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Abstract

In this supplementary document, we first present details on the network architectures of our disparity decoder in Section 1.
Section 2 provides additional details on the edge decoder used in our work. In Section 3 we give additional ablation studies
for our method and the used baselines. Finally, we show additional results in Section 4.

1. Disparity Decoder
The disparity decoder is based on the DispNetS architecture presented in [5]. Table 1 shows the detailed disparity decoder

architecture, where k denotes kernel size, s stride and p padding. Cin and Cout are the number of input and output channels.
up(·) denotes bilinear up-sampling. We use a ReLU layer after each convolutional layer and a scaled sigmoid after each
prediction layer. We do not show them in the table for clarity.

2. Edge Decoder
We exploit a shallow U-Net architecture for our edge decoder. It is also based on the DispNet architecture [5], but with

fewer layers. Table 2 shows the detailed edge decoder architecture, with k denoting kernel size, s stride, and p padding. Cin
and Cout are the number of input and output channels. up(·) denotes bilinear up-sampling. There is a ReLU layer after each
convolutional layer which we do not show in the table for clarity.

As mentioned in the main paper, we train an edge decoder to predict A′ = LCNε(|∇A|), the local contrast normalized
gradient magnitude of the ambient image A. While the edge decoder requires the ambient image A as supervision, this is
easily obtained in practice (recording the scene with the laser projector turned on and off). In particular, our shallow U-Net
generalizes from few training samples: In the experiment, we assume that we have ambient images for 1, 024 short sequences
among the full rendered training dataset of 8, 192 sequences.

Fig. 1 shows an example of an input image I from the test dataset, the edge image A′ and our prediction. We observe that
the edge decoder clearly separates edge from non-edge regions.

3. Additional Ablation Studies
In this section we present additional ablation studies for our method and the utilized baselines. Section 3.1 demonstrates

the correlation between the photometric loss and some of the metrics that we evaluated on. In Section 3.2 we show an
ablation study of the disparity decoder. In Section 3.3 we evaluate our method and the baselines when applied with smooth
post-processing. Finally, Section 3.4 provides hyper-parameter tuning experiments and the influence of post-processing on
the HyperDepth [2] baseline used in our evaluations.

3.1. Correlation of Photometric Loss

Note that our self-supervised approach does not have access to ground truth geometry. We thus select the network pa-
rameters from all training epochs by minimizing the average photometric error on a validation set with 512 samples. In this



