3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting
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Figure 1. 3DGS-Avatar. We develop an efficient method for creating animatable avatars from monocular videos, leveraging 3D Gaussian
Splatting [14]. Given a short sequence of dynamic human with a tracked skeleton and foreground masks, our method creates an avatar
within 30 minutes on a single GPU, supports animation and novel view synthesis at over 50 FPS, and achieves comparable or better
rendering quality to the state-of-the-art [61, 62] that requires over 8 GPU days to train, takes several seconds to render a single image, and

relies on pre-training on clothed human scans [61].

Abstract

We introduce an approach that creates animatable hu-
man avatars from monocular videos using 3D Gaussian
Splatting (3DGS). Existing methods based on neural radi-
ance fields (NeRF's) achieve high-quality novel-view/novel-
pose image synthesis but often require days of training, and
are extremely slow at inference time. Recently, the com-
munity has explored fast grid structures for efficient train-
ing of clothed avatars. Albeit being extremely fast at train-
ing, these methods can barely achieve an interactive ren-
dering frame rate with around 15 FPS. In this paper, we use
3D Gaussian Splatting and learn a non-rigid deformation
network to reconstruct animatable clothed human avatars
that can be trained within 30 minutes and rendered at real-
time frame rates (50+ FPS). Given the explicit nature of
our representation, we further introduce as-isometric-as-
possible regularizations on both the Gaussian mean vectors
and the covariance matrices, enhancing the generalization
of our model on highly articulated unseen poses. Experi-
mental results show that our method achieves comparable
and even better performance compared to state-of-the-art
approaches on animatable avatar creation from a monoc-
ular input, while being 400x and 250x faster in training
and inference, respectively. Please see our project page at
https://meuralbodies. github.io/3DGS-Avatar.

1. Introduction

Reconstructing clothed human avatars from image inputs
presents a significant challenge in computer vision, yet
holds immense importance due to its applications in virtual
reality, gaming, and e-commerce. Traditional methods of-
ten rely on dense, synchronized multi-view inputs, which
may not be readily available in more practical scenarios.
Recent advances in implicit neural fields [29, 33, 35, 39,
51,54, 55,57, 59, 69, 70] have enabled high-quality recon-
struction of geometry [8, 41, 61, 65] and appearance [13,
22, 24, 34, 38, 40, 45, 62, 74] of clothed human bodies
from sparse multi-view or monocular videos. Animation
of such reconstructed clothed human bodies is also possible
by learning the geometry and appearance representations in
a predefined canonical pose [13, 22, 38, 61, 62, 74].

To achieve state-of-the-art rendering quality, existing
methods rely on training a neural radiance field (NeRF) [29]
combined with either explicit body articulation [8, 12, 13,
22, 38, 41, 61, 62, 74] or conditioning the NeRF on hu-
man body related encodings [34, 40, 52, 65]. They often
employ large multi-layer perceptrons (MLPs) to model the
neural radiance field, which are computationally demand-
ing, leading to prolonged training (days) and inference (sec-
onds) time. This computational expense poses a significant
challenge for practical applications of these state-of-the-art
methods in real-time applications.

With recent advances in efficient learning of implicit
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neural fields, training time of NeRFs has been reduced to
minutes [3, 21, 32, 50, 56]. There are also works targeting
fast inference of pretrained NeRFs [47, 71, 73]. Inspired
by these developments, several avatar reconstruction meth-
ods have been tailored to fast training [7, 12] or fast infer-
ence [0, 18, 42]. However, to the best of our knowledge,
there currently exists no published method that simultane-
ously achieves both fast training and real-time inference
for animatable avatar reconstruction from just monocular
videos.

Point-based rendering [43, 48, 53, 66, 75, 77, 78] has
emerged as an efficient alternative to NeRFs for fast infer-
ence. With the recently proposed 3D Gaussian Splatting
(3DGS) [14] model, it is possible to achieve state-of-the-art
rendering quality using only a fraction of NeRFs’ inference
time and comparatively fast training for static scene recon-
struction.

Leveraging the capabilities of 3DGS, we demonstrate
its application in modeling animatable clothed avatars us-
ing monocular videos. Our approach effectively integrates
rigid human articulation with a non-rigid deformation field
within the 3DGS framework. We use a small multi-layer
perceptron (MLP) to decode color. This MLP is designed
to be responsive to local non-rigid deformations and dy-
namic lighting conditions, ensuring a more realistic and re-
sponsive rendering of the avatar’s appearance. Furthermore,
we apply as-isometric-as-possible regularizations [15, 44]
to both the Gaussian mean vectors and the covariance ma-
trices, which helps maintain the geometric consistency and
realistic deformation of the avatar, particularly in dynamic
and varied poses.

