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Abstract. In this paper, we propose a novel raindrop shape model for the detec-
tion of view-disturbing, adherent raindrops on inclined surfaces. Whereas state-
of-the-art techniques do not consider inclined surfaces because they assume the
droplets as sphere sections with equal contact angles, our model incorporates cu-
bic Bézier curves that provide a low dimensional and physically interpretable rep-
resentation of a raindrop surface. The parameters are empirically deduced from
numerous observations of different raindrop sizes and surface inclination angles.
It can be easily integrated into a probabilistic framework for raindrop recognition,
using geometrical optics to simulate the visual raindrop appearance. In compar-
ison to a sphere section model, the proposed model yields an improved droplet
surface accuracy up to three orders of magnitude.

1 Introduction

Outdoor navigation and surveillance demand for reliable and robust computer vision
algorithms. They have to meet stringent conditions concerning disturbances caused by
arbitrary weather conditions. In fact, there are various atmospheric influences which re-
strict the usability of these systems such as fog, rain or snow. Especially in rainy weather
it is often the case that adherent waterdrops on the lens-protecting glass disturb the view
of a camera. Although a lot of research has been pursued in robotics [16], computer
vision [5, 7, 11] and for driver assistance [9, 12, 19], raindrop detection still remains a
challenging task. This might be for several reasons: Water droplets on a glass surface
exhibit a large variety in shape and size. Transparency makes their appearance highly
dependent on the image background. Moreover, water droplets on the protecting glass
of a camera are subject to severe out-of-focus blur which lowers their distinguishability
from the scene background.

Recent work on raindrop detection [8, 12] assumes a simple sphere section for mod-
eling the droplet boundary. Especially on tilted planes where gravity causes an unidi-
rectional droplet deformation, this assumption does not hold. While high-order polyno-
mials are more adequate, a physical interpretation of the fitted parameters is hard.

In this paper we propose a novel raindrop shape model, that provides a physically
interpretable parameter set of low dimensionality. Our main contribution is a model
based on cubic Bézier curves. We provide a broad validation of the model parameters
and show, that the shape deviation between fitted model and real droplet will be sig-
nificantly decreased compared to state-of-the-art sphere section models. The proposed
shape model can be easily integrated into existing raindroprecognition frameworks.
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2 Related Work

The visual effects of rain are manifold and complex. Water droplets in the atmosphere
lead to contrast attenuation in the far-field of the camera, whereas falling raindrops
produce sharp intensity changes in image sequences. Adherent raindrops in front of
the camera lens disturb the view from the camera and light reflections on the droplet
surfaces additionally deteriorate computer vision algorithms.

Related work on dynamic weather effects like the appearanceof falling raindrops
in image sequences has been performed by [5, 7]. They studiedthe influence of falling
raindrops on the image acquisition process and introduced aphotometric model for
spherical raindrops in the atmosphere that is used for enhanced video processing like
removing rain from image sequences [4] or rain streak rendering [6].

In the targeted context of outdoor navigation and surveillance, falling raindrops and
rain streaks can be considered as atmospheric noise and are not the dominant disturbing
effect. Stronger limitations are imposed by adherent waterdroplets on the glass surface
covering the camera lens. Kurihata et al. [9] used a machine learning approach with
raindrop templates to detect raindrops on windshields frominside a moving vehicle.
Results within the sky area were promising, whereas the proposed method produced
a large number of false positives within the non-sky regionsof the image where rain-
drop appearance modeling becomes more challenging. In thiswork, in contrast, we
aim to accurately exploit the physical relationship between droplets shape and their
appearance. Zhang et al. [19] combined a wavelet transform for image blur detec-
tion with motion analysis using cumulative differences to recognize optical contami-
nations close to the camera. Their approach works well for rigid, opaque contamina-
tions but fails in the presence of raindrops because their appearance strongly depends
on the scene background. Yamashita et al. exploited hardware constraints like multiple
cameras [13, 18] or pan-tilt surveillance cameras [16, 17] with known yaw rates in order
to bypass the challenge of modeling the complex optical behavior of raindrops. Roser
et al. [8, 12] simulated spherical droplets on a glass surface using geometrical optics
and out-of-focus blur for the task of raindrop detection. However, they lack a realistic
shape parametrization of droplets that in practice are subject to gravity.

The remainder of this paper is structured as follows: Section 3 discusses the propa-
gation of light rays through a droplet and shows how it can be used for raindrop detec-
tion. In Section 4 we proposes a raindrop shape model based ona Bézier curve repre-
sentation. Validation results on real data and a comparisonto a sphere section model [8]
are given in Section 5.