layer name k × k, p, s Cin Cout input name output name

conv1 7× 7, 3, 2 2 32 - -
7× 7, 3, 1 32 32 - out conv1

conv2 5× 5, 2, 2 32 64 out conv1 -
5× 5, 2, 1 64 64 - out conv2

conv3 3× 3, 1, 2 64 128 out conv2 -
3× 3, 1, 1 128 128 - out conv3

conv4 3× 3, 1, 2 128 256 out conv3 -
3× 3, 1, 1 256 256 - out conv4

conv5 3× 3, 1, 2 256 512 out conv4 -
3× 3, 1, 1 512 512 - out conv5

conv6 3× 3, 1, 2 512 512 out conv5 -
3× 3, 1, 1 512 512 - out conv6

conv7 3× 3, 1, 2 512 512 out conv6 -
3× 3, 1, 1 512 512 - out conv7

upconv7 3× 3, 1, 2 512 512 out conv7 out upconv7
concat - - - out upconv7, out conv6 concat7
iconv7 3× 3, 1, 1 1024 512 concat7 out iconv7
upconv6 3× 3, 1, 2 512 512 out conv6 out upconv6
concat - - - out upconv6, out conv5 concat6
iconv6 3× 3, 1, 1 1024 512 concat6 out iconv6
upconv5 3× 3, 1, 2 512 256 out conv5 out upconv5
concat - - - out upconv5, out conv4 concat5
iconv5 3× 3, 1, 1 512 256 concat5 out iconv5
upconv4 3× 3, 1, 2 256 128 out conv4 out upconv4
concat - - - out upconv4, out conv3 concat4
iconv4 3× 3, 1, 1 256 128 concat4 out iconv4
predict disp4 3× 3, 1, 1 128 1 out iconv4 disp4
upconv3 3× 3, 1, 2 128 64 out conv3 out upconv3
concat - - - out upconv3, out conv2, up(disp4) concat3
iconv3 3× 3, 1, 1 129 64 concat3 out iconv3
predict disp3 3× 3, 1, 1 64 1 out iconv3 disp3
upconv2 3× 3, 1, 2 64 32 out iconv3 out upconv2
concat - - - out upconv2, out conv1, up(disp3) concat2
iconv2 3× 3, 1, 1 65 32 concat2 out iconv2
predict disp2 3× 3, 1, 1 32 1 out iconv2 disp2
upconv1 3× 3, 1, 2 32 16 out iconv2 out upconv1
concat - - - out upconv1, out conv1, up(disp2) concat1
iconv1 3× 3, 1, 1 33 16 concat1 out iconv1
predict disp1 3× 3, 1, 1 16 1 out iconv1 disp1

Table 1: Architecture of Disparity Decoder. k denotes kernel size, s stride and p padding. Cin and Cout are the number of
input and output channels

(a) Input I (b) Ground truth A′ (c) Prediction

Figure 1: Qualitative Results of Edge Decoder.

section, we demonstrate that the photometric loss is well correlated to our evaluation metrics and is thus suitable as a proxy
metric. Fig. 2 illustrates the photometric loss and o(t) when training our model using only the photometric loss LP . Each dot



layer name k × k, p, s Cin Cout input name output name

conv1 7× 7, 3, 2 2 32 - -
7× 7, 3, 1 32 32 - out conv1

conv2 5× 5, 2, 2 32 64 out conv1 -
5× 5, 2, 1 64 64 - out conv2

conv3 3× 3, 1, 2 64 128 out conv2 -
3× 3, 1, 1 128 128 - out conv3

upconv3 3× 3, 1, 2 128 64 out conv3 out upconv3
concat - - - out upconv3, out conv2 concat3
iconv3 3× 3, 1, 1 128 64 concat3 out iconv3
predict edge3 3× 3, 1, 1 64 1 out iconv3 edge3
upconv2 3× 3, 1, 2 64 32 out iconv3 out upconv2
concat - - - out upconv2, out conv1, up(edge3) concat2
iconv2 3× 3, 1, 1 65 32 concat2 out iconv2
predict edge2 3× 3, 1, 1 32 1 out iconv2 edge2
upconv1 3× 3, 1, 2 32 16 out iconv2 out upconv1
concat - - - out upconv1, out conv1, up(edge2) concat1
iconv1 3× 3, 1, 1 33 16 concat1 out iconv1
predict edge1 3× 3, 1, 1 16 1 out iconv1 edge1

Table 2: Architecture of Edge Decoder. k denotes kernel size, s stride and p padding. Cin and Cout are the number of input
and output channels, respectively.

(a) o(0.1) (b) o(0.5) (c) o(1) (d) o(2) (e) o(5)

Figure 2: Correlation of Photometric Loss and Evaluation Metrics. For each threshold t, we show the photometric loss
(x-axis) wrt. the corresponding metric (y-axis) across epochs as data points. We show the correlation coefficient above each
figure, where 1 denotes maximal positive linear correlation.

represents the photometric loss (x-axis) and the corresponding metric (y-axis) at one particular epoch. We fit a line to this
data using linear regression, and show the correlation coefficient above each sub-figure (here 1 represents maximal positive
linear correlation and 0 denotes no linear correlation). Fig. 2 suggests that the photometric loss is highly correlated with o(t)
across different thresholds. Therefore, it is a viable criterion for model selection.

3.2. Ablation of Disparity Decoder

In the following evaluation we show that a large receptive field as present in our disparity decoder (Table 1) is needed
for accurate disparity estimation. For this evaluation we consecutively remove lower resolution parts of the network. We
train the network on a 100 rows crop of our train dataset and evaluate on the same 100 rows of the test dataset. The results
are summarized in Table 3. We can observe that the network performance gradually improves by adding layers at lower
resolutions that capture a larger receptive field. We also tried to train the network with CoordConvs [4] and BatchNorm [3],
but did not observe any improvements on the test metrics.

