coverage is a known problem of GANs, and StyleGAN-XL
makes notable headway on this issue. However, StyleGAN-XL is
still outperformed by diffusion models regarding data coverage.
Furthermore, classes of unaligned humans and human faces are

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9337-9/22/08. . . $15.00
https://doi.org/10.1145/3528233.3530738

Figure 1: Imagenet Classes Containing Humans. Samples for
BigGAN and ADM are taken from [Dhariwal and Nichol 2021].

particularly challenging for all compared approaches, likely due to
ImageNet’s emphasis on non-human objects [Dhariwal and Nichol
2021]. For such classes, we observe that ADM [Dhariwal and Nichol
2021] generates more convincing human faces than BigGAN [Brock
et al. 2019] or StyleGAN-XL. Both GANs can synthesize realistic
faces; however, the main challenge in this setting is that the dataset
is unstructured, and the humans are not aligned. [Brock et al. 2019]
remarked the particular challenge of classes containing details to
which human observers are more sensitive. We show examples
in Fig. 1. Whether the points above are a general limitation of
GANs remains an interesting open question for future research.

B PREPROCESSING IMAGENET
An initial challenge is the lack of high-resolution data; the mean
resolution of ImageNet is 469 × 387. Similar to the procedure used
for generating CelebA-HQ[Karras et al. 2018], we preprocess the
whole dataset with SwinIR-Large [Liang et al. 2021], a recent model
for real-world image super-resolution. Of course, a trivial way of
achieving good performance on this dataset would be to draw sam-
ples from a 2562 generative model and passing it through SwinIR.
However, SwinIR adds significant computational overhead as it
is 60 times slower than our upsampling stack. Furthermore, this
way, StyleGAN-XL’s weights can be used for initialization when
finetuning on other high-resolution datasets. Lastly, combining
StyleGAN-XL and SwinIR would impair translation equivariance.

C INFERENCE SPEED
GANs generate samples in a single forward pass, unlike diffusion
models that must be applied several hundred or thousand times to
generate a sample. Table 1 compares StyleGAN-XL to ADM. We
find that StyleGAN-XL is several orders of magnitude faster. In
defense of diffusion models, speeding up their sampling is an active
area of research, and novel techniques [Watson et al. 2021] may be
able to reduce this gap in the future.
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Table 1: Inference speed comparison.. We measure the time re-
quired for a forward pass with batch size 1 in V100-seconds. ADM
uses classifier guidance.

Model Inference Time ↓
Res. 1282 Res. 2562 Res. 5122

ADM 27.07 40.26 91.54
StyleGAN-XL 0.05 0.07 0.10

Table 2: Results on Unimodal Datasets..

Model FID Model FID

FFHQ 10242 Pokémon 10242

StyleGAN2 2.70 FastGAN 56.46
StyleGAN3 2.79 Projected GAN 33.96
StyleGAN-XL 2.02 StyleGAN-XL 25.47

D RESULTS ON UNIMODAL DATASETS
StyleGAN-XL is designed to enable training on large and diverse
datasets. However, applying it to big and small unimodal datasets
is straightforward. In contrast to the configuration for ImageNet,
we begin with ten layers at the lowest stage and add two layers per
resolution stage. Furthermore, we do not employ classifier guidance.
Table 2 reports the results for both datasets at resolution 10242,
StyleGAN-XL achieves state-of-the-art performance on both.

E ADDITIONAL QUALITATIVE RESULTS
In the following, we present additional qualitative results. Fig. 2
shows additional interpolations between samples from different
classes. Fig. 4 and Fig. 5 show samples on FFHQ 10242 and Poke-
mon 10242 respectively. Lastly, we compare BigGAN, ADM, and
StyleGAN-XL on different ImageNet classes. For a fair comparison,
we do not use truncation or classifier guidance. Instead, we show
images with the largest logits given by a VGG16 which corresponds
to individual image quality.

F IMPLEMENTATION DETAILS

Inversion. Following [Karras et al. 2020], we use basic latent opti-
mization inW for inversion. Given a target image, we first compute
its average style code w̄ by running 10000 random latent codes z
and target specific class samples c through the mapping network.
As the class label of the target image is unknown, we pass it to a pre-
trained classifier. We then use the classifier logits as a multinomial
distribution to sample c. In our experiments, we use Deit-base [Tou-
vron et al. 2021] as a classifier, but other choices are possible. At the
beginning of optimization , we initialize w = w̄. The components
of w are the only trainable parameters. The optimization runs for
1000 iterations using the Adam optimizer [Kingma and Ba 2015]
with default parameters. We optimize the LPIPS [Zhang et al. 2018]
distance between the target image and the generated image. For
StyleGAN-XL, the maximum learning rate is 𝜆𝑚𝑎𝑥 = 0.05. It is
ramped up from zero linearly during the first 50 iterations and

Table 3: Inversion Results. The metrics are computed between the
inversions obtained by the model and the reconstruction targets.