3 Raindrop Recognition

Given a set ofn artificial raindrop hypothesesD1, . . . ,Dn for different image positions
and presumed drop radii, the raindrop recognition task can be formulated as computing
the MAP estimate of the conditional probability

p(d|z) ∝ p(d)p(z|d) (1)

with respect to the patternd ∈ {⊘,D1, . . . ,Dn}. Here⊘ is a background pattern that
models the case where the image region is not disturbed by a raindrop andz(u, v, r)
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Fig. 1. Droplet refraction model. (a) depicts the image formation process in the presence of
raindrops on a protecting glass in front of the camera, using geometrical optics. In (b) an artificial
raindrop patternD is rendered by tracing the light rays through the raindrop to the background
and composing all found background pixels. For demonstration purposes, an additional out-of-
focus blur is applied and the blurred patternDblurred is added to the original image.

denotes the observation at positionu, v with radiusr in form of local image statistics.
It can be achieved densely as wells as from preselected points of interest, like CenSurE
[1] or SURF [2]. Fairly standard cost measures such as the Sum-of-Absolute Differ-
ences (SAD) or the Sum-of-Squared Differences (SSD) are applied for modeling the
observation likelihoodp(z|d). The prior may model the occurrence probability for dif-
ferent raindrop sizes in various adverse weather conditions in an empirical Bayesian
perspective according to [15].

Raindrop hypotheses for any circular regionx = (u, v, r)T are achieved from ob-
served points in the environment, using geometrical optics. As depicted in Fig. 1(a), a
light ray emanating from a point in the environment will be refracted by the raindrop
and the protecting glass surface multiple times and reachesthe camera sensor at point
P1. Unless the raindrop does not occlude this environment point, it will be sensed a
second time at pointP2. Note, that the droplet acts as a convex lens with a small focal
length. Hence, for typical application in navigation and surveillance it is ensured that
only a minor part of the environment points are occluded by the raindrop (see Fig. 1(a)).
An accurate geometric relationship betweenP1 andP2 can be derived using Snell’s
law of refraction as shown in Fig. 1(b). Note, that the refraction on the protecting glass
occurs with respect to the (constant) plane normalnp of the protecting glass, whereas a
general drop surfaceS exhibits a normal fieldNS that can be deduced from the chosen
drop parametrization. Whereas [8, 12] use simple sphere sections that are in general
3D surfaces of constant curvature as depicted in Fig. 2(a), this model approximates the
raindrop shape only insufficiently and results in a high model deviation especially when
dealing with tilted glass surfaces. For this reason, we derive a raindrop shape model re-
garding numerous tilt angles and drop sizes by using two orthogonal oriented Bézier
curves as illustrated in Fig. 2(b).
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Fig. 2. Raindrop surface models.(a) shows the droplet surface and its surface normals for a
sphere section model. In (b) a 3D model is created by superposing two orthogonal Bézier curves.

4 Raindrop Shape Model

4.1 Bézier Representation

Droplets on a horizontally aligned surface are symmetricaland have equal contact
angles. When neglecting any gravity, they can be characterized adequately, using the
sphere section model as described in [8, 12]. However, gravity leads to a flattened rain-
drop surface shape which results in an inaccurate droplet modelling when assuming
sphere sections. On tilted surfaces the sphere section model assumption is violated even
more, because the unsymmetrically applied gravity force will shift the droplet centroid
towards the declining direction, which yields different contact angles and a distinctly
bellied shape as illustrated in Fig. 5.

The shape of a raindrop can be described by parametric functions, like polynomials
of arbitrary order, Taylor polynomials or Bézier curves [3]. Here we employ Bézier
curves, since they describe real water droplets accuratelyand they provide an intuitive,
low-dimensional parameter set with a credible physical interpretation. This makes the
verification of the model and an approximation for differentangles and drop volumes
more transparent than interpreting the coefficients of a polynomial fit.