3.3. Smooth Post-processing

We observe that some of our baselines produces a random noise in the prediction, where the results might be improved
with a smooth post-processing. For a fair comparison, we apply 5 × 5 median filtering to all methods in Tab. 3 of the main
paper. The results are shown in Table 4. Note that the smooth post-processing improves the performance of all compared
methods, while our method still performs the best.



depth o(0.1) o(0.5) o(1) o(2) o(5)

1 0.9231 0.6717 0.5303 0.4071 0.1989
2 0.8935 0.5768 0.4477 0.3468 0.1684
3 0.5646 0.2742 0.2299 0.1976 0.1502
4 0.5196 0.1999 0.1393 0.1064 0.0804
5 0.3636 0.1179 0.0663 0.0400 0.0224
6 0.4151 0.1207 0.0645 0.0361 0.0169
7 0.3745 0.1084 0.0575 0.0320 0.0154

Table 3: Ablation of U-Net architecture. A higher depth value indicates a larger receptive field of the network, with depth
= 7 being the architecture presented in Table 1.

o(0.5) o(1) o(2) o(5) ou(1) ou(5)

Block Matching 7.84 7.20 7.06 6.83 4.44 4.23
Block Matching + MF 6.78 6.15 5.98 5.71 3.57 3.32
FastMRF 12.07 8.36 6.71 5.14 5.25 3.57
FastMRF + MF 12.00 8.34 6.69 5.12 5.23 3.57
HyperDepth 15.01 12.63 11.83 11.49 7.39 6.73
HyperDepth + MF 9.09 7.41 6.68 6.20 3.97 3.31
Ours 6.77 3.88 2.57 1.63 1.75 0.70
Ours + MF 6.28 3.62 2.46 1.58 1.64 0.69

Table 4: Quantitative Results on Synthetic Data with Median Filtering.

3.4. HyperDepth Hyper-Parameters

The most related work to our method is the random forest based HyperDepth [2]. Unfortunately, there is no implemen-
tation available and therefore, we had to implement this method ourselves. We tried to replicate the method as closely as
possible based on the original paper and also communicated with the authors regarding the details. For a fair comparison, we
cross-validated the hyper-parameters on a validation set. In Table 5 we show results varying the total tree depth, the number
of random samples for split node optimization and the tree depth at which we switch from pixel to sub-pixel accuracy. Note
that in our experiments, we obtained better results with deeper trees.

Another set of hyper-parameters involve the post-processing in HyperDepth. In Fig. 3 we show quantitatively and qual-
itatively results for different settings. Note how with different hyper-parameters we can trade accuracy for completeness.
In the evaluation in our main paper we used the hyper-parameters that lead to the smallest harmonic mean of accuracy and
completeness.

4. Additional Results
4.1. Rendered Data

In this section we show additional qualitative results on our synthetic dataset and the dataset provided by [1]. Fig. 4
depicts additional qualitative results as depth maps on our synthetic dataset for our method, block matching, FastMRF [1],
and HyperDepth [2]. We also show results as 3D point-clouds from Fig. 5 to Fig. 7. For each method we show two point
clouds from different perspectives. Odd rows show the point cloud from the estimated depth map, with green indicating
accurate predictions, yellow are points with a distance of 1cm distance to the closest 3D ground-truth point, and red points
have a distance > 2cm to the nearest 3D ground-truth point. Even rows depict the ground-truth point cloud with the same
color coding, but indicating the distance to the closest estimated 3D point. Hence, odd rows show the accuracy of a given
method, whereas even rows depict their completeness. Note that we don’t apply post-processing to HyperDepth on our
synthetic data, as the evaluation metrics – percentage of outliers remain the same regardless of the post-processing.

