
KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

Christian Reiser1,2 Songyou Peng1,3 Yiyi Liao1,2 Andreas Geiger1,2
1Max Planck Institute for Intelligent Systems, Tübingen 2University of Tübingen 3ETH Zurich

{firstname.lastname}@tue.mpg.de

Abstract

NeRF synthesizes novel views of a scene with unprece-
dented quality by fitting a neural radiance field to RGB
images. However, NeRF requires querying a deep Multi-
Layer Perceptron (MLP) millions of times, leading to slow
rendering times, even on modern GPUs. In this paper, we
demonstrate that real-time rendering is possible by utilizing
thousands of tiny MLPs instead of one single large MLP.
In our setting, each individual MLP only needs to represent
parts of the scene, thus smaller and faster-to-evaluate MLPs
can be used. By combining this divide-and-conquer strat-
egy with further optimizations, rendering is accelerated by
three orders of magnitude compared to the original NeRF
model without incurring high storage costs. Further, using
teacher-student distillation for training, we show that this
speed-up can be achieved without sacrificing visual quality.

1. Introduction
Novel View Synthesis (NVS) addresses the problem of

rendering a scene from unobserved viewpoints, given a
number of RGB images and camera poses as input, e.g., for
interactive exploration. Recently, NeRF [29] demonstrated
state-of-the-art results on this problem using a neural radi-
ance field representation for representing 3D scenes. NeRF
produces geometrically consistent, high-quality novel views
even when faced with challenges like thin structures, semi-
transparent objects and reflections. Additionally, NeRF’s
underlying representation requires only very little storage
and thus can be easily streamed to users.

The biggest remaining drawbacks of NeRF are its long
training and rendering times. While training can be sped up
with a multi-GPU cluster, rendering must happen in real-
time on the consumer’s device for interactive applications
like virtual reality. This motivates us to focus on increasing
NeRF’s rendering speed in this paper.

NeRF represents the scene’s geometry and appearance
with a Multi-Layer Perceptron (MLP). During volumetric
rendering, this network is sampled hundreds of times for

KiloNeRFNeRF

0.02s56s
 2548x faster

Figure 1: KiloNeRF. Instead of representing the entire
scene by a single, high-capacity MLP, we represent the
scene by thousands of small MLPs. This allows us to render
the scene above 2548x faster without loss in visual quality.

millions of pixels. As the MLP used in NeRF is relatively
deep and wide, this process is very slow. A natural idea is to
decrease the depth and number of hidden units per layer in
order to speed up the rendering process. However, without
any further measures, a reduction in network size leads to an
immediate loss in image quality due to the limited capacity
for fitting complex scenes. We counteract this by using a
large number of independent and small networks, and by
letting each network represent only a fraction of the scene.

We find that training our KiloNeRF with thousands of
networks, naı̈vely from scratch leads to noticeable artifacts.
To overcome this problem, we first train a regular NeRF as
teacher model. KiloNeRF is then trained such that its out-
puts (density and color) match those of the teacher model
for any position and view direction. Finally, KiloNeRF is
fine-tuned on the original training images. Thanks to this
three-stage training strategy, our model reaches the same

visual fidelity as the original NeRF model, while being able
to synthesize novel views three orders of magnitude faster
as illustrated in Fig. 1. Crucial for achieving our speedup is
an adequate implementation of the concurrent evaluation of
many MLPs. Towards this goal, we published our efficient
implementation using PyTorch, MAGMA, Thrust and cus-
tom CUDA kernels at https://github.com/creiser/kilonerf.

2. Related Work

Novel View Synthesis: NVS methods can be categorized
according to the representations they use to model the un-
derlying scene geometry. Mesh-based methods, including
classical [5, 9, 65, 69] and learning-based [45, 46, 61] ones,
typically require a preprocessing step, e.g., Structure from
Motion (SfM) [49], to reconstruct the scene. Similarly,
point cloud-based methods rely on SfM or RGB-D sen-
sors to recover geometry [2]. In contrast, approaches us-
ing multi-plane images (MPIs) [11,28,55,56,64,78] repre-
sent the scene as a stack of images or feature maps. While
MPI approaches demonstrate photorealistic image synthe-
sis, they only allow for small viewpoint changes during in-
ference. Another line of methods considers voxel grids as
scene representation [19, 25, 40, 51, 52, 58] which, however,
are typically restricted in terms of their resolution.

The limitations of voxel grids can be alleviated by adopt-
ing neural function representations [29,32,53,72]. Differen-
tiable Volumetric Rendering (DVR) [32] and Implicit Dif-
ferentiable Renderer (IDR) [72] adopt surface rendering and
therefore rely on pixel-accurate object masks as input dur-
ing training. Furthermore, they assume solid scenes and
cannot handle semi-transparent objects or thin structures
well. In contrast, NeRF [29] uses volumetric rendering [3]
which enables training without masks and allows for recov-
ering fine structures using alpha blending.