A Bézier curve of the degreen is characterized by a control polygon consisting of
n + 1 Bézier points(Pi)

n

i=0
,P ∈ R

2. It is defined in an intervalt ∈ [0 . . . 1] as

C(t) =

n
∑

i=0

Bi,n(t)Pi, (2)

whereas

Bi,n(t) =

(

n

i

)

ti(1 − t)n−i (3)

indicates the Bernstein polynomiali of degreen [3].
A cubic Bézier curve (n = 3) has sufficient degrees of freedom to describe the rain-

drop shape well. As depicted in Fig. 3, a capable interpretation of the Bézier points
(Pi)

3

i=0
can be achieved by transforming them to the contact anglesα1, α2 of the

droplet that are originated from physics of boundaries and the weight factorsw1, w2
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Fig. 3. Cubic Bézier curve representation.The Bézier points are transformed physically inter-
pretable:α1, α2 represent the droplets contact angles and the weight factorsw1, w2 are related
to the influence of gravity for inclined surfaces.

(d)(a) (b) (c)

Fig. 4. Image processing for drop shape extraction.(a) shows the original image taken in the
experimental setup. A distinction between surface plane and raindrop points is performed by
RANSAC line fitting in the Canny image (b). In order to remove further outliers, two second
order polynomials are fitted robustly to the left (red) and right (green) side of the raindrop (c).
Finally, least squares Bézier curve fitting is performed on all inlier points (d).

that are related to the centroid shift due to gravity.

α1 =∠(P0P1,P0P3) (4)

α2 =∠(P2P3,P0P3) (5)

w1 =P0P1 (6)

w2 =P2P3 (7)

Finally, the curvature normals of two orthogonal, cubic Bézier curves form a 3D
droplet surfaceS as illustrated in Fig. 2(b)

nS =
1

|| (nx, 0, 1)
T

+ (0, ny, 1)
T
||









nx

0
1



 +





0
ny

1







 , (8)

where one curvature represents the side view with the inclination angle of the lens-
protecting glass and the other representing the top view with θ = 0◦.

4.2 Bézier curve fitting

In order to characterize and describe the drop shape in termsof cubic Bézier curves,
we performed an image pre-processing as described briefly inthe following paragraph.
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An overview of the image processing and curve fitting methodscan be found in Fig. 4.
The first step of extracting the drop shape is to take raw observations from the canny
edge image (Fig. 4(b)). A robust RANSAC line fitting approachestimates the remain-
ing glass surface direction and hence compensates small errors due to inaccuracies in
the angular arrangement of glass plate and camera. In order to further remove outliers
from the measurements, two parabolas were fitted through theremaining points, us-
ing RANSAC: one from the maximum to the left side (red line in Fig. 4(c)) and one
to the right side (green line in Fig. 4(c)). Note, that we do not use the parameters of
the parabola fits directly because the shape is neither described consistently nor inter-
pretable in a physical way. Instead, a combination of all inliers gives a set of points that
is used for the subsequent Bézier curve fitting as shown in Fig. 4(d). The Bézier curve
fitting is performed in a least squares sense [14] by splitting (2) into two independent
equations for thex andy coordinates

x = axt3 + bxt2 + cxt + dx (9)

y = ayt3 + byt2 + cyt + dy, (10)

and computing the Bézier points(Pi)
3

i=0
by comparing coefficients to (2). The factor

t ∈ [0 . . . 1] corresponds to the normalized curvature length. For a curvedescribed by
N pointst is approximated by

t(n) =

n
∑

k=1

√

∆x(k)2 + ∆y(k)2

N
∑

l=1

√

∆x(l)2 + ∆y(l)2
, (11)

where∆x and∆y are the differences between two neighboring points.
Repeating the experimentsM times for each drop volume and inclination angle

configuration, we receiveM different Bézier curve parameterizations. A mean Bézier
curve is finally achieved by computing the mean of each Bézierpoint (Pi)

3

i=0
:

Pi =

M
∑

k=1

Pi
k

M
. (12)

5 Results

For all experiments, a digital camera was mounted next to a tiltable glass plate to capture
the shape of water droplets of different sizes under multiple inclination angles. We used
anEppendorf Research Pluspipette for all experiments in order to guarantee a precise
but adjustable drop volume size. In the experimental setup all drops are illuminated by
a lamp in front of a dark background to achieve a good contrastand ensure reliable
shape extraction. As input for finding an empirical description of water droplets on a
flat surface, multiple images with different drop sizes and surface inclination angles
were taken. The chosen drop volumes for our test series were 5, 10, 15 and 20µl and
the inclination angles of the glass plate were 0◦, 25◦, 30◦, 35◦ and 40◦. The chosen
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Fig. 5. Experiments.Sample imagery for manifold drop volumes and surface inclination angles.
For model estimation the mean fit of 20 images for each drop volume and inclination angle setting
is used.

drop volumes inµl correspond to1.06, 1.34, 1.53 and 1.7 mm drop radii of falling
raindrops, which was motivated by [7] who proposes probableraindrop radii between
0.5 − 2.5 mm. The experiments were repeated 20 times for each drop volume and
inclination angle configuration. Hence, 400 raindrop shapeimages were acquired in
total. An overview of the different setup properties and their effects on the droplet shape
is depicted in Fig. 5.

