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Abstract

This supplementary document provides additional information on our approach and more experimental results. First,
we provide detailed information on the Light Transport and Image Synthesis Layers in Sec. 1. We then describe the data
generation pipeline in more detail in Sec. 2. Afterwards, we provide more information on the training procedure in Sec. 3,
including a proof showing that we can train our models using noisy, unbiased renderings as supervision signal. Finally, we
provide additional qualitative and quantitative results in Sec. 4.

1. Architectures

1.1. Light Transport Layer

The core of the Light Transport Layer is a PointNet-based architecture [9] with fully-connected ResNet blocks [2], which
is illustrated in Fig. 1. While the PointNet architecture can have arbitrary depth (number of ResNet blocks), we use a depth
of two for all the experiments in the paper.

Since we train our model on dynamic scenes with a variable number number of visible objects, the input point clouds have
different sizes for different training samples. In theory this is not a big problem, as PointNets can handle arbitrary point cloud
sizes. However, since we are using mini batches for training, having the same number of points for each training sample is
desirable. Therefore, our model always operates on the maximum point cloud size, and invisible objects are masked in the
architecture using per-point visibility flags.

1.2. 3D-to-2D Projection Step

In the 3D-to-2D projection step, the 3D point features are projected to image space, where the point locations are dis-
cretized. Points that are occluded by the scene’s geometry are masked out, which is determined by performing an occlusion
check using a rendered depth map. To make sure that we do not accidentally remove points on the scene’s surface, we use
a tolerance of ¢ = 1072 in the occlusion check. If multiple features are projected to the same pixel, we compute the mean
feature vector for all points projecting to that pixel. If a pixel has no points projecting to it, its feature vector is defined as
ZEero.

1.3. Image Synthesis Layer

The input to the Image Synthesis Layer are the projected features from the projection step and additional information
in image space, which can be computed cheaply using OpenGL shaders These image space buffers contain information
about the geometry and material information observed from the current view. They include depth map, albedo (diffuse
reflectance), normal map in world coordinates as well as a view ray map, which contains for each pixel the ray direction in
world coordinates going from the camera center through the respective pixel center. The intention behind using these image
space layers is to leverage the image formation process in multiple ways. The normal and view direction information can
be used by the network to infer shading in image space. The albedo layer supports texture synthesis where point projections
are sparse. In addition, by providing this information in image space, the light transport layer can solely focus on the task



of modeling the illumination in the scene. However, the image space layers do not contain useful information for reasoning
about light transport in the scene. A detailed visualization and description of the Image Synthesis Layer is provided in Fig. 2.

2. Datasets
2.1. Data Generation and Sampling

The datasets used in our experiments comprise a single scene for each static scene dataset, and four scenes for dynamic
experiments [1]. Since the data generation procedure for static scenes is a simplification of the dynamic case, we only
describe the dynamic case in this section. Since we use learnable feature descriptors in our model, we must ensure that there
are point correspondences between different training samples of the same scene. To this end, we sample an initial, static
point cloud for each scene. This point cloud is then modified according to the scene modifications in the training sample. If
an object is removed from the scene, the points are removed from the initial point cloud. If an object is translated, the points
sampled from its surface are translated accordingly. For each scene in the dataset, we first sample a static point cloud, which
is then modified for each sample in the dataset. A positive side effect of this is that we only have to store scene modification
information for each sample, saving memory.

2.2. View Sampling

For each scene, we would like to cover the space of possible viewing locations and directions as accuractely as possible. At
the same time we want to have a high number of views where a lot of scene details are visible to have an effective supervision
signal for training. We observe that most of the objects in a scene are arranged along the walls or the floor. Therefore, we
sample a viewing location uniformly from a bounding box that is slightly smaller than the scene’s bounding box. Note that
this means that a few of the sampled locations might lie inside an object. However, we found that these “outliers” do not
pose a problem to our method in practice as long as we observe a sufficiently large number of views outside of objects during
training. Next, we sample a viewing direction by sampling a look-at location uniformly from a bounding box that is half the
size of the location bounding box. As a result, the distance between the camera and scene objects is far enough to render
views with rich image content.