One reason for NeRF’s success lies in its representa-
tion, which utilizes a parametric function to map 3D coor-
dinates and viewing directions to volumetric densities and
color values. Such function representations have a long tra-
dition [47, 48] and have recently resurfaced in geometric
computer vision [7, 27, 35]. These recent methods use deep
neural networks as function class and have advanced the
state-of-the-art in tasks like 3D reconstruction, shape gener-
ation, point cloud completion or relighting [7,27,33,35,38].

Faster NeRF Rendering: Neural Sparse Voxel Fields
(NSVF) [24] speed up NeRF’s rendering using classical
techniques like empty space skipping and early ray termi-
nation. Additionally, NSVF’s network is conditioned on
feature vectors located on a uniform 3D grid to increase
the model’s capacity without increasing network depth or
width. By applying empty space skipping already during
training, NSVF can sample more densely around surfaces at
the same computational budget. We also make use of empty

space skipping during training and early ray termination
during rendering. The key difference is that we use thou-
sands of small networks, while NSVF uses a single feature-
conditioned network. Since our networks are only respon-
sible for representing a small region, they require lower ca-
pacity compared to NSVF’s single network that must repre-
sent the entire scene. As a consequence, KiloNeRF renders
views two orders of magnitude faster than NSVF.

Concurrently to us, numerous works [14, 16, 23, 30, 43,
74] were developed with the purpose of speeding up NeRF.
DeRF [43] also represents the scene by a number of inde-
pendent networks. However, in DeRF the scene is decom-
posed into sixteen irregular Voronoi cells. In this paper, we
demonstrate that a much simpler strategy of decomposing
the scene into thousands of MLPs arranged on a regular
3D grid leads to significantly higher speedups. AutoInt re-
places the need for numerical integration in NeRF by learn-
ing a closed form solution of the antiderivative [23]. By
making use of the fundamental theorem of calculus, a pixel
is rendered with a significantly smaller amount of network
queries. DONeRF [30] demonstrates the feasibility to ren-
der a pixel using only 4 samples on the ray. This is achieved
by placing samples more closely around the first surface
that the ray intersects. Towards this goal, for each ray an
additional network is queried, that directly predicts suitable
sample locations. We note that the latter two approaches are
orthogonal to KiloNeRF and the combination of KiloNeRF
with either of these new techniques is promising. Other
works show that real-time rendering can be achieved by
converting the neural representation into a discrete one after
training [14, 16, 74]. In comparison to KiloNeRF, these ap-
proaches consume significantly more GPU memory which
might make them less suitable for larger scenes.

NeRF Follow-ups: NeRF++ extends NeRF to unbounded
scenes [76] while NeRF-W tackles unstructured photo col-
lections [26]. GRAF [50], pi-GAN [6] and GIRAFFE [31]
propose generative models of radiance fields. A series of
works improve generalization from limited number of train-
ing views [13,42,44,59,63,66,75] while others [57,68,73]
remove the requirement for pose estimation. [4, 15, 54] en-
able learning from images with varying light conditions. Fi-
nally, [10, 12, 21, 22, 34, 36, 39, 41, 62, 67, 70] extend NeRF
to videos. Many of these methods would benefit from faster
rendering and are compatible with KiloNeRF.

3. Method

Our method builds upon NeRF [29], which represents a
single scene as a collection of volumetric density and color
values. Crucially, in NeRF those densities and colors are
not stored in a discrete voxel representation. Instead, NeRF
encodes densities and colors at any continuous 3D position
in the scene using an MLP. While NeRF uses a single net-

https://github.com/creiser/kilonerf

work to represent the entire scene, we are inspired by [8]
and represent the scene with a large number of independent
and small MLPs. More specifically, we subdivide the scene
into a 3D grid. Each MLP is tasked to represent the part of
the scene that falls within a particular 3D cell. Since each
network only represents a small portion of the scene, a low
network capacity is sufficient for photo-realistic results as
demonstrated by our experiments. Additionally, we employ
empty space skipping and early ray termination to speed up
rendering further. We start with a brief review of the origi-
nal NeRF model which forms the basis for KiloNeRF.

3.1. Background

In NeRF [29], the scene is represented by a neural net-
work fθ with parameters θ. fθ takes as input a 3D position
x and viewing direction d and maps them to a color c and
density σ. The architecture of fθ is chosen such that only
the color c depends on the viewing direction d. This allows
modeling of view-dependent effects like specularities and
reflections while also encouraging a consistent geometry to
be learned. In a deterministic pre-processing step, x and d
are transformed by a positional encoding γ which promotes
learning of high-frequency details, see [29, 60] for details.

A pixel is rendered by shooting a ray from the camera’s
eye through the pixel’s center and evaluating the network
fθ for K sample points x1, . . . ,xK along the ray. For each
sample xi, the network outputs a color value ci and a den-
sity value σi. In other words, we compute a list of tuples:

(ci, σi) = fθ(xi,d) with i = 1, 2, . . . ,K (1)

Here, the viewing direction d is computed by normaliz-
ing the vector from the camera center to the pixel. Subse-
quently, the final pixel color ĉ is calculated by α-blending
the color values c1, . . . , cK

ĉ =

K∑
i=1

Tiαici (2)

Ti =

i−1∏
j=1

(1− αj) (3)

αi = 1− exp(σiδi) (4)

where αi determines the alpha value used for blending the
color values and the calculation of αi depends on the dis-
tance between adjacent sample points δj = ∥xj+1 − xj∥.
Finally, Ti corresponds to the transmittance which accounts
for occlusion along the ray. This procedure needs to be re-
peated for every pixel in the image. Consequently, W ×
H × K network evaluations are required for rendering an
image of width W and height H .

