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Abstract— Vision-based underwater navigation and obstacle
avoidance demands robust computer vision algorithms, partic-
ularly for operation in turbid water with reduced visibility.
This paper describes a novel method for the simultaneous un-
derwater image quality assessment, visibility enhancement and
disparity computation to increase stereo range resolution under
dynamic, natural lighting and turbid conditions. The technique
estimates the visibility properties from a sparse 3D map of
the original degraded image using a physical underwater light
attenuation model. Firstly, an iterated distance-adaptive image
contrast enhancement enables a dense disparity computation
and visibility estimation. Secondly, using a light attenuation
model for ocean water, a color corrected stereo underwater
image is obtained along with a visibility distance estimate.
Experimental results in shallow, naturally lit, high-turbidity
coastal environments show the proposed technique improves
range estimation over the original images as well as image
quality and color for habitat classification. Furthermore, the
recursiveness and robustness of the technique allows imple-
mentation onboard an Autonomous Underwater Vehicle for
improving navigation and obstacle avoidance performance.

I. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) are increas-
ingly being utilized as tools to obtain visual observations
of benthic habitats in highly unstructured and dynamic
environments. These include shallow coral reefs, near-shore
mangroves and marinas with degraded visibility making
traditional diver surveys impractical and dangerous. The
surveys, as considered here, typically consist of low-altitude
(0.5 to 2 m above the seafloor) transects, similar to diver
video transects, to allow habitat classification and mapping.

However, the ability to discriminate objects and perform
classification from underwater images, whether collected by
divers, AUVs, or Remote Operated Vehicles (ROV) depends
on the visibility. Visibility in this paper means the distance
which we can reliably discriminate an object in the scene.
In shallow coastal environments the visibility can be less
than 1 m in tidal embayments and up to 10-20 m with
oceanic water. Whilst most literature referenced throughout
this paper has considered image enhancement in relatively
clear oceanic water, the focus of this paper is the significantly
more challenging naturally lit turbid coastal environments.
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A. Related Work

There has been a long history of research to enhance un-
derwater images focusing on color restoration and dehazing.
A comprehensive overview of methods for image enhance-
ment and restoration along with subjective and quantitative
assessment metrics is given in [1]. A particular problem
with underwater images is that of color consistency and ap-
pearance changes due to preferential absorption of different
color wavelengths as they travel through the water [2], [3].
Color techniques ranging from integrated color models [4]
to hyper-spectral correction [5] have been proposed. These
are typically multi-step approaches utilizing color histogram
stretching and color correction to account for varying depth
and natural or artificial illumination [4]. Distance-dependent
contrast and color degradation [2] – which is the case in
turbid media – is typically only addressed in relatively low
turbidity images, although several works have achieved scene
depth recovery and color enhancement [6]–[8].

Kocak et al. [9] provides an overview of improving long-
range visibility in degraded images highlighting additional
techniques such as structured and multi-source lighting.
These methods can produce terrain maps in real-time but
their depth of field can be limited.

Single image visibility assessment and enhancement is
still a challenging and ill-posed problem. The observed
brightness of each pixel depends on the observed scene point
radiance, the scattering and attenuation properties of the
circumfluent medium, the scene point distance as well as the
ambient illumination. Related work for image enhancement
(often termed dehazing) can be classified into four main
categories depending on the additional information used for
disambiguation.

1) Polarization: Schechner et al. [10], [11] consider sig-
nificantly varying scene distance image restoration using a
polarizer attached to a camera. By taking two or more images
with different degrees of polarization (DOP), the authors are
able to nearly double the visible range and through image
processing derive a distance map of the scene. However
polarization filters attenuate the radiance transmission to the
camera which is undesirable, particularly with time-varying
adverse visibility and illumination conditions.

2) Turbidity: Narasimhan and Nayar [12], [13] as well
as Cozman and Krotkov [14] analyse a static scene by
taking multiple images under different visibility conditions.
Even though they report impressive results it requires a
static camera and a significant change in media turbidity for
constant illumination conditions.