Our experimental results show that our method is com-
parable to or better than current state-of-the-art [61, 62] in
animatable avatar creation from monocular inputs, achiev-
ing training speed 400 times faster and inference speed 250
times quicker. Compared to methods that focus on fast
training [7, 12], our method, despite being slower in train-
ing, can model pose-dependent non-rigid deformation and
produce significantly better rendering quality, while being 3
times faster in terms of rendering. We provide an overview
of the comparison to major prior works in Tab. 1. In sum-
mary, our work makes the following contributions:

* We introduce 3D Gaussian Splatting to animatable human
avatars reconstruction from monocular videos.

* We develop a simple yet effective deformation network
as well as regularization terms that effectively drive 3D
Gaussian Splats to handle highly articulated and out-of-
distribution poses.

* Qur method is the first, to our knowledge, to simul-
taneously deliver high-quality rendering, model pose-
dependent non-rigid deformation, generalize effectively
to unseen poses, and achieve fast training (less than 30
minutes) and real-time rendering speed (50+ FPS).
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Table 1. Comparison to SoTA. Instant-NVR [7] and InstantA-
vatar [12] achieve instant training within 5 minutes. For real-time
rendering, we require a frame rate over 30 FPS. Note that while
UV-Volumes [6] claims real-time freeview rendering, they only
achieve 14 FPS on novel pose synthesis due to the slow genera-
tion of their UV Volume.

2. Related Works
2.1. Neural Rendering for Clothed Human Avatars

Since the seminal work of Neural Radiance Fields
(NeRF) [29], there has been a surge of research on neu-
ral rendering for clothed human avatars. The majority of
the works focus on either learning a NeRF conditioned on
human body related encodings [34, 52, 65], or learning a
canonical NeRF representation and warp camera rays from
the observation space to the canonical space to query radi-
ance and density values from the canonical NeRF [8, 12,
13, 22, 38, 41, 61, 62, 74]. Most of these works rely on
large multi-layer perceptrons (MLPs) to model the underly-
ing neural radiance field, which are computationally expen-
sive, resulting in prolonged training (days) and inference
(seconds) time.

With recent advances in accelerated data structures for
neural fields, there has been several works targeting fast in-
ference and fast training of NeRFs for clothed humans. [12]
proposes to use iNGP [32] as the underlying representation
for articulated NeRFs, which enables fast training (less than
5 minutes) and interactive rendering speed (15 FPS) but ig-
nores pose-dependent non-rigid deformations. [7] also uti-
lizes iNGP and represents non-rigid deformations in the UV
space, which enables fast training and modeling of pose-
dependent non-rigid deformations. However, as we will
show in our experiments, [7]’s parametrization of non-rigid
deformations result in blurry renderings. [6] proposes to
generate a pose-dependent UV volume for efficient free-
view synthesis. However, their UV-volume generation pro-
cess is slow (20 FPS), making novel pose synthesis less effi-



cient (only 14 FPS). [18] also employs UV-based rendering
to achieve real-time rendering of dynamic clothed humans,
but only works on dense multi-view inputs. Extending [73],
[58, 76] applied Fourier transform for compressing human
performance capture data, albeit with limitations on dense
multi-view data (60-80 views) and non-generalizability of
the Fourier basis representation to unseen poses beyond the
training dataset. In contrast to all these works, our method
achieves state-of-the-art rendering quality and speed with
less than 30 minutes of training time from a single monoc-
ular video input.

2.2. Accelerating Neural Radiance Fields

NeRF and its variants [35, 59, 70] can achieve state-of-the-
art performance in tasks such as novel-view synthesis and
geometry reconstruction. However, the high computational
cost of the vanilla NeRF has been a major obstacle to their
practical applications. To address this issue, there has been
a surge of research on accelerating NeRF.

The study by [46] showcased real-time NeRF rendering
by training of numerous smaller MLPs, an approach dif-
fering from the large MLP in the original NeRF. The re-
search by [73] focused on distilling learned density values
and spherical harmonic coefficients into an octree, result-
ing in considerable test-time acceleration. Further advance-
ments in fast training were achieved by [50, 56], which op-
timized voxel grid-stored features w.r.t. to rendering losses.
Mueller et al. [32] combined a multi-level hash grid with
small mixed-precision MLPs [31], dramatically speeding
up NeRF model training to around 5 minutes. [3] proposed
to decompose high-dimensional tensors (3D for density and
4D for color) into vectors and planes, leading to state-of-
the-art results with more compact model sizes.