NeRF is trained by minimizing a photometric loss be-
tween rendered images and training images. More specifi-
cally, for each parameter update step, we randomly sample

a training image and B pixels c1, . . . , cB inside that image.
Subsequently, the corresponding pixels ĉ1, . . . , ĉB are ren-
dered according to Eq. 2. The model parameters θ are opti-
mized by minimizing an L2 reconstruction loss between the
rendered pixels and their ground truth:

L =
1

B

B∑
b

∥cb − ĉb∥22 (5)

3.2. KiloNeRF

KiloNeRF assumes knowledge of an axis aligned bound-
ing box (AABB) enclosing the scene. Let bmin and bmax

be the minimum and maximum bounds of this AABB. We
subdivide the scene into a uniform grid of resolution r =
(rx, ry, rz). Each grid cell with 3D index i = (ix, iy, iz)
corresponds to a tiny MLP network with an independent set
of parameters θ(i). The mapping g from position x to in-
dex i of the tiny network assigned to position x is defined
through spatial binning

g(x) = ⌊(x− bmin)/((bmax − bmin)/r)⌋ (6)

where all operations are element-wise. Querying KiloNeRF
at a point x and direction d involves determining the net-
work g(x) responsible for the respective grid cell:

(c, σ) = fθ(g(x))(x,d) (7)

Network Architecture: As illustrated in Fig. 2, we use a
downscaled version of the fully-connected architecture of
NeRF which similarly to the NeRF architecture enforces
that the predicted density is independent of the view di-
rection. However, NeRF uses a total of 10 hidden lay-
ers where each of the first 9 hidden layers outputs a 256-
dimensional feature vector and the last hidden layer out-
puts a 128-dimensional feature vector. In contrast, we use a
much smaller MLP with only 4 hidden layers and 32 hidden
units each. Due to the low depth of our network, a skip con-
nection as in the original NeRF architecture is not required.
Like in NeRF, we provide the viewing direction as an ad-
ditional input to the last hidden layer. All affine layers are
followed by a ReLU activation with two exceptions: The
output layer that computes the RGB color c uses a sigmoid
activation and no activation is applied to the feature vector
that is given as input to the penultimate hidden layer.

3.3. Training with Distillation

Training a KiloNeRF from scratch can lead to artifacts in
free space as visualized in Fig. 3. We observed that better
results can be obtained by first training an ordinary NeRF
model and distilling [17] the knowledge of this teacher into
the KiloNeRF model. Here, the KiloNeRF model is trained
such that its outputs match the outputs of the teacher model

Figure 2: Model Architecture. KiloNeRF’s MLP architecture is a downscaled version of NeRF’s architecture. A forward
pass through KiloNeRF’s network only requires 1/87th of the floating point operations (FLOPs) of the original architecture.

(a) Without Distillation (b) With Distillation

Figure 3: Distillation. (a) Training KiloNeRF from scratch
can lead to artifacts in free space. (b) Distillation by imitat-
ing a pre-trained standard NeRF model mitigates this issue.

for all possible inputs. More specifically, for each of our
networks, we randomly sample a batch of 3D points inside
the 3D grid cell that corresponds to the respective network.
These batches are augmented with viewing directions which
are drawn randomly from the unit sphere. We query both
the student and the teacher in order to obtain the respective
densities σ and color values c. The obtained σ-values are
converted to α-values according to Eq. 4, to put less empha-
sis on small differences between big density values.

We optimize the student’s parameters using an L2 loss
between the α-values and color values predicted by the stu-
dent and those obtained from the teacher. Note that for the
distillation step we are neither performing volumetric ren-
dering nor are we utilizing the training images. Therefore,
distillation alone would imply that KiloNeRF’s rendering
quality is upper bounded by the teacher method’s rendering
quality. Hence, in a final step KiloNeRF is fine-tuned on

the training images with the photometric loss from Eq. 5.
From this perspective, distillation can be seen as a means to
provide powerful weight initialization to KiloNeRF.

Regularization: The original NeRF architecture uses a
small fraction of its total capacity to model the dependency
of the color on the viewing direction as can be observed
in Fig. 2 (left). Zhang et al. [76] postulate that this choice
encourages that color is a simple function of the viewing
direction. Further, they experimentally demonstrate how
this inductive bias is crucial for avoiding artifacts in empty
space [76]. Our first attempt was to replicate this strategy in
KiloNeRF, i.e., we reduced the number of output features of
the last hidden layer to get a similar regulatory effect. How-
ever, this lead to an overall loss in visual quality due to our
small network width. We therefore instead apply L2 reg-
ularization to the weights and biases of the last two layers
of the network which are responsible for view-dependent
modeling of the color. This strategy allows us to impose
the same inductive bias as in NeRF without sacrificing vi-
sual quality. We refer to Fig. 6 in our experiments for an
illustration.

