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Abstract. In this paper, we propose a novel raindrop shape model for the-detec
tion of view-disturbing, adherent raindrops on inclined surfaces.dfgestate-
of-the-art techniques do not consider inclined surfaces becaugsasame the
droplets as sphere sections with equal contact angles, our modeianatas cu-
bic Bézier curves that provide a low dimensional and physically interpletap-
resentation of a raindrop surface. The parameters are empiricallice@drom
numerous observations of different raindrop sizes and surfatirdtion angles.
It can be easily integrated into a probabilistic framework for raindropgetition,
using geometrical optics to simulate the visual raindrop appearancenipas-
ison to a sphere section model, the proposed model yields an improvpkédr
surface accuracy up to three orders of magnitude.

1 Introduction

Outdoor navigation and surveillance demand for reliablé @obust computer vision
algorithms. They have to meet stringent conditions coringrdisturbances caused by
arbitrary weather conditions. In fact, there are varionscspheric influences which re-
strict the usability of these systems such as fog, rain ovsBepecially in rainy weather
itis often the case that adherent waterdrops on the lertegiiing glass disturb the view
of a camera. Although a lot of research has been pursued otics16], computer
vision [5, 7, 11] and for driver assistance [9, 12, 19], ragpldetection still remains a
challenging task. This might be for several reasons: Watapldts on a glass surface
exhibit a large variety in shape and size. Transparency snthl@r appearance highly
dependent on the image background. Moreover, water deoplethe protecting glass
of a camera are subject to severe out-of-focus blur whicletewheir distinguishability
from the scene background.

Recent work on raindrop detection [8, 12] assumes a simplersgsection for mod-
eling the droplet boundary. Especially on tilted planes retgravity causes an unidi-
rectional droplet deformation, this assumption does ntt.While high-order polyno-
mials are more adequate, a physical interpretation of tteslfifarameters is hard.

In this paper we propose a novel raindrop shape model, thatdas a physically
interpretable parameter set of low dimensionality. Ourmm@intribution is a model
based on cubic Bézier curves. We provide a broad validatitheomodel parameters
and show, that the shape deviation between fitted model ahdireplet will be sig-
nificantly decreased compared to state-of-the-art spleatéos models. The proposed
shape model can be easily integrated into existing raindropgnition frameworks.
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2 Related Work

The visual effects of rain are manifold and complex. Wateiptits in the atmosphere
lead to contrast attenuation in the far-field of the camefaer@as falling raindrops
produce sharp intensity changes in image sequences. Adhaiadrops in front of
the camera lens disturb the view from the camera and ligreatidins on the droplet
surfaces additionally deteriorate computer vision athaons.

Related work on dynamic weather effects like the appearahéaling raindrops
in image sequences has been performed by [5, 7]. They sttitbadfluence of falling
raindrops on the image acquisition process and introducpkdotometric model for
spherical raindrops in the atmosphere that is used for eelgavideo processing like
removing rain from image sequences [4] or rain streak reng¢8].

In the targeted context of outdoor navigation and survsia falling raindrops and
rain streaks can be considered as atmospheric noise andtahe mominant disturbing
effect. Stronger limitations are imposed by adherent wditeplets on the glass surface
covering the camera lens. Kurihata et al. [9] used a mack#aming approach with
raindrop templates to detect raindrops on windshields fimside a moving vehicle.
Results within the sky area were promising, whereas thegsegh method produced
a large number of false positives within the non-sky regiofhthe image where rain-
drop appearance modeling becomes more challenging. Inmrik, in contrast, we
aim to accurately exploit the physical relationship betweeoplets shape and their
appearance. Zhang et al. [19] combined a wavelet transforninfage blur detec-
tion with motion analysis using cumulative differences @aagnize optical contami-
nations close to the camera. Their approach works well fpd riopaque contamina-
tions but fails in the presence of raindrops because th@ea@ance strongly depends
on the scene background. Yamashita et al. exploited haedeaarstraints like multiple
cameras [13, 18] or pan-tilt surveillance cameras [16, 1] ktnown yaw rates in order
to bypass the challenge of modeling the complex optical dehaf raindrops. Roser
et al. [8,12] simulated spherical droplets on a glass sarteing geometrical optics
and out-of-focus blur for the task of raindrop detectionwdaer, they lack a realistic
shape parametrization of droplets that in practice aresstiby gravity.