Model MSE ↓ PSNR ↑ SSIM ↑ FID ↓
BigGAN 0.10 10.85 0.26 47.48
StyleGAN-XL 0.06 13.45 0.33 21.73

Table 4: Results on ImageNet at Lower Resolutions..

Model FID ↓
Res. 162 Res. 322 Res. 642

StyleGAN-XL 0.73 1.10 1.51

ramped down to zero using a cosine schedule during the last 250
iterations. For BigGAN, we empirically found 𝜆𝑚𝑎𝑥 = 0.001 and
a ramp-down over the last 750 iterations to yield the best results.
All inversion experiments are performed at resolution 5122 and
computed on 5𝑘 images (10% of the validation set). We report the
results in Table 3 and show qualitative results in Fig. 3.

Training StyleGAN3 on ImageNet. For training StyleGAN3, we
use the official PyTorch implementation1. The results in Fig. 1 are
computed with the StyleGAN3-R configuration on resolution 2562

until the discriminator has seen 10 million images. We find that
StyleGAN3-R and StyleGAN3-T converge to similar FID without
any changes to their training paradigm. The run with the best FID
score was selected from three runs with different random seeds. We
use a channel base of 16384 and train on 8 GPUs with total batch
size 256, 𝛾 = 0.256. The remaining settings are chosen according to
the default configuration of the code release. For the ablation study
in Table 1 , we use the StyleGAN3-T configuration as baseline since
StyleGAN-XL builds upon the translational-equivariant layers of
StyleGAN3. We train on 4 GPUs with total batch size 256 and batch
size 32 per GPU, 𝛾 = 0.25, and disable augmentation.

Training & Evaluation. For all our training runs, we do not use
data amplification via x-flips following [Karras et al. 2020]. Further-
more, we evaluate all metrics using the official StyleGAN3 codebase.
For the baseline values in Table 2, we report the numbers of [Dhari-
wal and Nichol 2021]. The official codebase of ADM2 provides files
containing 50k samples for ADM and BigGAN. We utilize the pro-
vided samples to compute rFID. Following [Dhariwal and Nichol
2021], we compute precision and recall between 10k real samples
and 50k generated samples. Table 4 reports the results on ImageNet
at lower resolutions.

Layer configurations. We start progressive growing at resolution
162 using 11 layers. The layer specifications are computed according
to [Karras et al. 2021] and remain fixed for the remaining training.
For the next stage, at resolution 322, we discard the last 2 layers and
add 7 new ones. The specifications for the new layers are computed
according to [Karras et al. 2021] for a model with resolution 322 and

1https://github.com/NVlabs/stylegan3.git
2https://github.com/openai/guided-diffusion

https://github.com/NVlabs/stylegan3.git
https://github.com/openai/guided-diffusion
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16 layers. Continuing this strategy up to resolution 10242 yields the
flexible layer specification of StyleGAN-XL in Fig. 9.

REFERENCES
Yuval Alaluf, Or Patashnik, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski,

and Daniel Cohen-Or. 2022. Third Time’s the Charm? Image and Video Editing
with StyleGAN3. arXiv.org abs/2201.13433 (2022). https://arxiv.org/abs/2201.13433

Andrew Brock, Jeff Donahue, and Karen Simonyan. 2019. Large Scale GAN Training
for High Fidelity Natural Image Synthesis. In Proc. of the International Conf. on
Learning Representations (ICLR). OpenReview.net. https://openreview.net/forum?
id=B1xsqj09Fm

Ting-Yun Chang and Chi-Jen Lu. 2020. TinyGAN: Distilling BigGAN for Conditional
Image Generation. In Proc. of the Asian Conf. on Computer Vision (ACCV) (Lecture
Notes in Computer Science, Vol. 12625), Hiroshi Ishikawa, Cheng-Lin Liu, Tomás
Pajdla, and Jianbo Shi (Eds.). 509–525. https://doi.org/10.1007/978-3-030-69538-
5_31

Prafulla Dhariwal and Alex Nichol. 2021. Diffusion Models Beat GANs on Image
Synthesis. (2021).

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive Growing
of GANs for Improved Quality, Stability, and Variation. In Proc. of the International
Conf. on Learning Representations (ICLR). OpenReview.net. https://openreview.net/
forum?id=Hk99zCeAb

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehti-
nen, and Timo Aila. 2021. Alias-Free Generative Adversarial Networks. In Advances
in Neural Information Processing Systems (NeurIPS).