3.4. Sampling

A maximum of K equidistant points are sampled along
the ray. To reduce the number of network queries, we make
use of empty space skipping (ESS) and early ray termina-
tion (ERT). Consequently, the number of sampled points per
ray is variable and the hyperparameter K effectively con-
trols the distance δ between sampled points. Thanks to the
combination of ESS and ERT, only points in the vicinity
of the first surface that a ray intersects are evaluated, given
that the intersection is with an opaque object. We do not
make use of the hierarchical sampling scheme introduced
in NeRF, which also enables dense sampling in occupied
space, but is costlier than ESS. Similar to NeRF [29], we
use stratified sampling to avoid bias.

Empty Space Skipping: For empty space skipping, we in-
stantiate a second uniform grid with a higher grid resolution
in the given AABB. Each cell in this grid is populated with
a binary value which indicates whether the scene has any
content within that cell. This occupancy grid can be used to
avoid querying the network in empty space [3]. Only if the
cell, in which a sample point x lies, is occupied, the network
gets evaluated at x. We extract the occupancy grid from the
trained teacher and use it for more efficient fine-tuning and
inference. To populate the occupancy grid, we sample den-
sities on a 3×3×3 subgrid from the teacher model for each
cell of the occupancy grid. A cell is marked as occupied, if
any of the evaluated densities is above a threshold τ . No
dataset-specific tuning of τ was necessary.

Early Ray Termination: If the transmittance value Ti

becomes close to 0 during volumetric rendering, evalua-
tion of subsequent sample points xi+1,xi+2, . . . is unnec-
essary, since the contribution of corresponding color val-
ues ci+1, ci+2, . . . to the final pixel value becomes vanish-
ingly small. Therefore, once transmittance Ti falls below
a threshold ϵ, sampling further points along the ray can be
avoided. ERT is only used during inference and is imple-
mented by grouping network queries according to their dis-
tance from the camera, i.e., points close to the camera are
evaluated first and then successively more distant points are
queried for those rays that are not terminated yet.

3.5. Implementation

Our prototype implementation is based on PyTorch [37],
MAGMA [1] and Thrust. Additionally, we developed cus-
tom CUDA kernels for sampling, empty space skipping,
early ray termination, positional encoding, network evalu-
ation and alpha blending. Crucial for high performance is
the proper handling of the simultaneous query of thousands
of networks. To illustrate this, let us consider a single lin-
ear layer of a fully connected network which requires the
computation of a single matrix multiplication. More specif-
ically, a B × I matrix is multiplied with an I × O ma-
trix, where B is the batch size and I/O is the number of
input/output features. In KiloNeRF, for each network a sep-
arate matrix multiplication is required. Assuming N net-
works in total, we need to multiply a Bi × I matrix with
an I × O matrix for each i ∈ 1, . . . , N . Since Bi varies
per network, traditional batched matrix multiplications can-
not be used. To tackle this problem, we exploit the HPC
library MAGMA which provides a CUDA routine for this
situation [1]. For inference only we use a self-developed
routine that fuses the entire network evaluation into a sin-
gle CUDA kernel. Further, it is necessary to order the input
batch such that subsequent inputs are processed by the same
network. This step benefits largely from the prior reduction
in number of samples caused by the interplay of ESS and
ERT. More details can be found in the supplementary.

4. Experimental Evaluation

4.1. Setup

Datasets: Both NSVF [24] and KiloNeRF assume scenes
to be bounded. We can therefore directly use the four
datasets provided by NSVF, together with the given bound-
ing boxes. Consequently, KiloNeRF is tested on both syn-
thetic datasets (Synthetic-NeRF, Synthetic-NSVF) as well
as datasets comprising real scenes (NSVF’s variants of
BlendedMVS [71] and Tanks&Temples [18]). In total, we
evaluate on 25 scenes.

Baselines: We compare KiloNeRF to NeRF [29] and NSVF
[24]. Note that we compare to the original NeRF model
which adopts the hierarchical sampling strategy despite it is
not used for our teacher. NSVF is particularly interesting as
a baseline, because NSVF also makes use of ESS and ERT.
Hence speedups over NSVF can be largely attributed to the
smaller network size used in KiloNeRF. For comparisons to
other NVS techniques [25, 53] we refer the reader to [24].

Hyperparameters: For each scene, we choose the network
grid resolution such that the largest dimension equals 16
and the other dimensions are chosen such that the resulting
cells are cubic, hence the maximally possible resolution is
16 × 16 × 16 = 4096. To arrive at the occupancy grid’s
resolution we multiply the network grid resolution by 16,
which implies that the occupancy grid resolution is upper
bounded by 256× 256× 256 cells. We find that setting the
threshold τ for occupancy grid extraction to 10 works well
on all datasets. We use the Adam optimizer with a learn-
ing rate of 5e−4, a batch size of 8192 pixels and the same
learning rate decay schedule as NeRF. For L2 regularization
we use a weight of 1e−6. For early ray termination, we set
the threshold to ϵ = 0.01. As found in NSVF, early ray ter-
mination with this choice of ϵ does not lead to any loss of
quality [24]. Further, using the same value for ϵ as NSVF
increases comparability. The hyperparameter K, which in-
directly controls the distance between sample points, is set
to 384. We use the same number of frequencies for the po-
sitional encoding as NeRF.