4.2. Real Data

Fig. 8 shows additional depth map results on the dataset provided by [1]. We compare our method to the same set of
baselines as in the previous experiment. In addition we show results as 3D point-clouds in Fig. 9 for the model Angel, in
Fig. 10 for the model Arch, and in Fig. 11 for the model Gargoyle. For each method we show two point clouds from different
perspectives. Odd rows show the point cloud from the estimated depth map, with green indicating accurate predictions,



o(0.1) o(0.5) o(1) o(2) o(5)

depth=12, samples=1024, switch=6 0.7821 0.3123 0.2212 0.2017 0.1972
depth=12, samples=1024, switch=8 0.7817 0.3156 0.2256 0.2063 0.2015
depth=12, samples=1024, switch=10 0.7801 0.3130 0.2252 0.2061 0.2018
depth=12, samples=4096, switch=6 0.7750 0.3186 0.2350 0.2158 0.2113
depth=12, samples=4096, switch=8 0.7692 0.3028 0.2215 0.2042 0.2002
depth=12, samples=4096, switch=10 0.7694 0.3056 0.2290 0.2133 0.2094
depth=12, samples=16384, switch=6 0.7694 0.3112 0.2361 0.2201 0.2160
depth=12, samples=16384, switch=8 0.7674 0.3177 0.2433 0.2281 0.2237
depth=12, samples=16384, switch=10 0.7670 0.3152 0.2422 0.2273 0.2233

depth=14, samples=1024, switch=8 0.7411 0.2685 0.1991 0.1843 0.1802
depth=14, samples=1024, switch=10 0.7301 0.2567 0.1915 0.1780 0.1741
depth=14, samples=1024, switch=12 0.7423 0.2627 0.1943 0.1790 0.1750
depth=14, samples=4096, switch=8 0.7299 0.2570 0.1921 0.1783 0.1748
depth=14, samples=4096, switch=10 0.7264 0.2546 0.1923 0.1794 0.1760
depth=14, samples=4096, switch=12 0.7309 0.2571 0.1956 0.1830 0.1797
depth=14, samples=16384, switch=8 0.7275 0.2615 0.1987 0.1850 0.1813
depth=14, samples=16384, switch=10 0.7278 0.2691 0.2088 0.1952 0.1920
depth=14, samples=16384, switch=12 0.7349 0.2746 0.2134 0.1997 0.1961

depth=16, samples=1024, switch=10 0.7287 0.2519 0.1887 0.1750 0.1712
depth=16, samples=1024, switch=12 0.7275 0.2490 0.1852 0.1711 0.1674
depth=16, samples=1024, switch=14 0.7311 0.2448 0.1775 0.1632 0.1596
depth=16, samples=4096, switch=10 0.7078 0.2269 0.1704 0.1588 0.1554
depth=16, samples=4096, switch=12 0.7124 0.2293 0.1703 0.1579 0.1548
depth=16, samples=4096, switch=14 0.7197 0.2319 0.1716 0.1586 0.1553
depth=16, samples=16384, switch=10 0.7083 0.2346 0.1784 0.1665 0.1630
depth=16, samples=16384, switch=12 0.7116 0.2360 0.1810 0.1690 0.1656
depth=16, samples=16384, switch=14 0.7147 0.2342 0.1768 0.1644 0.1611

Table 5: Hyper-Parameter Tuning for HyperDepth [2]. We train a random forest with four trees on a single row of the
synthetic dataset. depth denotes the maximal tree depth, samples is the maximal number of training instances sampled to
optimize a given split node, and switch is the tree depth where we switch from integer accuracy to sub-pixel accuracy.

yellow are points with a distance of 5mm distance to the closest 3D ground-truth point, and red points have a distance
> 1cm to the nearest 3D ground-truth point. Even rows depict the ground-truth point cloud with the same color coding, but
indicating the distance to the closest estimated 3D point. Hence, odd rows show the accuracy of a given method, whereas
even rows depict their completeness.

