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Fig. 1. Our method reconstructs triangle meshes from multi-view images and is able to capture fine geometric detail such as leaves, branches and grass (left).
At the same time our meshes are compact enough for real-time view synthesis on a Google Pixel 8 Pro (right).

While surface-based view synthesis algorithms are appealing due to their low
computational requirements, they often struggle to reproduce thin structures.
In contrast, more expensive methods that model the scene’s geometry as a
volumetric density field (e.g. NeRF) excel at reconstructing fine geometric
detail. However, density fields often represent geometry in a “fuzzy” manner,
which hinders exact localization of the surface. In this work, we modify
density fields to encourage them to converge towards surfaces, without
compromising their ability to reconstruct thin structures. First, we employ
a discrete opacity grid representation instead of a continuous density field,
which allows opacity values to discontinuously transition from zero to one
at the surface. Second, we anti-alias by casting multiple rays per pixel, which
allows occlusion boundaries and subpixel structures to be modelled without
using semi-transparent voxels. Third, we minimize the binary entropy of
the opacity values, which facilitates the extraction of surface geometry by
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encouraging opacity values to binarize towards the end of training. Lastly, we
develop a fusion-based meshing strategy followed by mesh simplification and
appearance model fitting. The compact meshes produced by our model can
be rendered in real-time on mobile devices and achieve significantly higher
view synthesis quality compared to existing mesh-based approaches. Our
interactive webdemo is available at https://binary-opacity-grid.github.io.

CCS Concepts: » Computing methodologies — Reconstruction; Appear-
ance and texture representations; Rasterization.

Additional Key Words and Phrases: Novel View Synthesis, Differentiable
Rendering, Neural Radiance Fields, Multiview-to-3D, Real-Time Rendering

1 INTRODUCTION

Surface rendering is generally considered to be more efficient than
volume rendering, as surface rendering ideally only requires reading
appearance data from a single 3D location, while volume rendering
requires aggregating colors and densities across multiple points
along each ray. Nevertheless, the current highest-quality view syn-
thesis algorithms [Barron et al. 2023; Duckworth et al. 2023; Kerbl
et al. 2023] all use volume rendering. These algorithms tend to rep-
resent even hard surfaces as “fuzzy” volumes, which leads to their
high computational cost. This also holds when applying surface-
promoting regularizers [Barron et al. 2022], see Figure 2.
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Recently, BakedSDF [Yariv et al. 2023] has demonstrated that ac-
curate view synthesis is also possible with a surface-based approach.
However, in contrast to volumetric methods, BakedSDF struggles
with recovering fine geometric detail. One reason for this is that
BakedSDF adopts the currently dominant paradigm for 3D recon-
struction, where the SDF is converted to a fuzzy volume during
training [Li et al. 2023; Wang et al. 2021; Yariv et al. 2021; Yu et al.
2022a,b]. This soft conversion from SDF to volumetric density al-
lows the model to “cheat” by representing thin structures in a fuzzy
manner. As a result, during meshing, thin structures often vanish.
Furthermore, during training, the validity of the recovered SDF must
be ensured using an Eikonal loss, which acts as a smoothness prior
and thereby tends to remove fine geometric detail.

To avoid these weaknesses of SDF-based approches, we investi-
gate an alternative strategy that does not require an Eikonal loss
or soft density conversion. We use a volume-based representa-
tion whose geometry we successively “sharpen” during training.
We achieve this surface convergence by applying the following
three modifications to an existing state-of-the-art radiance field
model [Barron et al. 2023]. First, we employ a discrete opacity grid
instead of a continuous density field, which enables opacity values
to discontinuously transition from zero to one at the surface [Chen
et al. 2023]. Second, we cast multiple rays per pixel to allow our
model to accurately reproduce anti-aliased occlusion boundaries
without using semi-transparent voxels. Third, we explicitly encour-
age hard surfaces by enforcing a binary entropy loss on the opacity
values. As shown in Figure 2, this causes opacity values to binarize
to zero or one as training converges, which enables the extraction of
surface geometry. We demonstrate that all three of these elements
are required for accurate reconstruction of subpixel structures.

Furthermore, we present a fusion-based meshing strategy for
converting our recovered binary opacity grid (BOG) into a triangle
mesh after training. The resulting mesh can then be simplified with
off-the-shelf tools to a complexity that is adequate for real-time
rendering while still preserving thin structures. Finally, we equip
that mesh with a lightweight view-dependent appearance model
that is well-suited for real-time viewer applications. Because the
standard approach of UV mapping is problematic for our highly
detailed meshes, we systematically evaluate alternative appearance
representations and find the combination of triplanes with a low-
resolution voxel grid as the preferred method [Reiser et al. 2023]. Our
triangle mesh and appearance representation are compact enough to
be rendered in real-time on mobile devices and achieve significantly
higher view synthesis quality compared to existing mesh-based
models. As such, our work represents a step towards closing the gap
between surface-based view synthesis methods and volume-based
ones.

2 RELATED WORK

Here we review real-time view synthesis methods that fit a 3D scene
representation to calibrated multi-view images with differentiable
rendering. These can be subdivided according to their rendering
formulation into volume-based, surface-based and hybrid methods.
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Fig. 2. Volume rendering weights for rays along a row of pixels (left, in pink).
Density fields like Zip-NeRF [Barron et al. 2023] tend to represent hard
surfaces as semi-transparent volumes despite using surface-promoting regu-
larizers. In contrast, our opacity grid converges to a hard surface. Note that,
as each column visualizes volume rendering weights of a single ray, gaps in
this visualization do not indicate holes in the underlying representation.

Volume-based Methods. The highest-quality view synthesis meth-
ods use volume rendering during optimization and inference [Bar-
ron et al. 2023]. Many techniques in this category follow the neural
radiance fields (NeRFs) paradigm [Mildenhall et al. 2020]. NeRFs
associate a density and view-dependent color value with each 3D
point and can be fitted using differentiable volume rendering to
multi-view images with a re-rendering objective. The original NeRF
uses an MLP to represent the scene, which results in slow rendering.
Follow-up works speed-up rendering by using alternative represen-
tations such as voxel grids [Garbin et al. 2021; Hedman et al. 2021;
Yan et al. 2023; Yu et al. 2021], triplanes [Chen et al. 2022; Duckworth
et al. 2023; Reiser et al. 2023], or point-based representations [Kerbl
et al. 2023; Kopanas et al. 2021; Riickert et al. 2022a,b; Xu et al. 2022].