2.3. Point Cloud Sampling

We define a scene by a set of shapes S, where each shape S; € S is itself a set of triangles. Each shape is assigned a
sampling importance w(.S;) corresponding to its surface area, which is the sum of triangle areas for that shape. Given the
sampling importances and a point cloud of size N, we first sample /N shapes according to a distribution where the probability
of sampling a shape is proportional to its sampling importance. This can be achieved by using discrete inverse transform
sampling, where a discrete cumulative distribution is calculated for the sequence of shapes (S1, ..., S,):

S w(S;)

cdf(i) = =5———— €))
Zj:l w(S;)
Using a uniform sample s ~ (0, 1), a shape index i can be sampled according to
i = arg max {k : cdf(k) < u}, (2)
k

which can be implemented efficiently using bisection.

For each shape sampled from the distribution, our goal is to obtain a point sampled uniformly from the shape’s surface.
Since we work with a mesh scene representation, all the shapes are represented by a set of triangles. Therefore, for each
point we first sample the triangle with the same technique we used for shape sampling, using the triangle area as sampling
importance. Then, we sample a point location uniformly from the triangle. This way, uniformly distributed samples from the
shapes’ surfaces can be obtained.

2.4. Scene Modification Sampling

To train our model on all possible scene configurations (each object or light source could be located anywhere or not be
present in the scene at all), we must cover this distribution well in the dataset. To this end, we manually define for each
dynamic object an axis-aligned bounding box from which we sample a position for each training sample. The bounding
boxes can also be limited to one or two dimensions, e.g. if an object can only be translated along a wall. Although we do



not always get realistic object arrangements using this sampling strategy, this is not a limitation, as it makes our model more
general (i.e. our model is trained for both realistic and non-realistic object arrangements). In addition to object translations,
we randomly remove objects with a probability of 0.2 per object from the scene.

3. Training
3.1. Hyperparameters

We train all models using the Adam optimizer [4] with a learning rate of A = 5 x 10~%, which we decay by a factor of
0.99 after each epoch. These hyperparameters are the result of a hyperparameter optimization using grid search, where we
tested different learning rates and decay rates for Adam and RMSprop for 100,000 iterations. For the static scene experiment
in Section 4.1 of the main paper we use a batch size of 128. For the dynamic scene experiments in Section 4.2 of the main
paper we use a batch size of 32, as more GPU memory is required for the Light Transport Layer implementation. All models
were created and trained using PyTorch 1.0' [8].

3.2. Supervised Learning with Noisy Renderings

Since rendering a large set of photorealistic renderings for training would require a lot of time, we use noisy renderings
from a physically based renderer as supervision. More specifially, we use the bidirectional path tracing implementation
in Mitsuba [3]. Similar techniques have recently been used to learn image denoising [7, 5]. Our key insight is that we can
exploit the unbiasedness of state-of-the-art rendering algorithms like bidirectional path tracing [6] to obtain unbiased gradient
estimates.

To this end, we describe the input to our network by random variable X, which comprises a point cloud P, a view
represented by a world-to-view transform T and additional image-space information A as described in Chapter 3 of the
main paper. As supervision signal, we render a noisy image 1 that is an unbiased estimate of the ground truth rendering
I(X). When we train our network using the mean squared error (MSE) and stochastic gradient descent, our gradients will be
unbiased when using these noisy supervision renderings from such an unbiased rendering algorithm. Formally, this can be
expressed as follows:

Lemma 1. Let X be an input representation of a scene, g our rendering network and ia noisy rendering of X following
a distribution p(I|X) which depends on the chosen sampling-based rendering algorithm. Assume that the true (noise-free)

rendering is given by 1(X). Further assume that the rendering algorithm is unbiased, i.e., ]Ei\x[I] = I(X). In this case, the
following equality holds, i.e., the gradient estimates are unbiased:

Egpx | Vollpo(X) = 11| = Vollpa(X) - (X)) 3)

Proof. Since the expectation does not depend on the parameters 6, the gradient can be pulled out of the expectation. The left
side of Eq. (3) becomes

Eqix [Volleo(X) — 12| = VoEqx [Il00(X) — 1I1?] @

By applying the binomial theorem and the property of the estimator i being unbiased, which means that ]Ei\x m = I(X),
the expectation term can be further expanded to