The remainder of this paper is structured as follows: Se@idiscusses the propa-
gation of light rays through a droplet and shows how it candmglfor raindrop detec-
tion. In Section 4 we proposes a raindrop shape model basadB@zier curve repre-
sentation. Validation results on real data and a compatarsphere section model [8]
are given in Section 5.

3 Raindrop Recognition

Given a set of: artificial raindrop hypothesd3,, . . ., D,, for different image positions
and presumed drop radii, the raindrop recognition task ediofmulated as computing
the MAP estimate of the conditional probability

p(d|z) o« p(d)p(z|d) 1)

with respect to the patterh € {©, D1,...,D,}. Here® is a background pattern that
models the case where the image region is not disturbed bindroa andz(u, v, r)
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Fig. 1. Droplet refraction model. (a) depicts the image formation process in the presence of
raindrops on a protecting glass in front of the camera, using geonetpides. In (b) an artificial
raindrop patterrD is rendered by tracing the light rays through the raindrop to the backdrou
and composing all found background pixels. For demonstration pagp@n additional out-of-
focus blur is applied and the blurred pattd@geq is added to the original image.

denotes the observation at positiorv with radiusr in form of local image statistics.
It can be achieved densely as wells as from preselectedspafiimterest, like CenSurkE
[1] or SURF [2]. Fairly standard cost measures such as the-&wbsolute Differ-
ences (SAD) or the Sum-of-Squared Differences (SSD) aréeapfor modeling the
observation likelihoogh(z|d). The prior may model the occurrence probability for dif-
ferent raindrop sizes in various adverse weather conditioran empirical Bayesian
perspective according to [15].

Raindrop hypotheses for any circular regior= (u,v,r)? are achieved from ob-
served points in the environment, using geometrical opfisdepicted in Fig. 1(a), a
light ray emanating from a point in the environment will béraeted by the raindrop
and the protecting glass surface multiple times and redtigesamera sensor at point
P;. Unless the raindrop does not occlude this environmenttpiiwill be sensed a
second time at poirl?,. Note, that the droplet acts as a convex lens with a small foca
length. Hence, for typical application in navigation andveillance it is ensured that
only a minor part of the environment points are occluded ky#indrop (see Fig. 1(a)).
An accurate geometric relationship betwdepn andP, can be derived using Snell’s
law of refraction as shown in Fig. 1(b). Note, that the reficiton the protecting glass
occurs with respect to the (constant) plane normgabf the protecting glass, whereas a
general drop surfac® exhibits a normal fieldNg that can be deduced from the chosen
drop parametrization. Whereas [8, 12] use simple spher@sedhat are in general
3D surfaces of constant curvature as depicted in Fig. 2{s)model approximates the
raindrop shape only insufficiently and results in a high nhdégiation especially when
dealing with tilted glass surfaces. For this reason, wevdexiraindrop shape model re-
garding numerous tilt angles and drop sizes by using twaogdhal oriented Bézier
curves as illustrated in Fig. 2(b).
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(a) Sphere section model (b) Proposed shape model

Fig. 2. Raindrop surface models.(a) shows the droplet surface and its surface normals for a
sphere section model. In (b) a 3D model is created by superposingtinmgonal Bézier curves.

4 Raindrop Shape Model

4.1 Beézier Representation

Droplets on a horizontally aligned surface are symmetragzad have equal contact
angles. When neglecting any gravity, they can be charaettadequately, using the
sphere section model as described in [8, 12]. However, tyrads to a flattened rain-
drop surface shape which results in an inaccurate droplefehiing when assuming
sphere sections. On tilted surfaces the sphere sectionl mslenption is violated even
more, because the unsymmetrically applied gravity fordeshift the droplet centroid
towards the declining direction, which yields differenintact angles and a distinctly
bellied shape as illustrated in Fig. 5.

The shape of a raindrop can be described by parametric funsctike polynomials
of arbitrary order, Taylor polynomials or Bézier curves.[Blere we employ Bézier
curves, since they describe real water droplets accuratelythey provide an intuitive,
low-dimensional parameter set with a credible physicarimtetation. This makes the
verification of the model and an approximation for differangles and drop volumes
more transparent than interpreting the coefficients of grpmhial fit.