Surface-based Methods. Although recent volume-based methods
such as SMERF or 3DGS are capable of real-time rendering, they are
slower than surface-based alternatives such as BakedSDF, as demon-
strated in Duckworth et al. [2023]. In volume rendering, computing
a pixel’s value requires compositing colors from multiple sampling
locations (SMERF) or primitives (3DGS), while surface rendering
(under typical conditions) only requires reading appearance data
from a single surface location. This is the case for surface-based
view synthesis methods that employ a triangle mesh, which can be
efficiently rendered using hardware-accelerated rasterization.
Early view-synthesis methods use surface geometry from multi-
view stereo [Jancosek and Pajdla 2011; Schonberger et al. 2016]
and model appearance by blending between input images [Debevec
et al. 1998; Waechter et al. 2014; Wood et al. 2000]. Later methods
improve visual quality by predicting the appearance of the surface
with a trained neural network [Chen et al. 2018; Philip et al. 2021;
Riegler and Koltun 2021; Thies et al. 2019]. Most of these approaches
are constrained by the quality of the reconstructed surface, as they
did not jointly optimize for appearance and geometry. For objects
whose topology is close to an initial template mesh Worchel et al.
[2022] optimize a triangle mesh together with appearance.
MobileNeRF is similar to our method in that it also uses an opacity-
based representation during training [Chen et al. 2023]. The key
difference is that MobileNeRF outputs a coarse proxy mesh equipped
with binary alpha masks, whereas we aim for a traditional mesh,
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which enables wider compatibility. To this end, we use a signifi-
cantly higher voxel grid resolution than MobileNeRF and rely on
simplification to obtain a compact mesh. Our fine grid is more ge-
ometrically expressive than MobileNeRF’s alpha-textured coarse
mesh, which is unable to represent multiple close-by sheets of ge-
ometry. During training, we achieve surface convergence using a
combination of supersampling and entropy regularization, while
MobileNeRF differentiably quantizes opacity values.

UNISUREF also uses an opacity-based representation [Oechsle et al.
2021]. In addition to volume rendering, UNISURF uses a second
rendering formulation where the 0.5 level set defines the surface
[Niemeyer et al. 2020; Yariv et al. 2020]. We instead obtain hard
surfaces by regularizing opacity values.

BakedSDF optimizes a signed distance function (SDF) that can
be converted into a mesh after training and encodes appearance as
vertex attributes [Yariv et al. 2023]. Similar to VolSDF [Yariv et al.
2021], NeuS [Wang et al. 2021, 2023a], or NeuralAngelo [Li et al.
2023], BakedSDF converts signed distances to density values during
optimization, and those densities are used for volume rendering.
Valid SDFs are encouraged through the use of a loss to enforce
the Eikonal constraint, but this constraint is sometimes violated
in favor of reconstructing fine geometric detail in a fuzzy manner.
As a result, thin structures often vanish when “baking” these SDFs
into meshes. In contrast, in our method, there is high agreement
between optimized and extracted geometry, since opacity values
mostly become binary towards the end of the training.

A number of recent papers also focus on extraction of fine geo-
metric detail from volumetric density fields. NeRFMeshing and
NeRF2Mesh both convert a density field into a triangle mesh [Rako-
tosaona et al. 2023; Tang et al. 2023]. Since density fields do not
have a clearly defined surface, these methods compensate for lossy
mesh conversion with an additional optimization stage. LoD-NeuS
uses an error-guided SDF growth strategy to featurize conical frusta
along each ray [Zhuang et al. 2023].

DMTet and FlexiCubes differentiably convert an implicit repre-
sentation to a triangle mesh during training. Similar to our method,
any mismatch between optimized and baked geometry is avoided,
but these methods do not scale to high resolutions because they re-
quire that the full grid be processed during each forward pass [Liao
et al. 2018; Munkberg et al. 2022; Shen et al. 2021, 2023].

Several concurrent preprints extract meshes from 3DGS [Guédon
and Lepetit 2023; Huang et al. 2024; Lyu et al. 2024; Wolf et al. 2024;
Yu et al. 2024a,b], but do not reason about subpixel structures and
do not evaluate baked meshes for view synthesis.

Hybrid Methods. Recently, some methods have emerged that use a
combination of surface and volume rendering during inference [Guo
et al. 2023; Turki et al. 2023; Wang et al. 2023b]. These models aim to
model the majority of the scene as surface geometry, while modeling
whatever small subsets of the scene that happen to look “fuzzy” as
volumes. Our goal is to expand the portion of the scene that can
be represented as a surface, aiming to use volume rendering as
sparingly as possible to ensure optimal performance.

3 BINARY OPACITY GRIDS

To capture thin structures with a surface-based representation, our
model first uses an opacity-based voxel grid representation. Through
the use of an entropy regularizer and supersampling, our opacity
values become binary (either zero or one) towards the end of training.
This enables us to exactly locate the surface, which is essential for
the conversion of our recovered model into a triangle mesh.

3.1 Representation

During training, we represent the scene with an R X R X R voxel
grid, using a 3D contraction function, as described in Appendix C.
With each voxel, we associate an opacity value a € [0, 1] and a color
value ¢ € [0, 1]3, which additionally depends on the view direction.
To render a pixel, we cast a ray from the camera origin through
the center of the pixel, and this ray is then intersected with all of
the voxels along its path. For each intersected voxel, we query its
opacity value o and its color value ci. The final pixel value C is
computed using front-to-back alpha compositing:

k-1
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Following MobileNeRF, we directly parameterize opacity values in
[0, 1], unlike NeRF, which parameterizes density values that are later
converted to opacity values using the distance between sampling
points [Mildenhall et al. 2020]. In contrast to density-based volume
rendering, our formulation does not involve any approximation
since it is a finite sum over values associated with the voxels along
the ray. One advantage of our formulation is that, when all opacity
values are binary, the surface must be located at the first voxel along
the ray with an opacity value of one [Chen et al. 2023].