The results section is divided into two parts: First, we discuss the estimated rain-
drop parameters. Then we present a comparison of the proposed model with the sphere
section model of [8].

5.1 Model parameters

A model capable of generating realistic droplet surfaces demands for a low dimensional
parametrization to avoid overfitting. In this section, we discuss the obtained dependen-
cies of the Bézier curve based model with respect to the design parameters (drop volume
and inclination angle).

Assuming the raindrop diameterd = |P0P3|, the upper row in Fig. 6 shows the ex-
pected behavior that the drop radius increases with its volume. A tendency of increasing
drop diameters for larger inclination angles exists, although it may not be the predom-
inant effect. This phenomenon can be explained from the droplet area that looses its
circular shape and develops a predominant direction with increasing inclination angles.
Hence, even if the drop volume is not a-priori known like it isthe case in image-based
raindrop detection tasks, for a given surface inclination angle the volume can be esti-
mated from the observed drop diameter. In principle, the scale of standard multi-scale
interest point detectors like SURF [2] would provide sufficient information for that task.
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Fig. 6. Model parameter.The first row shows the averaged droplet diameterd as a function of
the inclination angleθ for different raindrop volumes (columns). The second and the third row
depict the mean contact anglesα1, α2 and the mean Bézier weightsw1, w2, respectively.

Tilting the glass surface leads to a deformation of the drop due to changed gravity
influences. For this reason, we expect an increasing difference∆ = |α2 − α1| between
both contact angles. The middle row in Fig. 6 shows the expected behavior, although not
all contact angles could be extracted accurately, throughout the experiments. However,
α1 tends to decrease with increasing inclination angle.α2 shows a slight ascent but
decreases forθ = 40◦. This can be explained by having a deeper look at the performed
experiments. We are only interested in stationary droplets. Forθ ≈ 40◦, the drop begins
rinsing down and hence we could not acquire representative imagery data.

The Bézier weightw1 remains constant for varying inclination angle and ascends
with increasing drop volume. For the right sidew2 increases with inclination angle and
drop volume while for anglesθ ≈ 40◦ the drop begins to move, again. As discussed
above, for these inclination angles, no reliable conclusion can be drawn.

In conclusion, a physically correct droplet shape can be derived, as soon as the
inclination angle and the drop volume are given. The drop volume can be deduced from
the observed raindrop diameter, whereas the surface inclination angle is given by the
defined camera mounting. This makes the proposed droplet shape model applicable for
an image-based raindrop detection approach.
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Fig. 7. Model accuracy.(a)-(d) show the SSD error of a sphere section model and the proposed
model, using cubic Bézier curves.

5.2 Comparison

For comparing the accuracy of the proposed method to state-of-the art, a 2D cut of a
sphere section was fitted to the extracted raindrop surface measurements using nonlin-
ear Levenberg-Marquardt optimization [10]. The error measure is defined in terms of
Sum-of-Squared Differences (SSD).

Fig. 7 shows the error generated using the sphere section model in comparison to the
new Bézier curve based model. Even for flat surfaces (θ ≈ 0◦) and small drop volumes,
the proposed model has an SSD error which is three order of magnitude smaller. This
illustrates the importance to take into account the gravityforce which flattens the drop
surface. An increasing drop volume and inclination angle lead to unsymmetrical droplet
deformation, which emphasizes the advantage of the proposed shape model with respect
to the sphere section model.

6 Conclusion

In this paper we proposed a novel raindrop shape model based on cubic Bézier curves
and showed its potential for its integration in image-basedraindrop detection approaches.
The model was deduced from numerous experiments on water drops of various vol-
umes on a flat surface with different inclination angles. A physically correct droplet
shape could be computed if just the inclination angle and thedrop volume were given.
The drop volume was deduced from the observed raindrop diameter. This makes the
proposed droplet shape model applicable for an image-basedraindrop detection ap-
proach. Finally, we showed that the shape deviation betweenthe estimated Bézier curve
based model and the real droplet was significantly decreasedcompared to state-of-the-
art sphere section models.
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