3) Scene Depth: Performing image enhancement utilizing
the estimated scene depth (e.g. with a stereo camera system)
is a chicken-and-egg dilemma. Contrast degradation leads to
a low signal-noise-ratio (SNR) which makes disparity com-
putation difficult. Conversely accurate and dense scene depth
is a prerequisite for solving the ambiguities in the visibility
enhancement problem. Whilst no literature on underwater
stereo visibility enhancement has been found, some studies
have considered it for seeing through fog [15]–[17]. These
works make assumptions about the scene requiring either
manual input or structure such as road or uniform geo-
referenced terrain which is difficult to achieve underwater.

4) Priors: Single image underwater visibility enhance-
ment often considers priors from image statistics. Fattal [18]
and Tan [19] derive assumptions from different phenomena
in order to develop a cost function in the framework of
Markov random fields (MRFs). He et al. [20] derive a Dark
Channel Prior from natural image statistics. This postulates
that there will be a low response in at least one color
channel for haze-free images. Turbid media scatter ambient
light towards the observer and lead to an additive signal
which is a function of the scattering coefficient and the
scene distance. The subsequent image enhancement becomes
a regional contrast stretching which can create halos. Since
the ambiguity between visibility and scene distance cannot
be solved, their approach still yields one unknown (depth
scale). In addition the dark channel assumption is based
on natural outdoor image statistics which might not hold
in arbitrary underwater scenes particularly with man-made
infrastructure. Notable works utilising the Dark Channel
Prior include MRFs for estimating scene radiance variation
[8], [21] and median filters [22] for generating depth maps to
dehaze and color correct underwater images with relatively
small amounts of haze.

B. Paper Outline

The remainder of the paper is as follows. Section II
describes the proposed underwater visibility enhancement
and assessment approach. Section III presents a simulation
evaluation of the proposed approach, with Section IV evalu-
ating the methodology using experimental field data collected
by an AUV. Finally, Section V summarizes the paper and
describes future research directions.

II. UNDERWATER VISIBILITY ESTIMATION & IMAGE
ENHANCEMENT

The goal of this research is to allow real-time enhancement
of underwater images which are naturally lit and degraded
due to relatively high turbidity and other visibility reducing
phenomena. Enhancement of underwater images requires
modelling and estimation of the water absorption and scatter-
ing characteristics to remove haze. However it also requires
a scene depth map. Many papers use a single image and
the dark channel prior in the estimation of a depth map [8],
[21], [22]. In our approach, we use stereo images in a two-
stage enhancement process to improve overall image qual-
ity allowing visibility and range estimation. The following

Fig. 1. Underwater Light Model. Light directly transmitted from the scene
point will be wavelength dependent exponentially attenuated over distance
d and superimposed by the ambient illumination I∞ at depth z that will
be refracted towards the observer.

subsections describe the modelling and estimation steps in
detail, with the overall image enhancement approach detailed
in Section II-E.

A. Underwater Light Propagation Modelling

Underwater light models generally follow a standard at-
tenuation model [6] to accommodate wavelength attenuation
coefficients [2]. In this study the Koschmieder Model [23]
was adopted which has been established as a description of
the atmospheric effects of weather on the observer [10], [12],
[16], [24]. In outdoor clear weather conditions, the radiance
from a scene point would reach the observer nearly unaltered.
However when imaging underwater the irradiance observed
by each pixel of the camera (E) is linear combination
of directly transmitted scene object radiance that will be
attenuated in the line of sight and scattered ambient light
towards the observer as depicted in Figure 1. Therefore, the
Koschmieder model has been adapted here for underwater
lighting conditions (as in [2], [3]) and can be expressed as

E = I∞(z)ρe−β(λ)d + I∞(z)(1− e−β(λ)d), (1)

where I∞(z) is the ambient light at depth z, ρ is the
normalized radiance of a scene point, d is the distance from
the scene point to the camera and β(λ) is the total beam
attenuation coefficient which is nonlinear and dependent on
the wavelength λ. The ambient illumination at depth z itself
is subject to light attenuation in the following form:

I∞(z) = TI0e
−β(λ)z, (2)

where I0 is the atmospheric intensity at the surface, and T
is the transmission coefficient at the water surface.