To represent thin structures, we require a high voxel grid resolu-
tion R on the order of 2!3. Directly optimizing a voxel grid of this
size is not feasible, as this would require > 2 terabytes of memory
to store opacity values alone. Instead, we predict the grid values
using an MLP equipped with a multi-resolution hash encoding as
in Miiller et al. [2022]. Note that our overall representation is still
discrete in nature because the MLP is only queried at quantized
positions [Reiser et al. 2023].

The number of voxels that intersect a ray is proportional to the
grid resolution R. Therefore, with a high resolution, it becomes
computationally intractable to query the representation at all inter-
sected voxels. To address this, prior work adopted a coarse-to-fine
strategy in combination with empty space skipping, but it has been
observed that this can cause thin structures to be lost during early
training iterations [Liu et al. 2020; Miller et al. 2022]. For standard
density-based NeRFs, this issue can be circumvented with hierarchi-
cal sampling using a “proposal” MLP [Barron et al. 2022; Mildenhall
et al. 2020]. However, this strategy relies on the assumption that,
at the beginning of training, the volume rendering integral can be
well-approximated with randomly placed samples due to the initial
volume being somewhat smooth. Since opacity-based rendering
does not incorporate the distance between sample points, the finite
sum in Equation (1) can only be poorly estimated with a small num-
ber of randomly placed samples. To circumvent this, we first train a
Zip-NeRF to produce a converged proposal MLP, which encodes the
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coarse geometry of the scene [Barron et al. 2023]. When training
our model, we query our representation only at a fixed number
of samples from the distribution predicted by the pre-trained pro-
posal MLP, whose weights are kept fixed. These samples represent
a superset of the actual surface locations, which entails that the
finite sum in Equation (1) is computed accurately. We quantize the
sampled positions by rounding down each coordinate to the nearest
multiple of the voxel size. If more than one sampled position falls
within the same voxel, only the first position is used, which ensures
that each voxel only contributes at most once.

3.2 Training strategy

Locating a surface and extracting a triangle mesh from an opac-
ity grid requires binary opacity values, but optimizing the opacity
values of our grid with no additional regularization does not natu-
rally result in binarized values at the end of training. To encourage
binary opacity values, we use an entropy loss that pulls opacity
values smaller than 0.5 towards 0 and opacity values larger than 0.5
towards 1 [Lombardi et al. 2019; Xu et al. 2022]. We apply this loss
to the opacity values oy of all voxels sampled along each ray:

Lo =1 X i), @

where H is the binary entropy function:

H(p) = —plogy(p) — (1 - p)log,(1-p). ®3)

This alone, however, is not sufficient to accurately reconstruct
fine geometric detail. This is because, in a properly anti-aliased
image (such as the photographs we use as inputs), each pixel’s value
is the integral of all light within the cone associated with that pixel.

Consider the case of a “mixed pixel” at an occlusion boundary,
where a pixel’s value depends on light emitted from both a fore-
ground object and a background object. In volumetric methods such
as NeRF or 3DGS, such a pixel will be modeled by reconstructing a
semi-transparent region of the foreground object, such that the ray
being cast partially penetrates it and proceeds to the background
object. This correctly yields a reconstructed pixel value that contains
contributions from both the foreground and background objects. But
this use of semi-transparency violates the binary entropy assump-
tion required by our model: if opacity values are all binary, casting
a single ray through the center of a pixel will result in either the
foreground or the background object being struck, and will there-
fore yield an incorrect and aliased pixel intensity (i.e., “jaggies”). It
is therefore infeasible to accurately reconstruct these mixed pixels
using binary opacity values, assuming a single ray is cast for each
pixel. To correctly disambiguate the contributions from multiple
surfaces, we therefore cast multiple rays per pixel during training.
More specifically, we uniformly sample 16 sub-rays within the foot-
print of each pixel. After rendering each sub-ray, the final pixel
value is computed as the arithmetic mean of the subpixel values.
We observe that supersampling produces a significant improvement
in geometric quality, especially regarding the reconstruction of thin
structures, which often cover less than a single pixel.
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Fig. 3. Different meshing strategies. The bottom left image shows a
depth map rendered from a mesh that was obtained by applying the mesh-
ing strategy from Yariv et al. [2023] to our representation. Geometry is
instantiated at all visible voxels with an opacity value of 1 that are sam-
pled by the proposal MLP in any training view. This leads to numerous
floating artifacts, as infrequently sampled voxels in free space are severely
underconstrained by the training loss. The bottom right shows that these
underconstrained voxels can be effectively filtered by running volumetric
fusion on depth maps rendered from our model. This filtering step also fully
preserves thin structures, as can be seen in the top image.

4 MESH CONVERSION

After optimization, we convert the recovered BOG into a triangular
mesh — the most ubiquitous and practical representation for geome-
try in computer graphics. If done naively, this conversion leads to a
mesh consisting of billions of tiny cubes, which is prohibitively large
for real-time rendering. To mitigate this, we design a simple and
scalable baking pipeline that outputs a mesh that can be simplified
using off-the-shelf tools.

4.1 Volumetric Fusion for Outlier Removal

The most basic strategy for converting our binary occupancy grid
representation into a triangle mesh is to simply instantiate a surface
quad between every pair of voxels with opposing opacity values.
This works poorly, because the opacity values of voxels in free space
are completely unconstrained, as these voxels are never sampled
during training. Similarly, occluded space is not constrained by the
re-rendering objective, which leads to arbitrary opacity values in the
interior of objects. Therefore this strategy results in the creation of
many random surfaces, which are either distracting floating artifacts
in front of objects or invisible but computationally-wasteful pseudo-
geometry in the interior of objects.

