
Supplementary Material:
Conditional Affordance Learning

for Driving in Urban Environments

Axel Sauer1 Nikolay Savinov1 Andreas Geiger1,2

1Computer Vision and Geometry Group, ETH Zürich
2Autonomous Vision Group, MPI for Intelligent Systems and University of Tübingen

Abstract: This supplementary document provides further implementation de-
tails of our CAL agent in Section 1, a detailed description of our ground truth
acquisition process in Section 2 and additional experiments in Section 3.
The supplementary video shows several navigation examples and visualizes the
attention of our agent for different affordance indicators over time.

1 Implementation Details

In this section, we list the value ranges and results of our hyperparameter search. We also provide
additional details about our longitudinal control algorithm and the PID tuning procedure.

1.1 Hyperparameter Search

Table 1 shows each hyperparameter and its range of values for the random search described in the
main paper. We initialize the network with randomly sampled parameters from the respective ranges.
Table 2 shows the parameters of the best performing task blocks after optimization.

Table 1: Hyperparameter Search. Value ranges for each hyperparameter.

Hyperparameter Layer type Number of nodes Dropout amount Sequence length Dilation value
Acronym type nodes p seq dil

Range of values
Dense, GRU, LSTM,
temporal convolution

[10, 200] [0.25, 0.75] [1, 20] [1, 3]

Table 2: Best task block parameters. We optimized the layer type, the number of nodes, the
dropout ratio p, the sequence length seq, and the dilation value dil.

Task type nodes p seq dil

Red light GRU 185 0.27 14 2
Hazard stop Temp. convolution 160 0.68 6 1
Speed sign Dense 160 0.55 1 1
Vehicle distance GRU 160 0.38 11 1
Relative angle Temp. convolution 100 0.44 10 1
Center distance Temp. convolution 100 0.44 10 1

2nd Conference on Robot Learning (CoRL 2018), Zürich, Switzerland.



1.2 Controller

Longitudinal Control. The states of the longitudinal controller are illustrated in Figure 1.

cruising

following

over_limit

red_light

hazard_stop

States

Affordances Throttle

Brake

if hazard stop == True

elif red light == True

elif speed > limit - 15

elif veh_distance < 35

else

Figure 1: States of Longitudinal Controller. The states are ordered in descending importance from
top-to-bottom as indicated by the color intensity. All state are mutually exclusive.

The throttle and brake values for the states over_limit, red_light, and hazard_stop are as follows:

• over_limit: This state is activated, if the agent is driving more than 15 km/h faster than
the speed limit v∗. This situation typically occurs when entering a low-speed zone from a
high-speed zone. To decelerate quickly, we set the throttle value to zero and calculate the
brake value depending on the current speed v(t):

brake = 0.3 · v(t)
v∗(t)

(1)

As an example, driving with full speed (90 km/h) into a 30 km/h zone yields brake = 0.9,
hence applying the brakes almost fully.

• red_light: If the prediction probability P for the class red_light, i.e., the actual softmax
output, is higher than a threshold Prl, the controller switches to the state red_light. The
throttle is set to zero and the brake is applied with:

brake = 0.2 · v(t)
30

(2)

We empirically found that a threshold of Prl = 0.9 reduces false positives while still
being able to reliable stop in front of red lights. Note that we use a smaller multiplier
(0.2) compared to the over_limit state as red lights typically occur in 30 km/h zones. We
consider the current speed v(t) to gradually slow down the car in front of red lights.

• hazard_stop: This state is activated when an obstacle in front of the agent is detected,
i.e., when P (hazard_stop) > Phs where we empirically determined the threshold Phs as
Phs = 0.7. Note the threshold is lower than that for the red_light state, since preventing
crashes with road hazards is more critical for successful goal-directed navigation. When a
hazard_stop has been detected, the throttle is set to zero and the brake is set to one.

PID Controller Tuning. The PID controllers used in the cruising and following state follow the
standard PID control scheme [1]. The overall control function is given as follows

u(t) = Kpe(t) +Ki

∫ t

0

e(t′)dt′ +Kd
de(t)

dt
, (3)

where Kp, Ki and Kd are the proportional, integral and derivative coefficients. To be able to tune
the coefficients of the two PID controllers, we implemented a visualization tool of speed, distance
to the centerline, and other important signals. With this direct visual feedback, it is possible to use

2



Table 3: Observation Areas. The observation areas are rectangular boxes. This table lists the (x, y)
coordinates of the vertices v of each observation area (provided in clocal in meters.)