When dealing with atmospheric effects, like fog or haze,
β is normally assumed to be constant for the whole vis-
ible range. However, in underwater applications different
wavelengths of light (λ) are nonlinearly and preferentially
absorbed relative to others. According to [3], the total beam
attenuation coefficient in saltwater can be approximated as

β(λ) ≥ Ksw
w (λ) + bp(λ) + ap(λ) + ay(λ) (3)

where Ksw
w is the diffuse attenuation coefficient for the

clearest saltwater, bp and ap are the scattering and absorption
coefficients of particles respectively, and ay is the absorption
coefficient of dissolved organic material. Figure 2 illustrates
the wavelength dependency of β even in pure saltwater
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Fig. 2. Clear ocean water light attenuation characteristics deduced from
[3]. Also illustrated is typical imaging sensor sensitivity and its overlap
with attenuation coefficients which results in a mean channel chromaticity
change over depth.

with the highest visibility (bp = 0, ap = 0, ay = 0). This
phenomena leads to a depth-dependent image chromaticity
change.

However, in real ocean waters, the scattering and absorp-
tion coefficients are non-negligible, particularly in the highly
turbid water scenarios considered in this paper. Therefore,
these coefficients need to be approximated from the collected
images as discussed in the following sections.

B. Estimating Visibility Coefficients

Estimating the visibility conditions (I∞(z), ρ, β(λ) and
d) directly from single images is a highly ill-posed problem.
For a color image with N pixels, we achieve N observable
intensity values in each image color channel Ec where c ∈
{R,G,B}. However, the estimation problem in (1) yields
(c+ 1) ·N + 2c > c ·N unknowns for each image.

For this reason it is assumed a known 3D scene model to
give d (the distance to each point in the image) which can
be obtained to varying levels of granularity from the stereo
images collected by the AUV (see Section II-E for detail).

In our approach, the visibility coefficients are estimated
by first binning the intensity values in each color channel
with scene distance for all pixels as illustrated in Figure 3.
It can be seen that the range of scene point radiances in
good visibility atmospheric conditions (top left image) are
independent from scene distance and possess a wide range
of values [0..1] (grey points). However, the deviation of
observed scene radiances in underwater images (bottom left
image) will decrease with scene distance, depending on
visibility and ambient light, which is subject to wavelength-
dependent attenuation through the water [2], [3]. This results
in a narrow field of radiances (colored points), that converge
to the current ambient light intensity.

Using dark and white patch assumptions, thresholds
(EcX%) are applied where EcX% is defined in a way that X%
of intensity values in color channel c are smaller than EcX%.

Black patch assumption: The lowest 1% of irradiances in
each color channel and scene distance bin stem from black
objects

ρc ≈ 0 ∀Ec ≤ Ec1% (4)
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Fig. 3. The observed pixel brightness variation with distance for underwater
images with and without haze. For illustrative purposes, the underwater
image was obtained from the haze-free image as described in Section III.
The range of scene point radiances in good visibility conditions (top left
image) are independent from scene distance and possess a wide range of
values [0..1] (grey points). The deviation of observed scene radiances in
underwater images (bottom left image) will decrease with scene distance,
depending on visibility and ambient light, which is subject to wavelength-
dependent attenuation. This results in a narrow field of radiances (colored
points), that converge to the current ambient light intensity. Conditional,
non-linear estimation (trusted region) yields good estimates of the ambient
light and attenuation coefficients (colored lines).

Using this assumption directly would lead to halos and
problems with uniformly colored surfaces like it is the case
in regional contrast stretching techniques [20]. Image matting
helps prevent halos [6], [8], however matting techniques are
based on structure and intensity information which degrade
the disparity map in the presence of large uniformly shaded
structures or 3D objects that are covering a large scene depth-
field. In contrast, we propose to use these scene points in a
robust, non-linear estimation framework to achieve a global
solution for all depth bins in one color channel.