A better strategy is to incorporate the proposal MLP that encodes
which opacity values are constrained by the training objective. Prior
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work does this by rendering all training views using the proposal
MLP [Reiser et al. 2023; Yariv et al. 2023] and then only instantiating
surfaces in the vicinity of voxels that contribute to rendering of
any pixel. This leads to the filtering of unconstrained areas, since
only parts of the scene that are not occluded and sampled by the
proposal MLP and thus receive supervision are considered for mesh-
ing. However, in our model, this strategy still produces a significant
number of floating artifacts, as can be seen in the bottom left image
of Figure 3. This is because some voxels are severely undercon-
strained, as they are not consistently sampled by the proposal MLP
during training. In other words, during training, some voxels are
only sampled in a fraction of the training views that observe a voxel.
These underconstrained voxels may get erroneously assigned an
opacity value of 1 despite being far from any surface. Since these
voxels are still sampled in some of the training views, they are in-
correctly appended to the final mesh. To filter these false positives,
we employ volumetric fusion [Curless and Levoy 1996] as described
in Appendix A. The bottom right image of Figure 3 demonstrates
the effectiveness of volumetric fusion for removing outliers.

Another important motivation for using volumetric fusion is that
it outputs a dense implicit representation of the scene. As shown
in Curless and Levoy [1996], this implicit representation can be
converted into a hole-free mesh, which is the preferred input for
most mesh simplification algorithms. Before conversion to a mesh
with marching cubes, we filter the implicit representation with a
small Gaussian blur with ¢ = 1 to remove geometric noise in the
underconstrained outer parts of the scene.

4.2 Simplification and Visibility Culling

To produce a more compact representation, we simplify the mesh
with an off-the-shelf tool based on quadric edge collapse decima-
tion [Garland and Heckbert 1997]. We found this approach to dra-
matically simplify our meshes while still preserving thin structures.
We explicitly simplify the mesh in far-away regions more aggres-
sively, as described in Appendix C. After simplification, we cull
triangles that are not visible from any training camera, which leads
to another significant reduction in the number of triangles. Only
using the training cameras’ poses for visibility estimation leads to
holes in the mesh that become apparent during novel view synthe-
sis. To combat this, we augment the set of camera poses used for
visibility estimation: we create additional poses by adding randomly
sampled offsets and rotations to the poses of the training cameras,
as described in Appendix C. We find that it is crucial to perform
culling after simplification, as mesh simplification methods tend to
not be robust to the numerous small holes introduced by culling.

5 VIEW-DEPENDENT APPEARANCE FOR MESHES

To enable view synthesis we need a view-dependent appearance
model for our reconstructed mesh. To this end, we evaluate a number
of potential representations and encodings for view-dependent color,
with a focus on options that are suited for real-time rendering.

5.1 Spatial Parameterization

We begin by exploring parameterizations which efficiently map
positions on our mesh to coefficients that encode appearance.

UV mapping. UV texture maps are the most ubiquitous represen-
tation for appearance. However, we found that current UV mapping
tools cannot deal well with the complexity of our input mesh, which
contains a lot of fine geometric detail (though concurrent work such
as Srinivasan et al. [2023] may provide a viable path).

Vertex Attributes. Prior mesh-based view synthesis methods like
Yariv et al. [2023] store appearance coefficients at vertex attributes
on the mesh and then interpolatie them across each face. Unfortu-
nately, this requires the vertex density to be higher than the desired
texture density, which results in prohibitively large and expensive
meshes. This is not the case for us, as our meshes are drastically
simplified, leading to large triangles in geometrically simple regions.
Volume Textures. We can directly associate a color value with each
3D position using a 3D volume texture. A simple way to encode a
volume sparsely is to subdivide the volume into blocks of D* voxels
and store only the nonempty blocks [Hedman et al. 2021]. The choice
of the block size D involves a trade-off: A small block size yields high
compactness, but results in poor data locality, which leads to slow
rendering. A large block size comes with high memory consumption,
since any block that contains a single surface-adjacent voxel must be
allocated. This also holds for alternative sparse data structures such
as octrees [Benson and Davis 2002] or spatial hashing [Lefebvre and
Hoppe 2006], since they equally depend on blocking for fast access.
Triplanes and Low-resolution Voxel Grid. Recently, it has been
shown that volume textures can be encoded compactly with a com-
bination of triplanes and a low-resolution voxel grid [Reiser et al.
2023]. Both the triplanes and the low-resolution voxel grid are cache-
friendly, leading to fast random access.

Table 1 shows that volume textures yield the highest quality,
followed by the combination of triplanes and low-resolution voxel
grid. The gap to vertex attributes is more pronounced, which you can
also see in Figure 4: vertex attributes look blurry in geometrically
simple regions. Finally, while the triplane and grid combination uses
less memory than and is much faster than volume textures, these
representations look nearly identical in Figure 4.

5.2 View-Dependence

We also investigate several encodings for view-dependent color:
spherical harmonics and spherical Gaussians, which are estab-
lished formats for view-dependent colors in real-time view synthesis
systems [Fridovich-Keil et al. 2022; Yariv et al. 2023; Yu et al. 2021],

Table 1. Different representations for mesh appearance in gardenvase.
Replacing vertex attributes with a 3D grid leads to higher quality at the
cost of higher memory consumption (VRAM). At a slight quality loss, the
“triplane + voxel” option is more compact, while rendering faster than the
alternatives. All rows except the last one use spherical Gaussians to model
view-dependence. The last row (offline) is an upper bound on quality and
uses an expensive appearance network.

PSNRT SSIMT LPIPS| VRAM| FPST
vertex attributes 25.58 0.771 0.211 97 261
volume textures 26.25 0.820 0.143 4513 169
triplane + voxel 26.02 0.807 0.157 629 477
offline 26.86 0.830 0.135 - -
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Ours, vertex attributes Ours, sparse voxel grid Ours (final), triplane + voxel
Fig. 4. Different representations for mesh appearance. Replacing ver-
tex attributes with a grid representation leads to sharper textures. The

cheaper alternative “triplane + voxel” is very similar to “voxel grid”.