Area Detection of v1 v2 v3 v4

A1
red_light
speed_sign

(7.4, -0.8) (7.4, -5.8) (14.0, -0.8) (14.0, -5.8)

A2 hazard_stop (0.0, 2.0) (0.0, -2.0) (8.2,2.0) (8.2,-2.0)

A3 distance_to_vehicle (0.0, 1.6) (0.0, -1.6) (50.0, 1.6) (50.0, -1.6)

standard PID tuning methods. In this work, we leverage the method by Ziegler-Nichols [2]. First,
all coefficients are set to zero. Then, the proportional gain Kp is increased until the output of the
loop starts to oscillate. Given this “ultimate gain” Ku and the oscillation period Tu, we set the
coefficients to

Kp = 0.6Ku, (4)
Ki = Tu/2, (5)
Kd = Tu/8. (6)

Using these values as a starting point, we empirically fine-tune the coefficients for optimal perfor-
mance, with the goal of enabling fast but smooth reactions to disturbances.

2 Ground Truth Acquisition

The API of CARLA supplies measurements about the agent (speed, acceleration, location, orien-
tation) and about other objects in the scene (cars, pedestrians, traffic lights, and speed limit signs).
These measurements include the current status of the traffic light (green, orange, red) and the type
of the speed sign (30, 60, 90). Location and orientation are defined in a world coordinate system
cglobal = (xg, yg, zg)

ᵀ. As these measurements do not directly express the affordances we want to
learn, we implemented a procedure to convert them into the desired ground truth.

2.1 Observation Area

We define a local coordinate system clocal = (xl, yl, zl)
ᵀ at the center of the front axle of the car

with the x-axis corresponding to the car’s lateral axis and the z-axis corresponding to the up vector.
The agent’s orientation ψ and the agent’s position (xego, yego) is supplied in cglobal. Using this
information, we convert the position of all other objects to clocal. Next, we define the observation
areas as rectangles in the x-y plane of clocal, see Figure 3 of the main paper for an illustration. If
an object falls into an observation area it is considered “detected”.

The length, width, position, and orientation of the observation areas are chosen based on the respec-
tive affordances. Thus, the observation area for red_light and for speed_sign is located on the
right side of the agent as their respective signals are located on the right sidewalk. The observation
area for hazard_stop is directly in front of the car and very short, in order to only initiate a hazard
stop if an accident could not be avoided otherwise. The observation area for vehicle_distance is
in front of the car and has a length of 50 m. If another vehicle is located within this area, the dis-
tance of the closest vehicle to the agent is measured. If there is no car in front, the default value for
vehicle_distance (50 m) is used. Table 3 lists the coordinates for each observation area.

2.2 Directional Input

CARLA provides a high-level topological planner based on the A* algorithm. It takes the agents
position and the coordinates of the destination and calculates a list of commands. This “plan” advises
the agent to turn left, right or to keep straight at intersections.

3



Table 4: Comparison of Temporal and Non-temporal Task Blocks. The last column shows the
relative change in performance. The higher the IoU and the lower the MAE the better.

Best performing task blocks

Task Metric non-temporal temporal relative Change

Hazard stop IoU 84.96 % 87.41 % + 2.88 %
Speed sign IoU 91.95 % 92.71 % + 0.83 %
Red light IoU 92.41 % 93.95 % + 1.67 %

Relative angle MAE 0.00797 0.00207 - 74.03 %
Center distance MAE 0.09642 0.08465 - 12.21 %
Vehicle distance MAE 0.04497 0.03289 - 26.86 %

3 Additional Experiments

In this section, we provide additional experiments. First, we compare temporal to non-temporal
task blocks to assess the influence of the additional temporal information provided by video data.
Second, we provide a qualitative evaluation of our agent’s driving behavior.

3.1 Comparison of Temporal and Non-temporal Task Blocks

Table 4 shows the best performing task blocks for each task. By using a temporal task block, all
the classification and regression results improve. This demonstrates that each task profits from the
additional temporal information.

The biggest relative improvement can be seen for the relative_angle task block. The error of the
temporal task block is almost four times lower than the non-temporal task block. This suggests
that this task profits more from the temporal context than other tasks. The smallest improvement is
achieved for the speed_sign task. To keep computation time low during training and inference, we
therefore use the non-temporal task block for this task in our final model.