On the other hand, point-based rendering [43, 48, 53,
66, 75, 77, 78] has also been shown to be an efficient alter-
native to NeRFs for fast inference and training. 3D Gaus-
sian Splatting (3DGS) [14] models the rendering process as
splatting a set of 3D Gaussians onto image plane via alpha
blending, achieving state-of-the-art rendering quality with
real-time inference speed and fast training given multi-view
inputs. Our approach combines 3DGS with human body
articulation and non-rigid deformation to create animatable
avatar from monocular videos.

2.3. Dynamic 3D Gaussians

Given the great performance on both quality and speed
of 3DGS, a rich set of works has further explored the
3D Gaussian representation for dynamic scene reconstruc-
tion. [14] proposed to optimize the position and shape of
each 3D Gaussian on a frame-by-frame basis and simulta-
neously performed 6-DOF dense tracking for free. Their
model size, however, increases with the temporal dimen-
sion. [63, 67] maintain a single set of 3D Gaussians in a

canonical space and deform them to each frame via learn-
ing a time-dependent deformation field, producing state-of-
the-art results in terms of both rendering quality and speed.
[68] augments 3D Gaussians with temporal dimension into
4D Gaussian primitives to approximate the underlying spa-
tiotemporal 4D volume of the dynamic scene. While such
methods show promising results, they are only applicable
to either synthetic datasets with fast camera movement and
slow object motion or forward-facing real scenes with lim-
ited object movements, thus unable to handle the immense
displacement of the articulated human body. To address
this problem, our approach utilizes a statistical human body
model [26] for articulation and applies regularization to re-
duce the overfitting of the deformation field.

2.4. Concurrent Works

Concurrent with our method, many recent works also seek
to combine 3DGS with human articulation prior for avatar
reconstruction. We provide a comparison of our approach
to concurrent works in Tab. 2. D3GA [79] proposed to em-
bed 3D Gaussians in tetrahedral cages and utilize cage de-
formations for drivable avatar animation. However, they
use dense calibrated multi-view videos as input and re-
quire an additional 3D scan to generate the tetrahedral
mesh template. Li et al. [23] focused on generating avatars
with a detailed appearance from multi-view videos by post-
processing radiance field renderings with 2D CNNs, which
limits their rendering speed. Along with [11, 30], these
works fail to achieve fast training with relatively complex
pipelines. Similar to our approach, Ye et al. [72] deforms
3D Gaussians in canonical space via pose-dependent de-
formation and rigid articulation, but they still require 2
hours for training and do not show results on monocular in-
puts. HUGS [17] learns a background model along with
the animatable human avatar, but they fail to take pose-
dependent cloth deformation into account. Several other
works [10, 19, 25] also neglect pose-dependent cloth de-
formation to achieve even faster training (in 5 minutes) and
rendering (150+ FPS). We argue that our method strikes a
good balance between quality and speed compared to con-
current works, as being the only method simultaneously
achieving the properties listed in Tab. 2.

3. Preliminary

In this section, we start by briefly reviewing the linear blend
skinning (LBS) function for human articulation in Sec. 3.1.
We then explain 3D Gaussians Splatting in Sec. 3.2.

3.1. Linear Blend Skinning

To model human articulations, a widely adopted paradigm
is to represent geometry and appearance in a shared canoni-
cal space [8, 12, 13,22,38,41, 61, 62] and use Linear Blend



&
> >
&66;‘ y 6&\\0 e}@‘\(\% Q &
e@e p e& o & P
2 e\Qo‘ \“&Q ,&\6\6 00\
Qo% M > <&o“
X X | D3GA [79]
X X X | Lietal [23]
X SplatArmor [11]
X X X | Moreau et al. [30]
X | Yeetal [72]
X HUGS [17]
X GART [19]
X Liu et al. [25]
X X GauHuman [10]
3DGS-Avatar (Ours)

Table 2. Comparison to Concurrent Works.