Table 2. View-dependency encodings on gardenvase using our combination
of triplanes and a low-resolution voxel grid.

| PSNRT SSIMT LPIPS| bytes |

Spherical Gaussians 26.02 0.807  0.157 24
Spherical Harmonics 25.65 0.797 0.166 27
8-dim. Neural Feature 25.18 0.781 0.179 8
24-dim. Neural Feature | 25.72 0.798 0.164 24

and neural feature vectors that get decoded to a view-dependent
color with a small MLP [Chen et al. 2018; Hedman et al. 2021].
As can be seen in Table 2, spherical Gaussians deliver the highest
quality, while only requiring 24 bytes instead of 27 bytes per texel
compared to spherical harmonics. To fairly compare neural feature
vectors with spherical Gaussians, we choose a 24-dimensional neu-
ral feature vector to match memory consumption and bandwidth
requirements. Our decoder uses the same architecture as other re-
cent real-time view synthesis systems [Chen et al. 2023; Duckworth
et al. 2023; Hedman et al. 2021; Reiser et al. 2023]. Even with a large
neural feature vector, this underperforms the non-neural baselines.
As such, in our model, we use spherical Gaussians with the triplane
and low-resolution grid combination, which gives the best trade-off
between rendering speed, quality and memory consumption.

5.3 Real-Time Implementation

We implement a prototype web viewer for our representation based
on Three. js. Since our meshes contain many tiny structures, anti-
aliasing (AA) is critical during rendering. To avoid the computa-
tional expense of supersampling anti-aliasing (SSAA), we implement
temporal anti-aliasing (TAA) [Yang et al. 2020], which amortizes
sampling across time and only needs a single sample per pixel per
frame, as described in Appendix D. We find that the quality of our
TAA is on par with the significantly more expensive SSAA, even
when capturing frames under motion.

6 EXPERIMENTS

We conduct experiments on the indoor and outdoor scenes of the
challenging dataset from Mip-NeRF 360 [Barron et al. 2022], where

Table 3. Test-time anti-aliasing algorithms on the outdoor scenes from the
mip-NeRF 360 dataset [Barron et al. 2022]. TAA achieves nearly the same
fidelity as significantly more expensive SSAA.

| PSNRT SSIMT LPIPS| FPS|
SSAA 23.94 0.680 0.263 50
TAA, stationary 24.00  0.680 0.266 448

TAA, under motion 23.92 0.676 0.270 448
No AA 23.26 0.652 0.287 477

we compare our method in terms of quality, rendering speed, mem-
ory consumption, and storage impact to a range of volume-based
and surface-based alternatives. We additionally conduct an abla-
tion study to illustrate how our individual components contribute
towards accurately reconstructing thin structures.

Test-time Anti-Aliasing. Using anti-aliasing for test-time render-
ing is crucial for high quality, as evidenced by Table 3. To this end,
we study in our setting whether SSAA can be replaced by cheaper
TAA without negatively affecting view synthesis quality. For this
comparison, we always employ our previously-detailed 16X super-
sampling strategy during training and only vary the anti-aliasing
algorithm used for test-time rendering. Since TAA may introduce
blur under motion, we also measure the quality of images that were
captured after moving the camera over a fixed number of frames
to the target pose. As Table 3 shows, TAA has comparable quality
with the more expensive SSAA even when the camera is moving,
making it a viable choice for our viewer.

Comparison with BakedSDF. We compare with BakedSDF — the
state-of-the-art for real-time, mesh-based view synthesis — in all
scenes from Mip-NeRF 360 [Barron et al. 2022]. To disentangle
whether differences in rendering quality between BakedSDF and
our method stem from geometry or appearance, we fit our best-

performing appearance model (Section 5) to the meshes from BakedSDF,

i.e., we encode appearance using a combination of triplanes and
low-resolution voxel grid instead of vertex attributes. We also use
the same supersampling strategy for BakedSDF and our method.
We call this improved version BakedSDF++.

As can be seen in Figure 4, fitting our own appearance model to
the meshes from BakedSDF leads to sharper textures, since with
the combination of triplanes and low-resolution voxel grid, texture
resolution is not bounded by vertex density. This indicates that this
representation might be a viable alternative to vertex attributes even
for dense meshes as produced by BakedSDF.

More importantly, as Figure 7 shows, our method is significantly
better than BakedSDF at reconstructing thin structures, which are
often absent for this baseline. Furthermore, in Table 6 our method
outperforms BakedSDF++ across all key metrics, highlighting that
our meshes are better for view synthesis than those from BakedSDF.

Comparison with other Baselines. We also compare our method
with a broader set of baselines in terms of quality and render-
ing speed. We benchmark the volume-based baselines MERF and
3DGS and the surface-based method BakedSDF on a Google Pixel
8 Pro smartphone, a MacBook M1 Pro (2022) laptop and a desktop
equipped with an NVIDIA RTX 3090 graphics card. We report the
harmonic mean of frames per second (FPS) on the outdoor scenes of
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Fig. 5. Our method narrows the quality gap between surface-based and volume-based methods when it comes to the reconstruction of thin structures.

Table 4. Results on the outdoor and indoor scenes from mip-NeRF 360 [Bar-
ron et al. 2022], split into volume-based and surface-based methods. The
best metric in each family shown in bold and “~” denotes missing metrics.

Outdoor Scenes Indoor Scenes
PSNRT SSIM 1 LPIPS | |PSNRT SSIM T LPIPS |
Instant-NGP [2022] | 22.90 0.566 0.371 29.15 0.880 0.216

MERF [2023] 2319 0616 0343 | 27.80 0.855 0.271
3DGS [2023] 24.64 0.731 0.234 | 30.41 0920 0.189
Zip-NeRF [2023] 25.68 0.761 0.208 | 32.65 0.929 0.168
Shells [2023b] 23.17  0.606 0389 | 29.19 0.872  0.285
SMEREF [2023] 2532 0739 0232 | 3132 0917 0.186

Mobile-NeRF [2023] | 21.95 0.470  0.470 =
BakedSDF [2023] 22.47 0.585 0349 | 27.06 0.836 0.258
Ours (SSAA) 23.94 0.680 0.263 | 27.71 0.873 0.227

Table 5. Rendering speed comparison in frames per second. Our method is
significantly faster than volume-based and surface-based baselines and
is the only method capable of real-time rendering on our test smartphone.