Training Schedule: We train both the NeRF baseline and
KiloNeRF for a high number of iterations to find the limits
of the representation capabilities of the respective architec-
tures. In fact, we found that on some scenes NeRF takes up
to 600k iterations to converge. When comparing our quali-
tative and quantitative results to those reported by Liu et al.
[24], one might notice that we obtained much better results
for the NeRF baseline, which might be explained by our
longer training schedule. Training the NeRF baseline on an
NVIDIA GTX 1080 Ti takes approximately 2 days. For our
teacher, we train another NeRF model but without hierar-
chical sampling for 600k iterations as NeRF’s coarse model

BlendedMVS Synthetic-NeRF Synthetic-NSVF Tanks & Temples
Resolution 768× 576 800× 800 800× 800 1920× 1080

PSNR ↑ NeRF 27.29 31.01 31.55 28.32
NSVF 26.90 31.74 35.13 28.40
KiloNeRF 27.39 31.00 33.37 28.41

SSIM ↑ NeRF 0.91 0.95 0.95 0.90
NSVF 0.90 0.95 0.98 0.90
KiloNeRF 0.92 0.95 0.97 0.91

LPIPS ↓ NeRF 0.07 0.08 0.04 0.11
NSVF 0.11 0.05 0.01 0.15
KiloNeRF 0.06 0.03 0.02 0.09

Render time (milliseconds) ↓ NeRF 37266 56185 56185 182671
NSVF 4398 4344 10497 15697
KiloNeRF 30 26 26 91

Speedup over NeRF ↑ NSVF 8 13 5 12
KiloNeRF 1258 2165 2167 2002

Table 1: Quantitative Results. KiloNeRF achieves similar quality scores as the baselines while being significantly faster.

is too inaccurate for distillation and NeRF’s fine model is
biased towards surfaces. This model is distilled for 150k it-
erations into a KiloNeRF model, which takes up to 8 hours.
Finally, the KiloNeRF model is fine-tuned for 1000k itera-
tions, which requires only 17 hours thanks to ESS and the
reduced size of our MLPs.

Measurements: Our test system consists of an NVIDIA
GTX 1080 Ti consumer GPU, an Intel i7-3770k CPU and
32GB of RAM. For each scene, inference time is measured
by computing the average time over all test images.

4.2. Results

Table 1 shows our main results. KiloNeRF attains simi-
lar visual quality scores as the baselines NeRF and NSVF.
In terms of the perceptual metric LPIPS [77], KiloNeRF
even slightly outperforms the other two methods on three
out of four datasets. However, on all scenes, KiloNeRF ren-
ders three orders of magnitude faster than NeRF and two
orders of magnitude faster than NSVF. In Fig. 4, we show
novel view synthesis results for all three methods. More
qualitative results can be found in the supplementary.

4.3. Ablations

In Fig. 5, we conduct an ablation study on KiloNeRF
using the Lego bulldozer scene as an example.

Single Tiny MLP: For this ablation, KiloNeRF’s network
hyperparameters (number of layers/hidden units) are used,
but only a single network gets instantiated. Unsurprisingly,
quality suffers dramatically since a single MLP with only
6k parameters cannot accurately represent the entire scene.

Method Render time ↓ Speedup ↑
NeRF 56185 ms –
NeRF + ESS + ERT 788 ms 71
KiloNeRF 22 ms 2548

Table 2: Speedup Breakdown. The original NeRF model
combined with KiloNeRF’s implementation of ESS and
ERT is compared against the full KiloNeRF technique.

Half Network Resolution: We test KiloNeRF with half the
network grid size (5× 8× 5 instead of 10× 16× 10 for this
particular scene) to verify whether the chosen resolution is
not unnecessarily high. We found that reducing the grid
resolution leads to a decline in quality which demonstrates
that a fine grid of tiny networks is indeed beneficial.

Half #Units: We also tested whether it is possible to fur-
ther reduce the number of hidden units. Again, we observe
a decrease in image quality, although the loss of quality is
not as pronounced as when decreasing grid resolution. A
possible explanation might be that halving the network res-
olution decreases the number of parameters by a factor of
8, while halving the number of hidden units decreases the
parameter count only by approximately a factor of 4.

No Fine-Tuning: For this experiment, the ultimate fine-
tuning phase is omitted. Our results show that fine-tuning is
crucial for achieving high quality and that the prior distilla-
tion phase only provides a good parameter initialization.

No Distillation: Fig. 3 compares training KiloNeRF from

0.02s4.2s56s

0.04s6.7s56s

0.02s5.6s37s

0.07s9.3s183s

Ground truth NeRF NSVF KiloNeRF

Figure 4: Qualitative Comparison. Novel views synthesized by NeRF, NSVF and KiloNeRF. Despite being significantly
faster, KiloNeRF attains the visual quality of the baselines. The numbers in the top-right corner correspond to the average
render time of the respective technique on that scene. The rendered image resolution (in pixels) is specified on the left.