Skinning (LBS) [2, 9, 26, 36, 37, 64] to deform the paramet-
ric human body under arbitrary poses. Given a point x. in
canonical space, the LBS function takes a set of rigid bone
transformations {By,}£_, and computes its correspondence
X, in the observation space:

%o = LBS,, (x; {Bs}) (1)

Assuming an underlying SMPL model, we use a total of
B = 24 bone transformations, each represented by a 4 x 4
rotation-translation matrix, which are then linearl% blended
via a set of skinning weights w € [0,1]5,s.t.3",_ W, =
1, modeled by a coordinate-based neural skinning field
fou (xc) [4, 5, 28, 49, 60]. The forward linear blend skin-
ning function can thus be formulated as:

X, = LBS(x.;{Bp}) = ZZ)B:I Jou(Xe)pBpxe  (2)

Compared to prior works that search canonical correspon-
dences of points in observation space [12, 61, 62], our
method requires no inverse skinning which is typically diffi-
cult to compute and often leads to multiple solutions [4, 5].
A similar technique has been employed in [77] for face
avatar modeling.

3.2. 3D Gaussian Splatting

3DGS [14] utilizes a set of 3D Gaussian primitives {G} as
static scene representation which can be rendered in real-
time via differentiable rasterization. Each 3D Gaussian G is
defined by its mean x, covariance 3, opacity « and view-
dependent color represented by spherical harmonics coef-
ficients f. To ensure positive semi-definiteness, the covari-
ance matrix is represented by a scaling matrix S and rotation
matrix R:

> = RSSTRT (3)

In practice, we store the diagonal vector s € R? of the scal-
ing matrix and a quaternion vector q € R* to represent the
rotation matrix, which can be trivially converted to a valid
covariance matrix.

The 3D Gaussians are projected to the 2D image plane
during the rendering process and accumulated via alpha
blending. Given a viewing transformation W and the Ja-
cobian of the affine approximation of the projective trans-
formation J, the 2D covariance matrix in camera coordi-
nate [80] is given by:

Y= (JWEWT']T)M 1:2 S

The pixel color C' is thus computed by blending 3D Gaus-
sian splats that overlap at the given pixel, sorted according
to their depth:

c=>. <a§ H:l(l - a;)) ci 5)

where o denotes the learned opacity a; weighted by the
probability density of ¢-th projected 2D Gaussian at the tar-
get pixel location. ¢ denotes the view-dependent color com-
puted from stored SH coefficients f.

The 3D Gaussians {G} are optimized via a photomet-
ric loss. During optimization, 3DGS adaptively controls
the number of 3D Gaussians via periodic densification and
pruning, achieving self-adaptive convergence to an optimal
density distribution of 3D Gaussians that well represents the
scene.

4. Methods

We illustrate the pipeline of our method in Fig. 2. The input
to our method is a monocular video with a calibrated cam-
era, fitted SMPL parameters, and foreground masks. Our
method optimizes a set of 3D Gaussians in canonical space,
which is then deformed to the observation space and ren-
dered from the given camera. For a set of 3D Gaussians
{GW}N |, we store the following properties at each point:
position x, scaling factor s, rotation quaternion g, opac-
ity « and a color feature vector f. We start by randomly
sampling N = 50k points on the SMPL [26] mesh surface
under canonical pose as initialization of our canonical 3D
Gaussians {G..}. Inspired by HumanNeRF [62], we decom-
pose the complex human deformation into a non-rigid part
that encodes pose-dependent cloth deformation, and a rigid
transformation controlled by the human skeleton.

4.1. Pose-dependent Non-rigid Deformation

We formulate the non-rigid deformation module as:

{Ga} = Fo.. ({9c}: Z) (©)
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Figure 2. Our framework for creating animatable avatars from monocular videos. We first initialize a set of 3D Gaussians in the

canonical space via sampling points from a SMPL mesh. Each canonical Gaussian G. goes through a non-rigid deformation module Fp

nr

conditioned on an encoded pose vector Z, (Sec. 4.1) to account for pose-dependent non-rigid cloth deformation. This module outputs a
non-rigidly deformed 3D Gaussian G4 and a pose-dependent latent feature z. The non-rigidly deformed 3D Gaussian G, is transformed
to the observation space G, (Sec. 4.2) via LBS with learned neural skinning Fp,. The Gaussian feature f, the pose-dependent feature z,
a per-frame latent code Z., and the ray direction d are propagated through a small MLP Fy_ to decode the view-dependent color ¢ for
each 3D Gaussian. Finally, the observation space 3D Gaussians {G, } and their respective color values are accumulated via differentiable

Gaussian rasterization (Eq. (5)) to render the image.