Eqix [l0o(X) = 12| = Eqpx [Iloo(OI2 = 2(00(X), 1) + 1] )
= Eqix [lleo ()12 — 2Eqpx [(00(X), D)) + Eqp [181°] ©)
= lpa(X)II* = 2 {i0(X), (X)) + Egx IT11] @)

Taking the gradient with respect to 6 in Eq. (7) allows for removing or adding terms that are constant with respect to 6. Thus,

Uhttps:/pytorch.org
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we can replace ]Ei\x {||i||2} with ||I(X)]|2:

VoBg [I00(X) = 11%] = Vo [lleo(X)I12 = 2 (0 (X), (X)) + Bgp [ 1T ] ®)

= Vo [llpa(X)[1* = 2 (0 (X), I(X)) + [ 1(X)]|?] ()

= Vollpo(X) - LX) (10)

Inserting this into Eq. (4) results in Eq. (3), concluding the proof. O

4. Additional Results

We tested our model on two additional challenging static scenes, with results shown in Fig. 3 and Fig. 4, respectively. For
this experiment, we used a realistic bathroom scene and a realistic kitchen scene [1] at an image resolution of 256 x 256
pixels. Both scenes were trained with a batch size of 128 for 150,000 iterations. Although there is no light transport to be
learned in these static scene experiments, we find that our model is able to encode realistic static scenes well, and renders
novel views accurately.

For dynamic scenes we also conducted two experiments: one where we compared our approach to a set of baselines
in Section 4.2.1 of the main paper, using a dataset with dynamic objects and fixed lights, where we translated and removed
objects randomly. And another experiment where we highlight the importance of the Light Transport Layer and the additional
photon architecture in Section 4.2.2, on a dataset with dynamic objects and dynamic lights, where we additionally translate
rectangular light sources randomly along the ceiling. Tab. 1 shows the full quantitative evaluation of the experiments for
dynamic objects and fixed lights. For the experiment with dynamic objects and dynamic lights we provide a full quantitative
evaluation in Tab. 2.

Fig. 6 shows additional visual results for the baseline comparison for dynamic objects and fixed lights, complementing
Fig. 5 of the main paper. In Fig. 7 we show examples where our method does not predict the illumination accurately. These
error images also show that for the denoising approaches errors occur mostly in image regions with high frequency compo-
nents, i.e. edges and textures. For our approach, errors sometimes also occur in larger image regions when the prediction is
inaccurate or sparse. This also explains that while our approach performs best for most of the metrics in Tab. 1 and Tab. 2,
the MSE is lower for the denoising approaches.

We show some additional failure cases for dynamic objects and dynamic lights in Fig. 8.

In addition to the quantitative comparison for dynamic objects and fixed lights, we show a more comprehensive quantita-
tive comparison for dynamic objects and dynamic lights in Fig. 5. In addition to MSSIM and FID, we compare L1 feature
losses from different stages of the Inception v3 network [1 1, 12], showing that our approach clearly outperforms the denoising
baselines on different levels of image abstraction.



Figure 1. Light Transport Layer. In the first stage of the Light Transport Layer all points and supplementary point information p; are
processed in a preprocessing layer, whose purpose is to align its output feature dimension with the input feature dimension of the PointNet
block. The point features are then processed in two consecutive PointNet blocks. A PointNet block comprises a residual block, where local
features are computed for each point. The fully connected layers (hidden, output and shortcut layers) consist of 32 output neurons each,
where the weights within one layer are shared between the input points. The input dimension to the first fully connected layer in a residual
block is aligned with the output dimension of a PointNet block (64). Therefore, a fully connected shortcut layer is required for matching
the feature dimensions at the end of a residual block. Following the residual block within a PointNet block, point features are concatenated
with a global feature, which is computed as the maximum feature vector of all local features. The output features of the second PointNet
block are denoted by f;. We denote fully connected layers by fc and ReL.U activation functions by act.



skip connections 7
I/
/
7 / |
/ i I
| 1
1 | :
I I
N = ) I < o I
= = = E - = L=
1 I
8d l :
4d 4d I
2d 2d !
d d 3
[ convolutional ResNet block [CJ max-pooling [0 upsampling convolutional layer [@ concatenation