A Bézier curve of the degree is characterized by a control polygon consisting of
n + 1 Bézier pointyP;)!"_,, P € R Itis defined in aninterval € [0...1] as

C(t) => Bin(t)P;, 2)
=0
whereas
B, (t) = <?> (1 — )t 3)

indicates the Bernstein polynomiabf degreen [3].

A cubic Bézier curver{ = 3) has sufficient degrees of freedom to describe the rain-
drop shape well. As depicted in Fig. 3, a capable interpretatf the Bézier points
(Pz)?zo can be achieved by transforming them to the contact anglea, of the
droplet that are originated from physics of boundaries &dvteight factorsu,, wo
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Fig. 3. Cubic Bézier curve representationThe Bézier points are transformed physically inter-
pretable:a, az represent the droplets contact angles and the weight factgrs. are related
to the influence of gravity for inclined surfaces.
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Fig. 4. Image processing for drop shape extraction(@) shows the original image taken in the
experimental setup. A distinction between surface plane and raindiofs ps performed by
RANSAC line fitting in the Canny image (b). In order to remove further owliéwo second
order polynomials are fitted robustly to the left (red) and right (gre&® sf the raindrop (c).
Finally, least squares Bézier curve fitting is performed on all inlier pots (

that are related to the centroid shift due to gravity.

ay =Z(PoP1,PoP3) (4)
0y =/(P3P5, PoPs) (5)
w; =PoPy (6)
w2 :m (7)

Finally, the curvature normals of two orthogonal, cubic iBézurves form a 3D
droplet surfaces as illustrated in Fig. 2(b)

1 Ny 0
ns = T T 0|+ Ty » 8)

where one curvature represents the side view with the iatidin angle of the lens-
protecting glass and the other representing the top vietvavit 0°.

4.2 Bézier curve fitting

In order to characterize and describe the drop shape in tefrigbic Bézier curves,
we performed an image pre-processing as described briefteifollowing paragraph.
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An overview of the image processing and curve fitting metteadsbe found in Fig. 4.

The first step of extracting the drop shape is to take raw @btiens from the canny
edge image (Fig. 4(b)). A robust RANSAC line fitting approa&stimates the remain-
ing glass surface direction and hence compensates snais elwe to inaccuracies in
the angular arrangement of glass plate and camera. In arderther remove outliers

from the measurements, two parabolas were fitted througheti@ining points, us-

ing RANSAC: one from the maximum to the left side (red line ig.F(c)) and one

to the right side (green line in Fig. 4(c)). Note, that we dd nse the parameters of
the parabola fits directly because the shape is neitheridedaronsistently nor inter-
pretable in a physical way. Instead, a combination of aiéislgives a set of points that
is used for the subsequent Bézier curve fitting as shown indgd). The Bézier curve

fitting is performed in a least squares sense [14] by spiit{®) into two independent
equations for the: andy coordinates

T = apt> + but® + ot + d, (9)
y = ayt® +byt* + cyt +d,, (10)
and computing the Bézier poin(Pi)f:O by comparing coefficients to (2). The factor

t € [0...1] corresponds to the normalized curvature length. For a aiegeribed by
N pointst is approximated by

M=

p VAz(k)? + Ay(k)?
t{n) = , (1)
Az(1)? + Ay(1)?

Il
_

M=z

~

1

whereAxz and Ay are the differences between two neighboring points.

Repeating the experimenfd times for each drop volume and inclination angle
configuration, we receivd/ different Bézier curve parameterizations. A mean Bézier
curve is finally achieved by computing the mean of each Bgmert (P,;)fzo:

MP~k
P; = L 12
;M (12)

5 Results

For all experiments, a digital camera was mounted next ttahle glass plate to capture
the shape of water droplets of different sizes under meliiptlination angles. We used
anEppendorf Research Plyspette for all experiments in order to guarantee a precise
but adjustable drop volume size. In the experimental setugy@ps are illuminated by

a lamp in front of a dark background to achieve a good conaradtensure reliable
shape extraction. As input for finding an empirical desaripiof water droplets on a
flat surface, multiple images with different drop sizes andace inclination angles
were taken. The chosen drop volumes for our test series wel@, 3.5 and 20! and

the inclination angles of the glass plate wefe B5°, 30°, 35° and 40. The chosen
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Fig. 5. Experiments.Sample imagery for manifold drop volumes and surface inclination angles
For model estimation the mean fit of 20 images for each drop volume aliiétion angle setting
is used.

drop volumes inul correspond tal.06, 1.34,1.53 and 1.7 mm drop radii of falling
raindrops, which was motivated by [7] who proposes probediledrop radii between
0.5 — 2.5 mm. The experiments were repeated 20 times for each dropneoand
inclination angle configuration. Hence, 400 raindrop shiapgges were acquired in
total. An overview of the different setup properties andrte&ects on the droplet shape
is depicted in Fig. 5.