Single Tiny MLP Half Network Res. Half #Units KiloNeRF Ground TruthNo Fine-Tuning

 0.1624 0.0495 0.0340 0.0809 0.0284

Figure 5: Ablation Study. Closeups of KiloNeRF on the Lego bulldozer scene, varying different parameters of the model.
The numbers in the bottom-right corner correspond to perceptual similarity (LPIPS) wrt. the ground truth, lower is better.

(a) No Regularization (b) Regularization (c) Ground Truth

Figure 6: Regularization. Without weight regularization,
visible artifacts in free space regions emerge in the rendered
images as the view-dependent part of the MLP has too much
capacity. Adding L2 regularization alleviates this problem.

scratch against the proposed training pipeline. Both alter-
natives yield the same level of detail, but only when using
distillation artifacts in empty space are avoided.

No Weight Regularization: Fig. 6 demonstrates that arti-
facts in free space can also emerge when L2 regularization
on the last two layers of the network is omitted. Conse-
quently, both distillation and L2 regularization play impor-
tant roles in avoiding these artifacts.

ESS and ERT: Finally, we are interested in determining to
which extent the combination of ESS and ERT and the re-
duction of network size contribute to the final speedup. To-
wards this goal, we run the original-size NeRF with our op-
timized ESS/ERT implementation and compare to the full
KiloNeRF technique on the Lego bulldozer scene. As can
be deduced from Table 2, the reduction in network size con-
tributes significantly to KiloNeRF’s overall speedup.

5. Discussion and Future Work
While KiloNeRF is able to render medium resolution im-

ages (800 × 800) at interactive frame rates, the speedups
are not sufficient yet for real-time rendering of full HD im-
ages. Further speedups might be possible by scaling our
approach to a higher number of smaller networks. Naı̈vely
doing this, however, would lead to a higher storage im-
pact. This might be mitigated by using memory-efficient

data structures [8, 20] that allow networks to be exclusively
instantiated in the vicinity of surfaces.

Furthermore, in this work, we mainly focused on making
network queries faster by using many small MLPs. In con-
trast, the concurrently developed techniques AutoInt [23]
and DONeRF [30] speed up inference by reducing the num-
ber of required samples along the ray. Therefore, the combi-
nation of KiloNeRF with either of these techniques consti-
tutes a promising solution for achieving real-time rendering
of high-resolution images in the near future.

Limitations: NSVF [24] and KiloNeRF share the assump-
tion of a bounded scene which is a limitation that should
be addressed in future work. Representing unbounded
scenes requires a higher number of networks, leading to
larger memory consumption. Again, efficient data struc-
tures could help with addressing this issue and therefore al-
low for scaling to larger (e.g., outdoor) scenes. On the other
hand, the scenes considered in this paper are encoded with
less than 100 MB of memory, respectively. This shows that
– at least for medium-sized scenes – storage is not an issue.

6. Conclusion

In this paper, we demonstrated that real-time rendering
of NeRFs can be achieved by spatially decomposing the
scene into a regular grid and assigning a small-capacity net-
work to each grid cell. Together with the other benefits
inherited from NeRF – excellent render quality and a low
storage impact – we believe that this constitutes an impor-
tant step towards practical NVS. Moreover, the presented
acceleration strategy might also apply more broadly to other
methods relying on neural function representations includ-
ing implicit surface models.

Acknowledgements: This work was supported by an
NVIDIA research gift, the ERC Starting Grant LEGO-
3D (850533) and the DFG EXC number 2064/1 - project
number 390727645. Songyou Peng is supported by the
Max Planck ETH Center for Learning Systems. Yiyi Liao
is supported by the BMBF Tübingen AI Center, FKZ:
01IS18039A.

References
[1] Ahmad Abdelfattah, Azzam Haidar, Stanimire Tomov, and

Jack Dongarra. Novel hpc techniques to batch execution of
many variable size blas computations on gpus. In Interna-
tional Conference on Supercomputing, 2017. 5

[2] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry
Ulyanov, and Victor S. Lempitsky. Neural point-based
graphics. In Proc. of the European Conf. on Computer Vi-
sion (ECCV), 2020. 2

[3] Johanna Beyer, Markus Hadwiger, and Hanspeter Pfister.
State-of-the-art in gpu-based large-scale volume visualiza-
tion. In Computer Graphics Forum, 2015. 2, 5

[4] Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Bar-
ron, Ce Liu, and Hendrik P. A. Lensch. NeRD: Neural re-
flectance decomposition from image collections. arXiv.org,
2020. 2

[5] Chris Buehler, Michael Bosse, Leonard McMillan, Steven J.
Gortler, and Michael F. Cohen. Unstructured lumigraph ren-
dering. In ACM Trans. on Graphics, 2001. 2

[6] Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-GAN: Periodic implicit genera-
tive adversarial networks for 3d-aware image synthesis. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 2