White patch assumption: Unless retro-reflective surfaces
are present, which is generally not the case in natural under-
water environments, the observed scene point brightness is
upper-bounded by the ambient illumination conditions

ρc ≤ 1, ∀Ec ≥ Ec99% (5)

Inserting all assumptions in (1) yields a conditional, non-
linear estimation problem

Ec = Ic∞(z)(1− e−β
cd), ∀Ec ≤ Ec1% (6)

with two unknowns per color channel (Ic∞(z), βc) and an
additional constraint on the ambient light such that

Ic∞(z) ≥ Ec, ∀Ec ≥ Ec99%. (7)

We use a trust region approach for minimizing (6) subject
to the bounds (7) [25]. The optimization is initialized using
the brightest pixel in each color channel for the airlight
(Ic∞), and the theoretical clear ocean water values for (βc).
In practice, approximately 12 iterations are required for
convergence. Figure 3 illustrates the estimation process as
well as the validity of both proposed assumptions with the
upper line showing the result of the ambient light estimate
(7), and the lower curve the attenuation coefficient from (6).

C. Scene Radiance Recovery

Once βc and I∞(z) are estimated the scene radiance
recovery of all image pixels is performed for each color
channel according to

ρc = 1 +

(
Ec

Ic∞(z)
− 1

)
eβ

cd (8)



For this step, a dense disparity map of the image scene is
essential to determine the scene distances. The generation of
dense disparity maps is described in Section II-E.

D. Visibility Assessment

To characterize the current underwater visibility condition,
the mean attenuation coefficient (α) that is due to the
scattering and absorption of particles is given by

α =

∑
c(β

c − κc)∑
c 1

(9)

where the mean clear ocean water attenuation coefficients
κc for each color channel is determined from the spectral
response sc(λ) of the camera sensor as illustrated in Figure 2:

κc =

∫ 800nm

200nm

sc(λ) ∗Ksw
w (λ)dλ (10)

This measure relates the current conditions to clear ocean
water conditions (α = 0) which possesses the best theoretical
visibility. To estimate visibility distance we approximate
human contrast discrimination. Human perception can distin-
guish two neighbouring scene points as soon as they exceed
a contrast ≥ 5% [26] such that

Cvis =
Emax − Emin
Emax + Emin

= 0.05 (11)

Inserting (6)-(7), we derive the visibility distance for AUV
applications in the color channel with best visibility such that

dvis =
1

minc(βc)
· log

(
1− Cvis

2Cvis
+ 1

)
(12)

Additionally, we are able to obtain a depth estimate of
the AUV (zest) by comparing the estimated ambient lighting
conditions with the light attenuation characteristic from clear
ocean water as depicted in Figure 2, such that

zest = arg min
z

(∑
c

(γc − γcth)2

)
(13)

where γc is the estimated ambient light chromaticity given
by

γc =
Ic0∑
c I

c
0

(14)

and γth is the theoretical chromaticity-depth-dependency in
clear ocean water.

Whilst zest can be very uncertain as it assumes white
sunlight and clear ocean water behaviour, in moderate to high
visibility conditions it yields a good measure for plausibility
checks against other sensors (such as an onboard depth
sensor) in order to achieve higher accuracy and reliability.

E. Image Enhancement

In order to perform efficient enhancement of the visibil-
ity degraded underwater images, we propose an approach
consisting of two visibility and enhancement steps utilizing
stereo image pairs as depicted in Figure 4.

The first image enhancement step (step 1) recovers im-
portant scene content and image structures in areas with bad

Fig. 4. Flowchart of the proposed image enhancement algorithm consisting
of two visibility estimation and two enhancement steps.

visibility. To start the process, a coarse 3D map of the scene
needs to be created.

We use the LIBELAS1 implementation, proposed in [27],
for all stereo retrieval. It is a Bayesian approach to stereo
matching that creates a prior on disparities from robustly
matched support points. The advantage of this implemen-
tation is that even in poor visibility where dense stereo
estimation will be challenging, some scene points can be
robustly matched. Hence, the prior already implicitly yields
a coarse 3D map of the scene that can be used in the first
visibility estimation step.

The coarse 3D map is obtained from the robustly matched
scene points via Delaunay triangulation [28]. Using the
coarse 3D map, the visibility coefficient as well as ambient
illumination is estimated using the physical light attenuation
model described in Sections II-A and II-B.