In addition, we empirically observed that there is no dominating temporal layer in terms of perfor-
mance. LSTMs, GRUs and temporal convolution layers perform very similar. We employ temporal
convolution layers in our final implementation.

3.2 Driving Behaviour

The experiments in the main text examined whether the goal was reached and if there were any rule
violations. This section focuses on qualitative driving experience, i.e., how the driving would be
perceived by a passenger. The evaluation is done for the task “navigation without dynamic objects”
to evaluate the general driving behavior without distorting the results by the challenges of stopping
for cars or pedestrians. We use the following metrics for evaluation:

• Centerline distance: Staying in the middle of the road is the main task of every lane
keeping system. We evaluate the ability of the algorithm to minimize the deviation from
the centerline. The reported result is the median over all episodes. The median is more
descriptive for the qualitative driving experience than the mean value since failed episodes
during which an agent drifts off the road produce large outliers.

• Jerk is the rate of change of acceleration. The jerk can be felt during driving in the form
of a jolt or sudden shock. It is commonly used to quantify ride comfort [3]. A smoother
ride results in lower fuel consumption increased passenger comfort and more safety. A way
to quantify jerk is to compare the root mean square (RMS) jerk [4]. The analysis further
distinguishes between longitudinal and lateral jerk with lateral jerk separately evaluated for
straight roads and in turns.

Table 5 reports our results. In contrast to the previous evaluations, the results are not reported
depending on the weathers conditions or the environments. The results are very similar under all
conditions for all agents. The CAL agent is able to achieve the best performance on all four metrics.

4



Table 5: Driving Behaviour. Qualitative evaluation of the general driving performance, the lower a
metric the better.

Metrics Unit CIL RL CAL

Distance to centerline [m] 0.390 0.755 0.334
Longitudinal jerk [m/s3] 0.449 1.368 0.333
Lateral jerk driving straight [m/s3] 0.084 0.336 0.052
Lateral jerk driving turns [m/s3] 0.242 0.548 0.065

Distance to Centerline

All agents perform on a similar level and are able to keep the distance to the centerline low. The
exception is the RL approach. When driving on a straight road, the RL agent regularly starts swaying
from side to side over the entire lane, resulting in the high value.

Longitudinal Jerk

The CAL agent performs best, followed by CIL and RL. The control parameters of the CAL agent
are freely adjustable which allows to accelerate and decelerate smoothly as well as driving at a
constant pace. The RL agent is only able to set the throttle value to either 0 or 1. This results in a
sudden jerk every time the agent utilizes the throttle.

Lateral Jerk while Driving Straight

On straight roads, both the CAL and the CIL agent perform similarly. When driving straight, the
RL agent often outputs a steering value of 0. This leads to the agent drifting off the road. When
correcting against the drift, the RL agent steers abruptly, resulting in large jerk values.

Lateral Jerk while Turning

The CAL agent performs exceptionally well. There are several reasons for this. First, the agent is
slowing down when approaching a turn. Second, our agent turns smoothly without abrupt changes in
steering. Third, the jerk peaks are generally lower than for the other approaches. Despite this good
performance, the transition from turns to straight roads leaves room for improvement. Changes in
the directional switch result in sudden jumps in the prediction of the relative angle in some cases,
resulting in slight short-timed jerk. The CIL agent is not as good as the CAL agent, but it is gen-
erally able to drive through turns smoothly. RL, in contrast, conducts strong and abrupt steering
movements, resulting in a higher jerk value.

References
[1] K. H. Ang, G. Chong, and Y. Li. PID control system analysis, design, and technology. IEEE

transactions on control systems technology, 13(4):559–576, 2005.

[2] J. G. Ziegler and N. B. Nichols. Optimum settings for automatic controllers. trans. ASME, 64
(11), 1942.

[3] Q. Huang and H. Wang. Fundamental study of jerk: evaluation of shift quality and ride comfort.
Technical report, SAE Technical Paper, 2004.

[4] D. Hrovat and M. Hubbard. Optimum vehicle suspensions minimizing rms rattlespace, sprung-
mass acceleration and jerk. Journal of Dynamic Systems, Measurement, and Control, 103(3):
228–236, 1981.

5


	Implementation Details
	Hyperparameter Search
	Controller

	Ground Truth Acquisition
	Observation Area
	Directional Input

	Additional Experiments
	Comparison of Temporal and Non-temporal Task Blocks
	Driving Behaviour