[7] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2

[8] Qiang Dai, Ying Song, and Yi Xin. Random-accessible vol-
ume data compression with regression function. In Interna-
tional Conference on Computer-Aided Design and Computer
Graphics, 2015. 3, 8

[9] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Mod-
eling and rendering architecture from photographs: A hy-
brid geometry-and image-based approach. In ACM Trans.
on Graphics, 1996. 2

[10] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B. Tenen-
baum, and Jiajun Wu. Neural radiance flow for 4d view syn-
thesis and video processing. arXiv.org, 2020. 2

[11] John Flynn, Michael Broxton, Paul E. Debevec, Matthew
DuVall, Graham Fyffe, Ryan S. Overbeck, Noah Snavely,
and Richard Tucker. Deepview: View synthesis with learned
gradient descent. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2019. 2

[12] Guy Gafni, Justus Thies, Michael Zollhöfer, and Matthias
Nießner. Dynamic neural radiance fields for monocular 4d
facial avatar reconstruction. arXiv.org, 2020. 2

[13] Chen Gao, Yichang Shih, Wei-Sheng Lai, Chia-Kai Liang,
and Jia-Bin Huang. Portrait neural radiance fields from a
single image. arXiv.org, 2020. 2

[14] Stephan J. Garbin, Marek Kowalski, Matthew Johnson,
Jamie Shotton, and Julien Valentin. Fastnerf: High-fidelity
neural rendering at 200fps. arXiv.org, 2021. 2

[15] Michelle Guo, Alireza Fathi, Jiajun Wu, and Thomas
Funkhouser. Object-centric neural scene rendering.
arXiv.org, 2020. 2

[16] Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall,
Jonathan T. Barron, and Paul Debevec. Baking neural ra-
diance fields for real-time view synthesis. arXiv.org, 2021.
2

[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the
knowledge in a neural network. arXiv.org, 2015. 3

[18] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. Tanks and temples: Benchmarking large-scale scene
reconstruction. ACM Trans. on Graphics, 2017. 5

[19] Kiriakos N. Kutulakos and Steven M. Seitz. A theory of
shape by space carving. International Journal of Computer
Vision (IJCV), 38(3):199–218, 2000. 2

[20] Samuli Laine and Tero Karras. Efficient sparse voxel oc-
trees. IEEE Trans. on Visualization and Computer Graphics
(VCG), 2010. 8

[21] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon
Green, Christoph Lassner, Changil Kim, Tanner Schmidt,
Steven Lovegrove, Michael Goesele, and Zhaoyang Lv. Neu-
ral 3d video synthesis. arXiv.org, 2021. 2

[22] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.
Neural scene flow fields for space-time view synthesis of dy-
namic scenes. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR), 2021. 2

[23] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein.
Autoint: Automatic integration for fast neural volume ren-
dering. arXiv.org, 2020. 2, 8

[24] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. In Advances
in Neural Information Processing Systems (NeurIPS), 2020.
2, 5, 8

[25] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
ACM Trans. on Graphics, 2019. 2, 5

[26] Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021. 2

[27] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2019. 2

[28] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Trans. on
Graphics, 2019. 2

[29] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proc. of the European Conf. on Computer Vision
(ECCV), 2020. 1, 2, 3, 4, 5

[30] Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas
Kurz, Chakravarty R. Alla Chaitanya, Anton Kaplanyan,

and Markus Steinberger. Donerf: Towards real-time ren-
dering of neural radiance fields using depth oracle networks.
arXiv.org, 2021. 2, 8

[31] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2021. 2

[32] Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 2

[33] Michael Oechsle, Michael Niemeyer, Christian Reiser, Lars
Mescheder, Thilo Strauss, and Andreas Geiger. Learning im-
plicit surface light fields. In Proc. of the International Conf.
on 3D Vision (3DV), 2020. 2

[34] Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, and
Felix Heide. Neural scene graphs for dynamic scenes. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 2

[35] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2019. 2

[36] Keunhong Park, Utkarsh Sinha, Jonathan T. Barron, Sofien
Bouaziz, Dan B Goldman, Steven M. Seitz, and Ri-
cardo Martin-Brualla. Deformable neural radiance fields.
arXiv.org, 2020. 2

[37] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2019. 5

[38] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In Proc. of the European Conf. on Computer Vi-
sion (ECCV), 2020. 2

[39] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang,
Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body:
Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2021. 2

[40] Eric Penner and Li Zhang. Soft 3d reconstruction for view
synthesis. ACM Trans. on Graphics, 2017. 2

[41] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields for
dynamic scenes. arXiv.org, 2020. 2

[42] Amit Raj, Michael Zollhoefer, Tomas Simon, Jason Saragih,
Shunsuke Saito, James Hays, and Stephen Lombardi. Pva:
Pixel-aligned volumetric avatars. arXiv.org, 2021. 2

[43] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed radiance fields. arXiv.org, 2020. 2

[44] Konstantinos Rematas, Ricardo Martin-Brualla, and Vittorio
Ferrari. Sharf: Shape-conditioned radiance fields from a sin-
gle view. arXiv.org, 2021. 2

[45] Gernot Riegler and Vladlen Koltun. Free view synthesis. In
Proc. of the European Conf. on Computer Vision (ECCV),
2020. 2

