
Attacking Optical Flow

Andreas Geiger

Autonomous Vision Group
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Self-Driving must be Robust

Robustness to environment Robustness to perturbations

5



Situational Driving

Proposed Learning Situational Driving (LSD) FrameworkEnvironment
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I Learn mixture of imitation experts {πkθ}
I Task-driven policy refinement

Ohn-Bar, Prakash, Behl, Chitta and Geiger: Learning Situational Driving. CVPR, 2020. 6



Data Aggregation

I Data aggregation: query expert for difficult situations

Prakash, Behl, Ohn-Bar, Chitta and Geiger: Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020. 7



Self-Driving must be Robust

Robustness to environment Robustness to perturbations
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Adversarial Attacks on Image Classification

L-BFGS Attack:
I Given classifier f : Rm → {1, . . . , L}
I Find adversarial example for image x:

x+ argmin
∆x

{‖∆x‖2 : f(x+ ∆x) 6= f(x)}

I All images classified as “ostrich”
(right column)

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow and Fergus: Intriguing properties of neural networks. ICLR, 2014 9



Adversarial Attacks on Semantic Segmentation

I Attack on semantic segmentation manipulates label map

Metzen, Kumar, Brox and Fischer: Universal Adversarial Perturbations Against Semantic Image Segmentation. ICCV, 2017. 10



Physical Adversarial Attacks

“Adversarial perturbation methods applied to stop sign detection only work in carefully
chosen situations, and our preliminary experiment shows that we might not need to
worry about it in many real circumstances, specifically with autonomous vehicles.”

Lu, Sibai, Fabry and Forsyth: NO Need to Worry about Adversarial Examples in Object Detection in Autonomous Vehicles. Arxiv, 2017. 11



Robust Adversarial Attacks

I Demonstrate existence of robust adversarial examples in the physical world
I Maximize expectation over transformation T (EOT):

argmax
x′

Et∼T
[
logP (y|t(x′))− λ‖(t(x′)− t(x)‖2

]
I Larger distributions require larger perturbations

Athalye, Engstrom, Ilyas and Kwok: Synthesizing Robust Adversarial Examples. ICML, 2018. 12



Robust Adversarial Attacks

I Robust adversarial example designed to mimic “graffiti”

Eykholt, Evtimov, Fernandes, Li, Rahmati, Xiao, Prakash, Kohno and Song: Robust Physical-World Attacks on Deep Learning Visual Classification. CVPR, 2018. 13



Adversarial Patch Attacks

I Patch attacks use EOT idea, but also optimize across many images
I Easy to apply in real-world settings (attaching patch to an object)

Brown, Mane, Roy, Abadi and Gilmer. Adversarial patch. Arxiv, 2017. 14
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Low-Level Perception

Low-Level Perception

Optical Flow
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Motion Estimation

I Accurate motion estimation is critical for self-driving
I Allows for making predictions about the future

Wedel, Brox, Vaudrey, Rabe, Franke and Cremers: Stereoscopic scene flow computation for 3D motion understanding. IJCV, 2011. 17



Optical Flow

I Optical flow describes the 2D pixel motion between two frames
I Optical flow contains information about 3D geometry and 3D motion

Gibson: The Perception of the Visual World. 1950. 18



Approaches to Optical Flow



Variational Optical Flow

Variational Energy:

E(u, v) =

∫∫
(I(x+ u(x, y), y + v(x, y), t+ 1)− I(x, y, t))2︸ ︷︷ ︸

penalize brightness change

+ λ ·
(
‖∇u(x, y)‖2 + ‖∇v(x, y)‖2

)
︸ ︷︷ ︸

penalize flow change

dx dy

Horn and Schunck: Determining optical flow. Artificial Intelligence, 1981. 20



Encoder-Decoder Networks

FlowNet 2.0:
I Multiple stacked encoder-decoder networks

Ilg, Mayer, Saikia, Keuper, Dosovitskiy and Brox: FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. CVPR, 2017. 21



Spatial Pyramid Networks

PWC-Net:
I Coarse-to-fine optical flow estimation

Sun, Yang, Liu and Kautz: PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. CVPR, 2018. 22



Motivation

Optical flow on KITTI dataset computed via FlowNet2 [Ilg et al., CVPR 17]

I Until 2016: Classic variational optical flow methods state-of-the-art
I Since 2016: Leaderboards dominated by deep learning based methods
I But so far no investigation of adversarial robustness of optical flow approaches
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Attacking Optical Flow

Given an image pair from a video sequence ...

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 25



Attacking Optical Flow

Given an image pair from a video sequence ...