Device Smartphone  Laptop Desktop
Resolution 400 X 750 1280 x 720 1920 X 1080
MERF [2023] 10 21 113
3DGS [2023] = = 176
BakedSDF [2023] 19 31 412
Ours (TAA) 67 448 927

Table 6. Comparison between BakedSDF, an improved version of BakedSDF
(BakedSDF++) and our method on the outdoor scenes from mip-NeRF
360 [Barron et al. 2022].

| PSNRT SSIMT LPIPS| #faces |
BakedSDF 2247 0585 0349  40M
BakedSDF++ | 2250  0.612 0315  40M
Ours (SSAA) | 23.94 0.680 0263  13M

the Mip-NeRF 360 dataset [Barron et al. 2022]. In terms of rendering
speed, our mesh-based representation outperforms all volume-based
baselines, see Table 5. In terms of quality metrics, our method still
lags behind the most recent volume-based baselines, as can be seen
in Table 4. However, the quality gap between surface-based and
volume-based methods is significantly reduced, especially for thin
structures as shown by Figure 5.

Table 7. Geometric ablations on the outdoor scenes from the mip-NeRF 360
dataset [Barron et al. 2022].

| PSNRT SSIMT LPIPS

(a) No supersampling 23.38 0.645 0.292
(b) No entropy loss 23.21 0.635 0.293
(c) R = 2048 instead of R = 8192 22.44 0.582 0.343
Ours (SSAA) 2394  0.680  0.263

Geometry Ablations. We conduct an ablation study on the out-
door scenes from mip-NeRF 360 [Barron et al. 2022] where we focus
on the initial opacity grid, which determines the quality of the mesh.

We train a variant of our model without supersampling (a). In this
case, we only disable supersampling during training of the binary
occupancy grid, but we still use supersampling for fitting the mesh
appearance model and for computing quality metrics. This isolates
the effect supersampling has on the quality of the obtained mesh.
As shown in Figure 6, thin structures are hard to recover without
casting multiple rays per pixel during training.

Next, we train a variant of our model without the entropy loss
(b). Since for this model, many opacity values do not become binary
during the course of training, we define depth as the distance to
the first voxel along the ray with an opacity value greater than 0.5.
Similar to (a), the effect of this is most pronounced for very thin
structures such as the ones shown in Figure 6.

Finally, we decrease the resolution R of the BOG (c). For this
experiment, we only decrease the resolution of the initial BOG,
but we use the same resolution of triplanes and the low-resolution
voxel grid during mesh appearance fitting as for the full model. This
isolates the effect geometric resolution has on mesh quality. As can
be seen in Figure 6, a high resolution is crucial for reconstructing
thin structures. Quantitative results for these ablations are given in
Table 7.

Storage Analysis. Next, we study how the individual components
of our representation contribute to disk storage and memory con-
sumption. We split our representation into a mesh and an appear-
ance model. As we have shown experimentally, reconstructing thin
structures requires a high grid resolution. As can be seen in Table 8,
without any further processing, this leads to meshes with billions
of faces, resulting in an impractical storage requirement of over 20
GiB. However, using simplification and culling, the size of the mesh
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Fig. 6. Geometric ablations. Recovering challenging thin structures requires (a) casting multiple rays per pixel, (b) the entropy loss, and (c) the grid resolution.

Table 8. Memory consumption and on-disk size. (a) The dense mesh before
simplification, (b) after simplification, (c) after culling. Results are averaged
over all scenes from mipNeRF-360 [Barron et al. 2022].

(a) Dense Mesh ~ (b) + Simpl.  (c) + Culling

Mesh  #vertices 606M IM ™
Mesh  #faces 1208M 18M 10M
Mesh VRAM 20.28 GiB 0.30 GiB 0.19 GiB
Mesh DISK 21.40 GiB 0.32 GiB 0.20 GiB
Appearance VRAM 0.75 GiB 0.75 GiB 0.75 GiB
Appearance DISK 0.65 GiB 0.65 GiB 0.65 GiB
Total VRAM 21.02 GiB 1.05 GiB 0.94 GiB
Total DISK 22.05 GiB 0.97 GiB 0.85 GiB

can be reduced by a factor of 100 to around 200 MiB. This results in
the size of the representation being dominated by the appearance
model, which occupies around 76% of the overall storage.

Quality Loss Analysis. Finally, we analyze the quality loss from
each concession we make to achieve real-time rendering. We start
from the state-of-the-art offline method Zip-NeRF, which we modify
to extract surface geometry. Since our BOG uses the same archi-
tecture as Zip-NeRF, any loss in rendering quality before meshing
is from our surface constraints (entropy regularization). Row 2 in
Table 9 shows that this leads to a 1.28 dB drop in PSNR. Next, we
convert our opacity grid into a triangle mesh, which only decreases
PSNR by 0.06 dB (Table 9, row 3). To isolate the quality loss incurred
by meshing, we equipped the mesh with the same offline appear-
ance model that was used during BOG optimization. Comparing
row 3 and 4 in Table 9, we see that switching to our lightweight
appearance model incurs a quality loss of 0.39 dB.

Table 9. Quality loss incurred by real-time concessions. Results are averaged
over the outdoor scenes from mip-NeRF 360 [Barron et al. 2022].

| PSNRT SSIMT LPIPS |

(1) Zip-NeRF 25.68 0.761 0.208
(2) BOG before meshing 24.40 0.698 0.263
(3) Our mesh: offline appearance 24.34 0.699 0.239

(4) Our mesh: real-time appearance | 23.94 0.680 0.263

Table 10. Processing times for the stages of our pipeline.