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. 2020. Analyzing and Improving the Image Quality of StyleGAN. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Computer Vision

Foundation / IEEE, 8107–8116. https://doi.org/10.1109/CVPR42600.2020.00813
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In Proc. of the International Conf. on Learning Representations (ICLR).
Umut Kocasari, Alara Dirik, Mert Tiftikci, and Pinar Yanardag. 2022. StyleMC: Multi-

Channel Based Fast Text-Guided Image Generation and Manipulation. Proc. of
the IEEE Winter Conference on Applications of Computer Vision (WACV) (2022).
https://arxiv.org/abs/2112.08493

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte.
2021. SwinIR: Image Restoration Using Swin Transformer. In Proc. of the IEEE
International Conf. on Computer Vision (ICCV) Workshops. IEEE, 1833–1844. https:
//doi.org/10.1109/ICCVW54120.2021.00210

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablay-
rolles, and Hervé Jégou. 2021. Training data-efficient image transformers & dis-
tillation through attention. In Proc. of the International Conf. on Machine learning
(ICML) (Proceedings of Machine Learning Research, Vol. 139). PMLR, 10347–10357.
http://proceedings.mlr.press/v139/touvron21a.html

Daniel Watson, Jonathan Ho, Mohammad Norouzi, and William Chan. 2021. Learning
to Efficiently Sample from Diffusion Probabilistic Models. CoRR abs/2106.03802
(2021). https://arxiv.org/abs/2106.03802

Zongze Wu, Dani Lischinski, and Eli Shechtman. 2021. StyleSpace Analysis:
Disentangled Controls for StyleGAN Image Generation. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). Computer Vision Foundation /
IEEE, 12863–12872. https://openaccess.thecvf.com/content/CVPR2021/html/Wu_
StyleSpace_Analysis_Disentangled_Controls_for_StyleGAN_Image_Generation_
CVPR_2021_paper.html

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). Computer Vision
Foundation / IEEE Computer Society, 586–595. https://doi.org/10.1109/CVPR.2018.
00068

https://arxiv.org/abs/2201.13433
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm
https://doi.org/10.1007/978-3-030-69538-5_31
https://doi.org/10.1007/978-3-030-69538-5_31
https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://doi.org/10.1109/CVPR42600.2020.00813
https://arxiv.org/abs/2112.08493
https://doi.org/10.1109/ICCVW54120.2021.00210
https://doi.org/10.1109/ICCVW54120.2021.00210
http://proceedings.mlr.press/v139/touvron21a.html
https://arxiv.org/abs/2106.03802
https://openaccess.thecvf.com/content/CVPR2021/html/Wu_StyleSpace_Analysis_Disentangled_Controls_for_StyleGAN_Image_Generation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wu_StyleSpace_Analysis_Disentangled_Controls_for_StyleGAN_Image_Generation_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wu_StyleSpace_Analysis_Disentangled_Controls_for_StyleGAN_Image_Generation_CVPR_2021_paper.html
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1109/CVPR.2018.00068


SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Sauer et al.

Figure 2: Interpolations. StyleGAN-XL generates smooth interpolations between samples of different classes.

Figure 3: Inversion of a Given Source Image. For BigGAN, we invert to its latent space z, for StyleGAN-XL we invert to style codes w.
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Figure 4: Samples on FFHQ 10242.
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Figure 5: Samples on Pokemon 10242.
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Figure 6: Qualitiative Comparison on ImageNet 2562.. We compare BigGAN (left column), ADM (middle column), and StyleGAN-XL (right
column). Classes from top to bottom: pizza, valley, daisy, dough, comic book.
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Figure 7: Qualitiative Comparison on ImageNet 2562.. We compare BigGAN (left column), ADM (middle column), and StyleGAN-XL (right
column). Classes from top to bottom: bulbul, nematode, jack-o’-lantern, balloon, crossword puzzle.
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Figure 8: Qualitiative Comparison on ImageNet 2562.. We compare BigGAN (left column), ADM (middle column), and StyleGAN-XL (right
column). Classes from top to bottom: agaric, orange, Tibetian mastiff, espresso, paddlewheel.
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Figure 9: Flexible Layer Specification of Stylegan-XL. StyleGAN-XL consists of 39 layers at resolution 10242. Cutoff (blue) and minimum
acceptable stopband frequency (orange) obey geometric progression over the layers; sampling rate (red) and actual stopband (green) are computed
according to our design constraints.
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