In order to recover the original scene radiances for image
enhancement (Section II-C), a dense and edge preserving
depth map is mandatory. However, due to the degraded input
images, only a coarse disparity mesh is available with many
disparity gaps present which need to be filled. Therefore, we
utilize an image matting approach [29] that refines the coarse
disparity map and extrapolates information to unmatchable
areas, based on the observed intensity values to form a
“pseudo 3D map”. It is an edge preserving and halo prevent-
ing algorithm but with the disadvantage that the resulting
dense map does not contain the observed disparity values
anymore. However, it is a good starting point for relatively
fast image enhancement and scene structure recovery. In

1Library for Efficient Large-scale Stereo Matching: http://www.cvlibs.net
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Fig. 5. Results on Middlebury Dataset. First column shows degraded
underwater images, rendered with z = 3m, α = 0.2 (art), z = 2m,
α = 0.15 (dolls), z = 5m, α = 0.2 (moebius), z = 1.5m, α = 0.3
(aloe). Second column shows their disparity maps. Third column shows the
improved disparities (after step 1). Last column shows enhanced image (step
2).

very challenging images, as in some experimental results of
Section IV, where the coarse 3D map covers only a minor
part of the image, we additionally fill disparity gaps by
robustly estimating the predominant 3D plane using Random
Sample Consensus (RANSAC) [30].

In the second enhancement (Fig. 4, step 2), the procedure
is repeated using the enhanced left and right images from
(step 1) to create an “improved stereo” map. This map is
further refined utilizing a discontinuity preserving gap inter-
polation [31], followed by image inpainting [32] for large
areas with missing 3D information. Using this improved
stereo map, detailed visibility parameters are estimated.
These are then used with the gap interpolated map to recover
scene radiances in the final enhancement (step 2).

III. SIMULATION RESULTS

Images of complex underwater scenes are difficult to pre-
cisely ground-truth. Therefore, the accuracy of our method
was investigated on the Middlebury data set2, using the image
pairs and ground-truth disparities from aloe, art, dolls and
moebius at full resolution (≈ 1300× 1100 pixels). Artificial
degradation of the images was performed to approximate the
underwater survey requirements of an AUV in a depth range
of 0 − 5m and a mean attenuation coefficient α = 0 − 0.3
utilizing the model from Section II-A (without added noise).

Figure 5 shows results after applying the methodology de-
scribed in Section II-E for different visibility conditions and
depths. Although visibility degradation leads to a significant
information loss in the acquired images they still provide
sufficient information to estimate the visual range and to
some extent considering SNR restore lost image parts. The
original image chromaticity could also be restored. The main
limitations of image enhancement stem from occluded image
regions where no disparities can be matched (see Figure 5,
art).

2http://vision.middlebury.edu/stereo/
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Fig. 6. Improved stereo results for decreasing visibility. Left column shows
the estimated mean attenuation coefficient for decreasing visibility α =
0 − 0.3 at depth z = 2.0m (dolls) and z = 1.5m (aloe), respectively.
Center column depicts the fraction of unmatched pixels which is rapidly
increasing in a conventional stereo matching framework. Upstream visibility
estimation enables stereo matching with almost constant quality.

Fig. 7. Image restoration for increasing depth. Left column shows the
estimated mean attenuation coefficient for increasing depth z = 0 − 5m
for α = 0.2. Centre column depicts the color difference to the haze-free
groundtruth image. Visual results are shown in the right column.

The improvement for stereo computation was evaluated
for aloe at z = 1.5m and dolls at z = 2.0m with increasing
mean attenuation coefficient α = 0 − 0.3 (Figure 6). As
shown the visibility conditions could be estimated reliably.
Due to missing black/dark objects in aloe, the black patch
assumption was violated which leads the proposed algorithm
to slightly overestimate the current attenuation coefficient.
When performing conventional stereo matching, the fraction
of unmatched pixels is rapidly increasing from 0.21 to 0.92
(aloe) and from 0.26 to 0.72 (dolls) with adverse visibility. In
contrast, our method proves to be robust to visibility changes,
that is the fraction of unmatched pixels stays below 0.23 for
both images over the whole range of visibility conditions.