Figure 2. Image Synthesis Layer. For final image synthesis we use a UNet [10] architecture where the resolution is reduced in three
steps and expanded again. To this end, each level comprises a convolutional ResNet [2] block consisting of two 3 X 3 convolutional layers
and ReLu activations. We use the same feature dimension for the input, hidden and output layers in a convolutional ResNet block. The
convolutional ResNet blocks are followed by a downsampling step, which is implemented using max-pooling layers. The feature dimension
of the convolutional layers depend on the level, starting at a dimension of d = 64, which is then doubled after each downsampling step.
The features of the lowest level are then upsampled again using bilinear interpolation, concatenated with the convolutional ResNet block
output from the respective downsampling layer through a skip connection and processed in another convolutional ResNet block. After
the last upsampling layer an additional convolutional layer is used to render an image with three channels. The numbers below the layers
correspond to the number of feature maps in each layer. The numbers inside the layers correspond to the layer’s resolution, starting at a
square resolution of A x h. We use h = 128 in our static scene ablation study and h = 256 for the other experiments.

Teaching Input Prediction Ground Truth Teaching Input Prediction Ground Truth

Figure 3. Bathroom Scene. Results of our model on a realistic static bathroom scene.
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Figure 4. Kitchen Scene. Results of our model on a realistic static kitchen scene.



Architecture time / frame MSE MSSIM FID Feature L1

Denoising (1/1) 1.5059s 0.0005 0.880 26.4 0.163
Denoising (1/4) 0.3800s 0.0007 0.867 28.1 0.172
Denoising (1/16) 0.0986s 0.0012 0.835 38.7 0.203
Denoising (1/32) 0.0532s 0.0018 0.813 54.1 0.233
Denoising (1/64) 0.0283s 0.0029 0.781 94.0 0.281
CNN only 0.0191s 0.0043 0.835 36.1 0.195
Feature projection 0.0210s 0.0037 0.841 325 0.185
Ours (w/o photons) 0.0243s 0.0044 0.841 314 0.184
Ours (w/ photons) 0.0459s 0.0028 0.849 30.6 0.182

Table 1. Dynamic Objects and Fixed Lights. Quantitative evaluation for our experiment on dynamic objects and fixed lights.

Architecture time / frame MSE MSSIM FID Feature L1
Denoising (1/1) 1.5059s 0.0002 0.930 17.1 0.137
Denoising (1/4) 0.3801s 0.0002 0.923 17.6 0.143
Denoising (1/16) 0.0988s 0.0005 0.896 23.5 0.172
Denoising (1/32) 0.0518s 0.0008 0.874 38.6 0.207
Denoising (1/64) 0.0283s 0.0016 0.839 84.1 0.269
CNN only 0.0190s 0.0100 0.827 33.7 0.199
Feature projection 0.0208s 0.0098 0.827 329 0.197
Ours (w/o photons) 0.0243s 0.0029 0.871 30.0 0.184
Ours (w/ photons) 0.0468s 0.0014 0.887 25.1 0.172

Table 2. Dynamic Objects and Dynamic Lights. Quantitative evaluation for our experiment on dynamic objects and dynamic lights.
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Figure 5. Dynamic Objects and Dynamic Lights. This plot shows a quantitative comparison of our approach with the denoising baseline
for different sample densities. We plot reconstruction accuracy over inference time for our experiment on dynamic objects and dynamic
lights. The denoising labels refer to the ratio of pixels that are dropped. The layer indices (0-3) for the Feature L1 losses refer to outputs
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of the four major layers in the Inception v3 network.
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Figure 6. Dynamic Objects and Fixed Lights. Additional results for our method as well as for the baselines for dynamic objects and fixed
lights, complementing Fig. 5 of the main paper. 10
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Figure 7. Dynamic Objects and Fixed Lights. Predictions and error images with respect to ground truth for different denoising approaches
and our approach for dynamic objects and fixed lights. Error plots are shown below the respective prediction.
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Figure 8. Dynamic Objects and Dynamic Lights. Example scenarios that are challenging for our approach with dynamic objects and
dynamic lights. We observe failure cases for specular materials and mirrors, when objects are close to the camera and in the presence of
fine shadows.
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