Andreas Geiger

Autonomous Vision Group University of Tübingen / MPI for Intelligent Systems Tübingen

August 23, 2020

University of Tübingen MPI for Intelligent Systems

Autonomous Vision Group

Collaborators

Anurag Ranjan

Joel Janai

Aditya Prakash

Eshed Ohn-Bar

Kashyap Chitta

E.

Aseem Behl

Michael Black

Andreas Geiger

Robustness to environment

Robustness to perturbations

Situational Driving

- Learn mixture of imitation experts $\{\pi_{\theta}^k\}$
- ► Task-driven policy refinement

Data Aggregation

Data aggregation: query expert for difficult situations

Robustness to environment

Robustness to perturbations

Adversarial Attacks on Image Classification

L-BFGS Attack:

- Given classifier $f : \mathbb{R}^m \to \{1, \dots, L\}$
- ► Find adversarial example for image *x*:

$$x + \underset{\Delta x}{\operatorname{argmin}} \left\{ \|\Delta x\|_2 : f(x + \Delta x) \neq f(x) \right\}$$

 All images classified as "ostrich" (right column)

Adversarial Attacks on Semantic Segmentation

Attack on semantic segmentation manipulates label map

Metzen, Kumar, Brox and Fischer: Universal Adversarial Perturbations Against Semantic Image Segmentation. ICCV, 2017.

Physical Adversarial Attacks

"Adversarial perturbation methods applied to **stop sign detection** only work in carefully chosen situations, and our preliminary experiment shows that we might **not need to worry** about it in many real circumstances, specifically with autonomous vehicles."

Robust Adversarial Attacks

- Demonstrate existence of robust adversarial examples in the physical world
- ► Maximize expectation over transformation T (EOT):

$$\underset{x'}{\operatorname{argmax}} \mathbb{E}_{t \sim \mathcal{T}} \left[\log P(y|t(x')) - \lambda \| (t(x') - t(x) \|_2 \right]$$

Larger distributions require larger perturbations

Athalye, Engstrom, Ilyas and Kwok: Synthesizing Robust Adversarial Examples. ICML, 2018.

Robust Adversarial Attacks

► Robust adversarial example designed to mimic "graffiti"

Adversarial Patch Attacks

- ► Patch attacks use EOT idea, but also optimize across many images
- Easy to apply in real-world settings (attaching patch to an object)

Optical Flow

Low-Level Perception

Motion Estimation

- ► Accurate **motion estimation** is critical for self-driving
- ► Allows for making **predictions** about the future

Optical Flow

- Optical flow describes the **2D pixel motion** between two frames
- Optical flow contains information about 3D geometry and 3D motion

Gibson: The Perception of the Visual World. 1950.

Approaches to Optical Flow

Variational Optical Flow

Horn and Schunck: Determining optical flow. Artificial Intelligence, 1981.

Encoder-Decoder Networks

FlowNet 2.0:

Multiple stacked encoder-decoder networks

Ilg, Mayer, Saikia, Keuper, Dosovitskiy and Brox: FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. CVPR, 2017.

Spatial Pyramid Networks

PWC-Net:

► Coarse-to-fine optical flow estimation

Motivation

Optical flow on KITTI dataset computed via FlowNet2 [Ilg et al., CVPR 17]

- ► Until 2016: Classic variational optical flow methods state-of-the-art
- ► Since 2016: Leaderboards dominated by **deep learning** based methods
- ▶ But so far no investigation of **adversarial robustness** of optical flow approaches

Given an image pair from a video sequence ...

Given an image pair from a video sequence ...

... FlowNet2 predicts a smooth optical flow field.

Can we obtain a small (< 1%) attack patch \hat{p} ...

... that successfully attacks the optical flow network?

Let F(I, I') denote an optical flow network and \mathcal{I} a dataset of frame pairs. Let A(I, p, t, l) denote image I with patch p transformed by t inserted at location l. Let \mathcal{T} denote a distribution over affine 2D transformations. Let \mathcal{L} denote a (uniform) distribution over the image domain.