The attenuation characteristic of ocean water leads to sig-
nificant light chromaticity changes for increasing depths. A
popular measure for perceived color differences with respect
to the original image (above the water surface) is the CIE
1976 L*,a*,b* color difference formula [33] that computes
the Euclidean point distance between two color points in
the color-opponent and perceptually uniform CIE L*a*b*
(∆EL∗a∗b∗). A color difference of ∆EL∗a∗b∗ ≈ 2.3 is the
Just noticeable difference (JND) and is the minimum color
deviation which can be distinguished by a human observer.
As depicted in Figure 7, ∆EL∗a∗b∗ between original image
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Fig. 8. The Starbug AUV was equipped with an onboard forward looking
stereo camera pair. In addition, a GoPro high-definition stereo camera head
with 32 mm baseline was mounted to the front of the vehicle and recorded
during the experiments.

and underwater image rises with increasing depth z = 1−5m
from 19.28 to 35.3 (moebius) and from 23.87 to 40.36 (art),
respectively. A first image enhancement leads to an almost
constant color difference ∆EL∗a∗b∗ ≈ 15 (moebius) and
∆EL∗a∗b∗ ≈ 18.1 (art). A second restoration step, using
the improved stereo information further reduces the color
deviation to 10.7 and 13.1, respectively.

IV. EXPERIMENTAL RESULTS

The underwater image enhancement algorithm presented
above was evaluated on an AUV in uncontrolled ocean
conditions. The purpose of these experiments was to evaluate
the robustness and performance of the technique in terms
of effective stereo range improvement and ability to correct
color under different naturally lit operating scenarios.

A. AUV Platform

The Starbug MkIII AUV [34] was used for these ex-
periments (Figure 8). The AUV’s onboard vision system
consists of two stereo camera pairs, one looking forward
and the other looking downwards. For this study an external
high-resolution stereo system was used for image collec-
tion. These calibrated GoProTMcameras (baseline 32mm)
collected images at 30 fps with resolution 1280 × 960 and
were time-synchronised to the AUV’s onboard computer.

B. Experiments

A set underwater transects were performed at two sites
in Queensland, Australia. The first was a shallow water,
rather turbid, seagrass survey site off Peel Island (153.377oE,
27.494oS) in Moreton Bay. The second site was in the
relatively clearer waters off Heron Island (151.8975oE,
23.4504oS) at the Southern end of the Great Barrier Reef.

1) Peel Island Transects: This area is adjacent to a marine
protected zone and contains a range of seafloor types such as
hard coral, rock, sand and seagrass. As it is a strongly tidal
region, the visibility can vary greatly due to resuspension of
sediments, incoming clear oceanic and turbid flood waters.

Four different length transects were performed with the
AUV and covered water depths from approximately 0.3 to 3
m with the AUV travelling towards and away from the sun.
The terrain was relatively planar sloping gently up towards
and island with protruding coral heads, seagrass (Sargassum)
and small rocks. During the experimental campaign the Sec-
chi depth was measured from 2.5 - 4 m. Weather conditions
were fair with the sun at its maximum height in the sky. In
total, 1494 images were collected from the four transects.

2) Heron Island Transects: This survey site was on a
steep sided reef slope and consisted of hard coral going down
to a sand floor with a depth range of 1 - 8 m. Although the
site had considerably greater visibility than in Moreton Bay,
strong winds exceeding 25 knots during the experimental
campaign had reduced the visibility to a Secchi depth of 5
- 8 m. In these experiments the horizontally mounted AUV
stereo camera system was used to track another AUV as it
maintained constant altitude above the reef surface. A total
of 870 images were collected during four transects which
travelled up and down the reef slope.

C. Results

A comparison between image enhancement using our ap-
proach against established histogram equalisation methods to
increase image contrast are shown for representative images
from Peel and Heron Island in Figure 9. The methods used
for comparison are the standard MATLABTMfunctions for
spatially-invariant histogram equalisation (histeq), and the
spatially-variant adaptive histogram equalisation (adapthis-
teq) as employed in [8]. It can be seen that our results provide
greater image detail and overall quality compared to the
histogram methods for both turbidity (visibility) scenarios.

Figures 10(a) and 10(b) show the results for the esti-
mated visibility coefficient, the visibility distance and the
diving depth for both the Peel and Heron Island transects
respectively. As seen the proposed approach yields stable
and coherent estimation results for the range of depths and
visibility conditions. However, there can be a slight over
estimation of visibility distance when very close to the
surface where the scene depth cannot be reliably estimated
(surface occupies a significant portion of the image) and the
visibility coefficient is underestimated.