Stage hours
Zip-NeRF Optimization 24
BOG Optimization 7.1
Volumetric Fusion 20.7
Simplification 3.7
Mesh Appearance Optimization 26.2
Total 60.1

Processing Time. Table 10 shows processing times for each stage
of our pipeline. All stages use 8XV100 GPUs, except for volumetric
fusion (single V100) and simplification (CPU only). Our implementa-
tion of volumetric fusion is highly inefficient, offering potential for
significant speed-ups with, e.g., a CUDA implementation. Addition-
ally, using 16x supersampling results in roughly 3x slower training
than Zip-NeRF, which uses 6x multisampling [Barron et al. 2023].
Exploring alternatives to supersampling or limiting it to fewer pixels
is promising future work.

7 LIMITATIONS AND FUTURE WORK

Like other mesh-based view synthesis methods, ours does not han-
dle semi-transparent objects [Chen et al. 2023; Yariv et al. 2023].
While our meshes render quickly, the processing time for our re-
construction pipeline is substantial, as discussed in the previous
paragraph. The reconstruction of the underconstrained background
of the scene is often highly noisy, which significantly increases
the size of our meshes. This could potentially be mitigated with a
smoothness regularizer. The concurrent work Nuvo presents a UV
mapping method that is suited for high-detail meshes such as ours
[Srinivasan et al. 2023]. Representing appearance with UV textures
and obtaining more compact meshes using smoothness regular-
ization could significantly speed-up rendering and save memory.
Another consequence of the lack of smoothness is that our meshes’
normals are too noisy for relighting. We found the quality differ-
ence between our approach and volume-based methods larger in
the indoor scenes. We attribute this to changes in illumination (e.g.
shadows from the photographer) that are difficult to capture on
surfaces with a low-capacity view-dependence model. Indeed, we
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Fig. 7. Our method retains more geometric detail than BakedSDF. Bottom rows are visualizations of depth maps, for which we do not have ground-truth.
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found a large offline view-dependence network to yield significantly
higher quality in these scenes. In general, a quality gap remains
between our approach and volume-based methods. We hypothesize
that disturbances during capture, like inaccurate poses, wind, motion
blur, or depth of field, present a greater challenge for surface-based
approaches since volumetric approaches can fuzzily resolve these
disturbances. Furthermore, volumetric approaches excel at model-
ing reflections by exploiting semi-transparency to create “mirror
worlds”.

8 CONCLUSION

We have presented the first mesh-based view synthesis algorithm
that is capable of reproducing subpixel structures in the input im-
ages by employing a high-resolution opacity grid combined with
supersampling and a binary entropy loss. In contrast to volume-
based alternatives, our method renders in real-time on affordable
smartphones. Compared to BakedSDF, the previous state-of-the-art
in mesh-based view synthesis, our method yields 3 times more com-
pact meshes and achieves 1.46 dB higher PSNR in outdoor scenes.
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pervised during training. This can be achieved by rendering depth
maps from the training viewpoints using the proposal MLP and
creating surface voxels via unprojection. However, during training,
some voxels may only be sampled in a fraction of the views and
thus have incorrect opacity values. This leads to floating artifacts in
the resulting mesh (see Figure 3).
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We use volumetric fusion to filter these underconstrained voxels.
Specifically, for each voxel, we count for how many depth maps
the voxel is observed 1) in free space and 2) on the surface. As
underconstrained voxels appear in very few training views, we
can detect and discard them by only keeping voxels that are more
frequently observed on the surface rather than in free space.

Another important motivation for volumetric fusion is that it out-
puts a dense implicit representation which can easily be converted
into a hole-free mesh — the preferred input for most simplification
algorithms. Consequently, we would like our fusion algorithm to
also label unobserved voxels as “inside” or “outside”. A simple heuris-
tic is to lo label unobserved voxels as “inside” [Curless and Levoy
1996]. However, in rare cases, the proposal MLP does not sample
the surface of an object, which carves large holes into the resulting
mesh. We address this by requiring several views to observe a voxel
in free space before it can be labelled as outside.

This leads to our fusion algorithm. For each voxel, we count:

e S: the number of views where it is observed on the surface.

e F:the number of views where it is observed in front of the
surface, i.e. in free space.

e O: the number of views in which it is observed at all.

Specifically, we project the voxel into each training view where we
obtain a depth value d. Then, we increment S if the voxel’s depth is
approximately the same as d. We increment ¥ if the voxels’ depth is
smaller than d. If the voxel is within the training camera’s frustum,
we increment O. Finally, we label the voxel as "inside" if any of the
following conditions is met:

1) sS>F

(2) F <4-1[0 > 40] + 1[40 > O > 6]

3 S=0andF =0

(4) 0<2
We multiply § with a number s > 1 to bias the reconstruction
towards surfaces, which helps preserve thin structures. Weighing
S and ¥ equally leads to the erosion of objects, as voxels at object
boundaries are not consistently sampled by the proposal MLP. Rule
(2) is motivated by the fact that sometimes the proposal MLP misses
an entire object altogether. In the unobserved interior of an object,
S will be equal to zero in this case, but since ¥ is nonzero, this leads
to incorrectly labeling the voxel as outside. Rule (2) fixes this by
requiring a minimum number of views that need to observe a voxel
to lie in free space for it to labelled as outside. This threshold needs
to be dependent on then number of views that observe a voxel, since
otherwise sparsely observed voxels are always labelled as inside.
Rule (3) ensures that completely unobserved parts of the scene are
labelled as inside. The optional rule (4) ensures that only voxels are
considered that are observed in at least two views, since parts of
the scene that are only observed by a single camera are inherently
underconstrained and thus only contribute geometric noise. As can
be seen in Figure 3 of the main paper, this algorithm effectively
removes floating artifacts, while preserving thin structures.