The results section is divided into two parts: First, we déscthe estimated rain-
drop parameters. Then we present a comparison of the prdpusdel with the sphere
section model of [8].

5.1 Model parameters

A model capable of generating realistic droplet surfacesatels for a low dimensional
parametrization to avoid overfitting. In this section, weatiss the obtained dependen-
cies of the Bézier curve based model with respect to the desitameters (drop volume
and inclination angle).

Assuming the raindrop diametér= |Po P3|, the upper row in Fig. 6 shows the ex-
pected behavior that the drop radius increases with itawellA tendency of increasing
drop diameters for larger inclination angles exists, alttoit may not be the predom-
inant effect. This phenomenon can be explained from thelérgpea that looses its
circular shape and develops a predominant direction witteasing inclination angles.
Hence, even if the drop volume is not a-priori known like ithe case in image-based
raindrop detection tasks, for a given surface inclinatingle the volume can be esti-
mated from the observed drop diameter. In principle, théesafastandard multi-scale
interest point detectors like SURF [2] would provide suéfitiinformation for that task.
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Fig. 6. Model parameter. The first row shows the averaged droplet diamétas a function of
the inclination angle for different raindrop volumes (columns). The second and the tloind r
depict the mean contact angles, a2 and the mean Bézier weighis , w2, respectively.

Tilting the glass surface leads to a deformation of the dnog td changed gravity
influences. For this reason, we expect an increasing difterd = |a, — o | between
both contact angles. The middle row in Fig. 6 shows the exgdnthavior, although not
all contact angles could be extracted accurately, througthe experiments. However,
a7 tends to decrease with increasing inclination angleshows a slight ascent but
decreases fat = 40°. This can be explained by having a deeper look at the perihrme
experiments. We are only interested in stationary dropkets) ~ 40°, the drop begins
rinsing down and hence we could not acquire representatiageéry data.

The Bézier weightv; remains constant for varying inclination angle and ascends
with increasing drop volume. For the right side increases with inclination angle and
drop volume while for angle@ ~ 40° the drop begins to move, again. As discussed
above, for these inclination angles, no reliable conclusian be drawn.

In conclusion, a physically correct droplet shape can béeras soon as the
inclination angle and the drop volume are given. The dropwa can be deduced from
the observed raindrop diameter, whereas the surface @éidmangle is given by the
defined camera mounting. This makes the proposed dropleéshadel applicable for
an image-based raindrop detection approach.
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Fig. 7. Model accuracy.(a)-(d) show the SSD error of a sphere section model and the mdpos
model, using cubic Bézier curves.

5.2 Comparison

For comparing the accuracy of the proposed method to sfdteeart, a 2D cut of a
sphere section was fitted to the extracted raindrop surfa@sarements using nonlin-
ear Levenberg-Marquardt optimization [10]. The error nueass defined in terms of
Sum-of-Squared Differences (SSD).

Fig. 7 shows the error generated using the sphere sectioalinabmparison to the
new Bézier curve based model. Even for flat surfages (°) and small drop volumes,
the proposed model has an SSD error which is three order ofiitogg smaller. This
illustrates the importance to take into account the graeitge which flattens the drop
surface. An increasing drop volume and inclination angde f® unsymmetrical droplet
deformation, which emphasizes the advantage of the prdmbsge model with respect
to the sphere section model.

6 Conclusion

In this paper we proposed a novel raindrop shape model basedhbic Bézier curves
and showed its potential for its integration in image-baséutirop detection approaches.
The model was deduced from numerous experiments on watps arfovarious vol-
umes on a flat surface with different inclination angles. Aigibally correct droplet
shape could be computed if just the inclination angle andltbp volume were given.
The drop volume was deduced from the observed raindrop désintehis makes the
proposed droplet shape model applicable for an image-basedrop detection ap-
proach. Finally, we showed that the shape deviation betteeastimated Bézier curve
based model and the real droplet was significantly decreas®gared to state-of-the-
art sphere section models.
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