The estimated depth profiles reflect the actual camera
depth during transects, except for a constant offset of approx-
imately 0.3 m in the Peel Island data. This is likely caused
by the large amount of organic material present in the water
column which may influence the ambient light chromaticity
and the estimation performance as discussed in Section II-D.

The visibility coefficient estimate shows some outliers in
Peel Island Sequence 4 that stem from low textured images
captured in higher diving depths where no disparities could
be reliably matched.

Figures 11(a) and 11(b) show representative images and
their enhanced image and disparity maps for the Peel Is-
land and Heron Island transects respectively. The enhanced
images allow for automatic visual inspection and obtaining
repeatable observations of benthic habitats. An empirical
study by marine scientists has indicated that they are able
to more reliably classify coral and seagrass species on the
enhanced images over the original images, particularly for
the Peel Island transects.

The disparity maps in these experimental conditions show
only moderate improvements with up to 6.3% in unmatched
pixels and range. There are four possible causes of this; (1)
imprecise camera calibration (particularly for distant objects
due to the short baseline and lack of a global shutter on the



(a) Original image (b) Our approach

(c) Histogram equalization (d) Adaptive histogram
equalization

(e) Original image (f) Our approach

(g) Histogram equalization (h) Adaptive histogram
equalization

Fig. 9. Comparison of our approach against histogram equalization methods
for representative images from Peel Island (a)-(d) and Heron Island (e)-(h).

stereo camera rig), (2) aliasing due to small-scale repetitive
structures, (3) the planarity of the scene with the AUV
travelling parallel to the seafloor with only the lower half
containing features, and (4) more dominantly due to particles
in the water and inhomogenously scattered light (e.g. from
sun beams in the shallow water).

Table I illustrates the mean and standard deviation
computation times for 640 × 480 pixel images us-
ing a single 2.4 GHz CPU running a non-optimized
MATLABTMimplementation of the proposed algorithms.
Whilst not quite at framerate the results suggest the proposed
methodology could be implemented onboard slower moving
AUVs for improving navigation and obstacle avoidance.

V. CONCLUSIONS

This paper has described a novel method that simul-
taneously performs underwater image quality assessment,
visibility enhancement and improved stereo estimation. We
firstly propose the development of a coarse 3D map from the
degraded input stereo images to allow visibility estimation
and image enhancement using a physical model for atmo-
spheric scattering adapted for use underwater in naturally lit

(a) Peel Island Transects

(b) Heron Island Transects

Fig. 10. Estimation results for the visibility coefficient (top trace), the
visibility distance (center trace) and the estimated diving depth (bottom
trace) using four underwater sequences acquired from different diving
transects at (a) the high turbidity water at Peel Island, and (b) the moderate
turbidity water at Heron Island.

Algorithm Mean (s) Std Deviation (s)
Sparse disparity mesh computation 0.1171 0.0149

Visibility estimation (step 1) 0.6139 0.1589
Image enhancement L (step 1) 0.3149 0.0123
Improved disparity computaton

(including image enhancement R) 0.7705 0.0202
Visibility estimation (step 2) 0.5669 0.0502
Image enhancement (step 2) 0.1822 0.0179

TOTAL 2.5655

TABLE I
MEAN AND STANDARD DEVIATION COMPUTATION TIMES FOR EACH

STEP IN THE PROPOSED IMAGE ENHANCEMENT METHOD.

environments. In a second step, the improved stereo map is
used for a precise visibility estimation, image enhancement
and 3D scene reconstruction. This approach was evaluated
in simulation and using experimental data collected by
an AUV in reduced visibility, naturally lit coastal waters.
It is shown to improve stereo disparity estimation by up
to 6.3% in the harsh experimental conditions experienced.
This technique has proven robust and its performance has
promise for implementation onboard an AUV and for image
color correction to allow improved species identification by
marine scientists. Future work will focus on investigating
the robustness of stereo matching algorithms to improve the
disparity image particularly in shallow water where surface
waves cause rapidly varying lighting conditions.



(a) Peel Island

(b) Heron Island

Fig. 11. Example enhanced underwater images and disparity maps from
(a) the high turbidity Peel Island Transects, and (b) the moderate turbidity
Heron Island Transects.
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