[46] Gernot Riegler and Vladlen Koltun. Stable view synthesis.
arXiv.org, 2020. 2

[47] Vladimir V. Savchenko, Alexander A. Pasko, Oleg G.
Okunev, and Tosiyasu L. Kunii. Function representation of
solids reconstructed from scattered surface points and con-
tours. Computer Graphics Forum, 1995. 2

[48] B. Schölkopf, J. Giesen, and S. Spalinger. Kernel methods
for implicit surface modeling. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2005. 2

[49] Johannes L. Schönberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2016. 2

[50] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In Advances in Neural Information Processing
Systems (NeurIPS), 2020. 2

[51] Steven M Seitz and Charles R Dyer. Photorealistic scene
reconstruction by voxel coloring. International Journal of
Computer Vision, 1999. 2

[52] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhöfer. Deep-
voxels: Learning persistent 3d feature embeddings. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2019. 2

[53] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances
in Neural Information Processing Systems (NIPS), 2019. 2,
5

[54] Pratul Srinivasan, Boyang Deng, Xiuming Zhang, Matthew
Tancik, Ben Mildenhall, and Jonathan T. Barron. NeRV:
Neural reflectance and visibility fields for relighting and
view synthesis. arXiv.org, 2020. 2

[55] Pratul P Srinivasan, Ben Mildenhall, Matthew Tancik,
Jonathan T Barron, Richard Tucker, and Noah Snavely.
Lighthouse: Predicting lighting volumes for spatially-
coherent illumination. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2020. 2

[56] Pratul P. Srinivasan, Richard Tucker, Jonathan T. Barron,
Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the
boundaries of view extrapolation with multiplane images. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 2

[57] Shih-Yang Su, Frank Yu, Michael Zollhoefer, and Helge
Rhodin. A-nerf: Surface-free human 3d pose refinement via
neural rendering. arXiv.org, 2021. 2

[58] Richard Szeliski and Polina Golland. Stereo matching with
transparency and matting. In Proc. of the IEEE International
Conf. on Computer Vision (ICCV), 1998. 2

[59] Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi
Schmidt, Pratul P. Srinivasan, Jonathan T. Barron, and Ren
Ng. Learned initializations for optimizing coordinate-based
neural representations. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2021. 2

[60] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T. Barron, and Ren Ng. Fourier fea-
tures let networks learn high frequency functions in low di-
mensional domains. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2020. 3

[61] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-
ferred neural rendering: image synthesis using neural tex-
tures. ACM Trans. on Graphics, 2019. 2

[62] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael
Zollhöfer, Christoph Lassner, and Christian Theobalt. Non-
rigid neural radiance fields: Reconstruction and novel view
synthesis of a deforming scene from monocular video.
arXiv.org, 2020. 2

[63] Alex Trevithick and Bo Yang. Grf: Learning a general
radiance field for 3d scene representation and rendering.
arXiv.org, 2020. 2

[64] Richard Tucker and Noah Snavely. Single-view view syn-
thesis with multiplane images. In Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), 2020. 2

[65] Michael Waechter, Nils Moehrle, and Michael Goesele. Let
there be color! large-scale texturing of 3d reconstructions.
In Proc. of the European Conf. on Computer Vision (ECCV),
2014. 2

[66] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR),
2021. 2

[67] Ziyan Wang, Timur Bagautdinov, Stephen Lombardi, Tomas
Simon, Jason Saragih, Jessica Hodgins, and Michael
Zollhöfer. Learning compositional radiance fields of dy-
namic human heads. arXiv.org, 2020. 2

[68] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Vic-
tor Adrian Prisacariu. NeRF–: Neural radiance fields without
known camera parameters. arXiv.org, 2021. 2

[69] Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Cur-
less, Tom Duchamp, David Salesin, and Werner Stuetzle.
Surface light fields for 3d photography. In ACM Trans. on
Graphics, 2000. 2

[70] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil
Kim. Space-time neural irradiance fields for free-viewpoint
video. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), 2021. 2

[71] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren,
Lei Zhou, Tian Fang, and Long Quan. Blendedmvs: A large-
scale dataset for generalized multi-view stereo networks. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 5

[72] Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Ronen Basri, and Yaron Lipman. Multiview neu-

ral surface reconstruction by disentangling geometry and ap-
pearance. In Advances in Neural Information Processing
Systems (NIPS), 2020. 2

[73] Lin Yen-Chen, Pete Florence, Jonathan T. Barron, Alberto
Rodriguez, Phillip Isola, and Tsung-Yi Lin. iNeRF: Inverting
neural radiance fields for pose estimation. arXiv.org, 2020.
2

[74] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and
Angjoo Kanazawa. Plenoctrees for real-time rendering of
neural radiance fields. arXiv.org, 2021. 2

[75] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images. In
Proc. IEEE Conf. on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 2

[76] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen
Koltun. Nerf++: Analyzing and improving neural radiance
fields. arXiv.org, 2020. 2, 4

[77] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2018. 6

[78] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: learning view syn-
thesis using multiplane images. ACM Trans. on Graphics,
2018. 2