4.3. Real Data in Complex Real-World Scenarios

In addition to the dataset provided by [1], we further trained and evaluated our network in more complex real-world
scenarios with IR images collected by a Microsoft Kinect v1 (3, 191 for training and 623 for testing). Fig. 12 shows qualitative
3D results on the test set with a human in motion and an indoor scene respectively, demonstrating that our method generalizes
well to complex real-world scenarios.



(a) Input, GT (b) 127.170, 5.955, 11.378 (c) 114.224, 5.955, 11.320 (d) 113.926, 5.956, 11.320

(e) 25.373, 6.794, 10.718 (f) 22.722, 6.870, 10.550 (g) 18.041, 7.045, 10.133 (h) 17.505, 7.115, 10.118

Figure 3: Influence of HyperDepth Post-Processing. (a) Input IR image and projected ground-truth model. (b) No post-
processing, raw random forest output. (c) Mask out disparity values /∈ [0, dmax]. (d) Additionally mask out disparity values
with likelihood from forest < 0.1. (e) Additionally mask out disparity values, where best and second best predicted disparity
difference is > 10pixels. (f) Additionally mask out disparity values, where best and second best predicted disparity difference
is > 5pixels. (g) Additionally mask out disparity values, where best and second best predicted disparity difference is >
2pixels. (h) Additionally mask out disparity values, where best and second best predicted disparity difference is > 1pixels.
The numbers in the sub-caption are accuracy, completeness and harmonic mean of those two numbers in mm.



(a) Input, GT (b) Block M. (c) FastMRF [1] (d) HyperD. [2] (e) Ours LP (f) Ours +LD (g) Ours +LG

Figure 4: Additional Qualitative Results on Synthetic Data.
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Figure 5: Additional Qualitative 3D Results on Synthetic Data. Event rows depict accuracy results: 3D point-cloud from
estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green
= 0cm, over yellow = 1cm, to red ≥ 2cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the
same color coding indicating the distance to the closest estimated 3D point.
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Figure 6: Additional Qualitative 3D Results on Synthetic Data. Event rows depict accuracy results: 3D point-cloud from
estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green
= 0cm, over yellow = 1cm, to red ≥ 2cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the
same color coding indicating the distance to the closest estimated 3D point.
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Figure 7: Additional Qualitative 3D Results on Synthetic Data. Event rows depict accuracy results: 3D point-cloud from
estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green
= 0cm, over yellow = 1cm, to red ≥ 2cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the
same color coding indicating the distance to the closest estimated 3D point.



(a) Input, GT (b) Block M. (c) FastMRF [1] (d) HyperD. [2] (e) Ours

Figure 8: Additional Qualitative Results on Real Data.
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Figure 9: Additional Qualitative 3D Results on Real Data. Angel. Event rows depict accuracy results: 3D point-cloud
from estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green
= 0mm, over yellow = 5mm, to red ≥ 1cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the
same color coding indicating the distance to the closest estimated 3D point.
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Figure 10: Additional Qualitative 3D Results on Real Data. Arch. Event rows depict accuracy results: 3D point-cloud
from estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green
= 0mm, over yellow = 5mm, to red ≥ 1cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the
same color coding indicating the distance to the closest estimated 3D point. Arch.



B
lo

ck
M

at
ch

in
g

ac
cu

ra
cy

co
m

pl
et

en
es

s

Fa
st

M
R

F
[1

]

ac
cu

ra
cy

co
m

pl
et

en
es

s

H
yp

er
D

ep
th

[2
]

ac
cu

ra
cy

co
m

pl
et

en
es

s

O
ur

s

ac
cu

ra
cy

co
m

pl
et

en
es

s

Figure 11: Additional Qualitative 3D Results on Real Data. Gargoyle. Event rows depict accuracy results: 3D point-cloud
from estimated depthmap. The color indicates the distance to the closest 3D point of the ground-truth model, from dark green
= 0mm, over yellow = 5mm, to red ≥ 1cm. Odd rows show the completeness: 3D point-cloud of the ground-truth with the
same color coding indicating the distance to the closest estimated 3D point.



(a) Input (b) Block Matching (c) Ours
Figure 12: Qualitative 3D Results on Real Data in Complex Real-World Scenarios.
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