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 25



Attacking Optical Flow

... FlowNet2 predicts a smooth optical flow field.

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 25



Attacking Optical Flow

Can we obtain a small (< 1%) attack patch p̂ ...

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 25



Attacking Optical Flow

... that successfully attacks the optical flow network?

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 25



Attacking Optical Flow
Let F (I, I ′) denote an optical flow network and I a dataset of frame pairs.
Let A(I, p, t, l) denote image I with patch p transformed by t inserted at location l.
Let T denote a distribution over affine 2D transformations.
Let L denote a (uniform) distribution over the image domain.

Goal: Find a patch p̂ such that

p̂ = argmin
p

E(I,I′)∼I, t∼T , l∼L

[
(u, v) · (ũ, ṽ)

‖(u, v)‖2 · ‖(ũ, ṽ)‖2

]
with (u, v) = F (I, I ′)

(ũ, ṽ) = F (A(I, p, t, l), A(I ′, p, t, l))

Intuition: Find patch p̂ that reverses the direction of the optical flow.

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 26
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White-Box Attacks

Setting:
I Attack each network in separation
I Location sampled uniformly within image
I Scale: ±5%

I Rotation: ±10%

I Optimize on 32k unlabeled KITTI frames
I Flow predictions as pseudo ground truth
I Learn patches of 4 different sizes

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 28



White-Box Attacks

Unattacked 25x25 153x153
Network EPE EPE Rel EPE Rel
FlowNetC [Fischer et al. ] 14.56 29.07 +100 % 95.32 +555 %
FlowNet2 [Ilg et al. ] 11.90 17.04 +43 % 59.58 +400 %
SpyNet [Ranjan and Black] 20.26 20.59 +2 % 21.00 +4 %
PWCNet [Sun et al. ] 11.03 11.37 +3 % 12.52 +13 %
Back2Future [Janai et al. ] 17.49 18.04 +3 % 18.43 +5 %

I FlowNetC and FlowNet2 use encoder-decoder architectures
I SpyNet, PWCNet and Back2Future use a spatial pyramid

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 29



White-Box Attacks

I Attacks extend beyond region of patch for encoder-decoder architectures

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 30



White-Box Attacks

I Attacks extend beyond region of patch for encoder-decoder architectures
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Black-Box Attacks

Setting:
I Patch is optimized over several networks

(we use FlowNet2 and PWCNet)
I Patch is used to attack all networks
I Patch is moved as if it was part of the scene

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 31



Black-Box Attacks Unattacked Attacked Attacked
EPE EPE Rel

FlowNet2 [Fischer et al. ] 11.90 30.99 +160 %
PWCNet [Ilg et al. ] 11.03 11.16 +1 %
FlowNetC [Ranjan and Black] 14.56 77.78 +434 %
SpyNet [Sun et al. ] 20.26 20.65 +2 %
Back2Future [Janai et al. ] 17.49 17.76 +2 %
Epic Flow [Revaud et al. ] 4.52 4.57 +1 %
LDOF [Brox and Malik] 9.20 9.30 +1 %

I FlowNetC and FlowNet2 use encoder-decoder architectures
I SpyNet, PWCNet and Back2Future use a spatial pyramid
I Epic Flow and LDOF are classical variational approaches

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 32



Black-Box Attacks

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 33



Real-World Attack

I Printed patch attached to desk lamp

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 34



Insights into Attacks



Zero-Flow Test

What happens when CNN sees
I Identical images?
I Identical images with identical attack patch?

Ideally
I The network should output a zero flow field
I The feature maps of the attacked and unattacked images should be similar

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 36



Zero-Flow Test

I Feature activations are not spatially invariant, even without an attack
I Deconvolution layers cause checkerboard artifacts
I Feature maps of encoder-decoder architectures are very different

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 37



Zero-Flow Test

I Feature activations are not spatially invariant, even without an attack
I Deconvolution layers cause checkerboard artifacts
I The pyramid networks predict large motion in coarser flow levels

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 38



Summary



Summary

I Placing a patch in the scene may lead to failure of optical flow networks
I Patch attacks are invariant to translation and small changes in scale and rotation
I Patch attacks work in the physical world (to some extent)
I Encoder-decoder architectures like FlowNetC and FlowNet2 are strongly affected
I Spatial pyramid methods like SPyNet and PWC-Net are quite robust
I Classical methods like LDOF and EpicFlow are not affected
I Zero-Flow test can provide insights into networks

Ranjan, Janai, Geiger and Black: Attacking Optical Flow. ICCV, 2019. 40



Thank you!
http://autonomousvision.github.io

http://autonomousvision.github.io