Goal: Find a patch \hat{p} such that

$$\hat{p} = \underset{p}{\operatorname{argmin}} \mathbb{E}_{(I,I')\sim\mathcal{I}, t\sim\mathcal{T}, l\sim\mathcal{L}} \left[\frac{(u,v)\cdot(\tilde{u},\tilde{v})}{\|(u,v)\|_{2}\cdot\|(\tilde{u},\tilde{v})\|_{2}} \right]$$
with
$$(u,v) = F(I,I')$$

$$(\tilde{u},\tilde{v}) = F(A(I,p,t,l), A(I',p,t,l))$$

Intuition: Find patch \hat{p} that reverses the direction of the optical flow.

Results

Setting:

- ► Attack each network in separation
- ► Location sampled uniformly within image
- Scale: $\pm 5\%$
- ▶ Rotation: $\pm 10\%$
- ▶ Optimize on 32k unlabeled KITTI frames
- ► Flow predictions as pseudo ground truth
- ► Learn patches of 4 different sizes

		Unattacked	25x25		153x153	
Network		EPE	EPE	Rel	EPE	Rel
FlowNe	tC [Fischer et al.]	14.56	29.07	+100 %	95.32	+555 %
FlowNe	t2 [Ilg et al.]	11.90	17.04	+43 %	59.58	+400 %
SpyNet	[Ranjan and Black]	20.26	20.59	+2 %	21.00	+4 %
PWCNe	t [Sun et al.]	11.03	11.37	+3 %	12.52	+13 %
Back2F	uture [Janai et al.]	17.49	18.04	+3 %	18.43	+5 %

► FlowNetC and FlowNet2 use encoder-decoder architectures

► SpyNet, PWCNet and Back2Future use a spatial pyramid

Attacks extend beyond region of patch for encoder-decoder architectures

Attacks extend beyond region of patch for encoder-decoder architectures

Black-Box Attacks

Setting:

- Patch is optimized over several networks (we use FlowNet2 and PWCNet)
- ▶ Patch is used to attack all networks
- ► Patch is moved as if it was part of the scene

Black-Box Attacks

ALLOCKS	Unattacked	Attacked	Attacked
	EPE	EPE	Rel
FlowNet2 [Fischer et al.]	11.90	30.99	+160 %
PWCNet [Ilg et al.]	11.03	11.16	+1 %
FlowNetC [Ranjan and Black]	14.56	77.78	+434 %
SpyNet [Sun et al.]	20.26	20.65	+2 %
Back2Future [Janai et al.]	17.49	17.76	+2 %
Epic Flow [Revaud et al.]	4.52	4.57	+1 %
LDOF [Brox and Malik]	9.20	9.30	+1 %

1

► FlowNetC and FlowNet2 use encoder-decoder architectures

- ► SpyNet, PWCNet and Back2Future use a spatial pyramid
- ► Epic Flow and LDOF are classical variational approaches

Black-Box Attacks

Real-World Attack

Printed patch attached to desk lamp

Insights into Attacks

Zero-Flow Test

What happens when CNN sees

- ► Identical images?
- ► Identical images with identical attack patch?

Ideally

- ► The network *should* output a zero flow field
- ► The feature maps of the attacked and unattacked images should be similar

Zero-Flow Test

- ► Feature activations are not spatially invariant, even without an attack
- Deconvolution layers cause checkerboard artifacts
- ► Feature maps of encoder-decoder architectures are very different

Zero-Flow Test

- ► Feature activations are not spatially invariant, even without an attack
- Deconvolution layers cause checkerboard artifacts
- ► The pyramid networks predict large motion in coarser flow levels

Summary

Summary

- Placing a patch in the scene may lead to failure of optical flow networks
- ► Patch attacks are invariant to translation and small changes in scale and rotation
- Patch attacks work in the physical world (to some extent)
- ► Encoder-decoder architectures like FlowNetC and FlowNet2 are strongly affected
- ► Spatial pyramid methods like SPyNet and PWC-Net are quite robust
- ► Classical methods like LDOF and EpicFlow are not affected
- Zero-Flow test can provide insights into networks

Thank you!

http://autonomousvision.github.io