B SCALABLE MESH CONVERSION VIA CHUNKING

To capture thin structures with a surface-based approach, a very
high grid resolution of 81923 is required. Processing such a high
resolution grid in one pass requires too much memory. Fortunately,

all of the steps (volumetric fusion, filtering, marching cubes, and
simplification) in our pipeline can be executed in 10243 chunks,
which allows scaling to arbitrary resolutions. To avoid discontinu-
ities at chunk boundaries, we configure the mesh simplification
algorithm to keep boundary vertices intact. The final mesh can then
be computed by concatenating sub-meshes and merging the du-
plicate boundary vertices. To speed up volumetric fusion, we only
process voxels that are sufficiently close to an initial estimate of the
surface. We obtain this initial estimate of the surface by unproject-
ing the depth values contained in the depth maps of all input views.
We then quantize the resulting 3D points based on grid resolution
(8192%), which gives us a list of surface voxels. We then subdivide
the scene into 16% blocks and determine for each block whether
it contains a voxel that is maximally D = 64 voxels apart from a
voxel in the previously computed list of observed surface voxels.
During fusion we skip blocks that are not marked as alive. Since
we are no longer densely computing the implicit representation, it
is no longer guaranteed that running marching cubes results in a
hole-free mesh, which is the preferred input for most simplification
algorithm. However, we find that with our choice of D = 64, only a
moderate number of holes are introduced. These holes are usually
not observed and therefore the quality of the reconstruction does
not suffer. This technique also leads to slightly smaller meshes.

C IMPLEMENTATION DETAILS

Architecture. For the proposal MLPs and the MLP that predicts
binary opacity values and view-dependent colors, we closely fol-
low Zip-NeRF’s [Barron et al. 2023] architecture based on a multi-
resolution hash encoding [Miiller et al. 2022]. To bound opacity and
color values between 0 and 1, we use a sigmoid activation function.
Following Reiser et al. [2023], during mesh appearance fitting, we
predict the values of the triplanes and low-resolution voxel grid
with a hash grid-equipped MLP. For this MLP, we use the same
architecture as the MLP that parameterizes the binary opacity grid.

In unbounded scenes, regions that are only observed from far
away can be represented with a low resolution. To achieve a reso-
lution that smoothly decreases with the distance from the scene’s
center, we apply MERF’s contraction function to each position x
before querying the MLP:

xj if %l <1
Xj .
contract(x); = m ifxj # |xlo > 1 (4)
_ L)X =
(2- ) & iy = lxlleo > 1
where || - [|oo is the Lo norm (||x||lcc = max; |x;]). Before applying

the contraction function, we scale input coordinates by a factor of
2.5 to allocate more representation power to the foreground. For
the standalone voxel grid, we use a resolution of 20483. For the
combination of triplane and low-resolution voxel grid, we use a
resolution of 20482 and 5123, respectively.

Optimization. For binary opacity grids, we use Adam [Kingma and
Ba 2017] with an initial learning rate of 0.01, a final learning rate of
0.001 and 25K steps. For mesh appearance, we use Adam with an
initial learning rate of 0.0005, a final learning rate of 0.00005 and
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100K steps. The learning rate is warmed up for 2500 steps. For the
binary entropy loss, we use a weight of 0.05.

Simplification. For mesh simplification, we need to specify a ratio
R that controls what fraction of original triangles should be kept.
We want to simplify the background more aggressively than the
foreground, as we find it less important for accurate view synthesis.
As detailed in the previous section, simplification is executed on a
chunk-by-chunk basis. The scene is subdivided into an 8 grid of
chunks. We define a chunk as lying in the background if its center
lies outside of the [—1, 1]3 unit cube. For foreground chunks, we set
R to 0.03. We simplify backgrounds chunks twice as aggressively
by setting R to 0.015. In addition, we make sure that background
chunks contain at most 0.5M faces by adjusting R accordingly.

Visibility Culling. For visibility culling, we not only use the cam-
era poses of the training images, but also generate 6 additional poses
for each training pose by adding random offsets and rotations to the
original pose. Let o be the origin of the training camera let d be the
direction the training camera faces to. We obtain a new origin o by
applying isotropic Gaussian noise. To obtain a new direction d, we
use the E3X library [Unke and Maennel 2024] and draw a a uniform
sample from an e-neighborhood of the the direction vector:

6 ~ N(o,0%D)), (5)
d~U{veR:[v-dlly <ellvll;=1}). (6)

We find that the additional poses are crucial for avoiding visible
holes in the final mesh.

D TEMPORAL ANTI-ALIASING

We implement our temporal anti-aliasing strategy [Yang et al. 2020]
following industry best practices [Karis 2014]. Namely, we jitter
the projection matrix with a Halton(2, 3) sequence of length 16 and
reproject the previous frame’s color using the current depth buffer.
We then average the reprojected color with the current frame’s
color using an exponentially moving average with a blend factor
of 0.05. To reduce blur from repeated resampling, we use a Lanczos
kernel [Duchon 1979] with a radius of 3 for reprojection. Finally, to
limit ghosting artifacts for disoccluded content, we clip the repro-
jected color using variance-box [Salvi 2016] neighborhood clamping
in the YCoCg color space [Karis 2014].

Since TAA is known to cause blur under motion, we evaluate the
quality of our test set images with a moving camera. Given a target
camera pose, we first extract its “up” vector u and its “left” vector 1.
We then translate the camera from an initial position p + c(u +1) to
the target position p over a fixed number of frames T = 100:

p(t) =p+Ac(u+l) ™)
t

where A = 1 — 7= and the time step ¢ ranges from 0 to T — 1.
The factor ¢ = 0.05 controls how far the initial position is from
the target position. The camera’s rotation is kept fixed during the
entire trajectory. The frame used for computing quality metrics is
captured when the camera has arrived at the target position.

E FRAME RATE BENCHMARKING

We follow the evaluation protocol from Duckworth et al. [2023]
and measure the average frame rate over the scene’s test set camera

poses. Following Duckworth et al. [2023], we render for each cam-
era pose 100 frames and compute the average frame time. Similar
to SMEREF, for the browser-based viewer applications (BakedSDF
[Yariv et al. 2023], MERF [Reiser et al. 2023] and our method), we
measure frame rates that exceed the browser’s frame rate limit by
drawing each frame k times before scheduling it for display. Follow-
ing SMERF, we measure frame times with three different values of k,
where we choose the initial value for k to ensure that frame rate lies
below 60 FPS. We then perform two additional measurements with
larger values for k. Finally, for each frame, we report the minimum
average frame time over k.
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