where {G,} represents the non-rigidly deformed 3D Gaus-
sians. 6, represents the learnable parameters of the non-
rigid deformation module. Z, is a latent code which en-
codes SMPL pose and shape (6, 3) using a lightweight hi-
erarchical pose encoder [28]. Specifically, the deformation
network fy,  takes the canonical position x., the pose latent
code Z,, as inputs and outputs the offsets of the Gaussian’s
position, scale, rotation, along with a feature vector z:

(6x,0s,09,2) = fo,, (X Zp) (7)

We use a multi-level hash grid [32] to encode 3D positions
as spatial features, which are then concatenated with the
pose latent code Z,, and fed into a shallow MLP with 2 hid-
den layers and a width of 128. The canonical Gaussian is
deformed by:

X = X. + 0% ()
Sd = S¢ - exp(s) ©)
dd = 9. - [1,0q1,0q2,qs] (10)

note that the - operator on quaternions is equivalent to multi-
plying the two rotation matrices derived by the two quater-
nions. Since the quaternion [1, 0,0, 0] corresponds to the
identity rotation matrix, we have qq4 = q. when éq = 0.

4.2. Rigid Transformation

We further transform the non-rigidly deformed 3D Gaus-
sians {G4} to the observation space via a rigid transforma-
tion module:

{Go} = Fo,({Ga}: {Bu}ily) (11)

where a skinning MLP fy_ is learned to predict skinning
weights at the position x4. We transform the position and

the rotation matrix of 3D Gaussians via forward LBS de-
scribed in Sec. 3.1:

B

T=) fo(xahBy (12)
x, = Txy (13)
R, =Ti313Rq (14)

where R is the rotation matrix derived from the quaternion
qd-

4.3. Color MLP

Prior works [63, 67, 68] follow the convention of
3DGS [14], which stores spherical harmonics coefficients
per 3D Gaussian to encode the view-dependent color. Treat-
ing the stored color feature f as spherical harmonics coeffi-
cients, the color of a 3D Gaussian can be computed by the
dot product of the spherical harmonics basis and the learned
coefficients:

¢ = (v(d),f) (15)

where d represents the viewing direction, derived from the
relative position of the 3D Gaussian wrt. the camera center.
~ denotes the spherical harmonics basis function. While
conceptually simple, we argue that this approach does not
suit our monocular setting. Since only one camera view is
provided during training, the viewing direction in the world
space is fixed, leading to poor generalization to unseen test
views. Similar to [41], we use the inverse rigid transforma-
tion from Sec. 4.2 to canonicalize the viewing direction:

d="T7},.d (16)

where T is the forward transformation matrix defined in
Eq. (12). Theoretically, canonicalizing viewing direction



also promotes consistency of the specular component of
canonical 3D Gaussians under rigid transformations.

On the other hand, we observe that the pixel color of
the rendered clothed human avatar also largely depends on
local deformation. Local fine wrinkles on clothes, for in-
stance, would cause self-occlusion that heavily affects shad-
ing. Following [40], we also learn a per-frame latent code
Z. to compensate for different environment light effects
across frames caused by the global movement of the subject.
Hence, instead of learning spherical harmonic coefficients,
we enhance color modeling by learning a neural network
that takes per-Gaussian color feature vector f € R32, local
pose-dependent feature vector z € R1¢ from the non-rigid
deformation network, per-frame latent code Z. € R'6, and
spherical harmonics basis of canonicalized viewing direc-
tion 7(&) with a degree of 3 as input and predicts the color
of the 3D Gaussian:

c=Fy, (f,2,Z.,v(d)) a7

In practice, we find a tiny MLP with 1 hidden layer and a
width of 64 sufficient to model the appearance. Increasing
the size of the MLP leads to overfitting and performance
drop.

4.4. Optimization

We jointly optimize canonical 3D Gaussians {G.} and the
parameters 6,,,6,.,0. of the non-rigid deformation net-
work, the skinning network and the color network, respec-
tively.

Pose correction. SMPL [26] parameter fittings from im-
ages can be inaccurate. To address this, we additionally
optimize the per-sequence shape parameter as well as per-
frame translation, global rotation, and local joint rotations.
We initialize these parameters 6, with the given SMPL pa-
rameters and differentiably derive the bone transformations
{By} as input to the network, enabling direct optimization
via backpropagation.

As-isometric-as-possible regularization. With monocu-
lar video as input, only one view of the human is visible
in each frame, making it extremely hard to generalize to
novel views and novel poses. Considering the sparsity of
input, the non-rigid deformation network is highly under-
constrained, resulting in noisy deformation from the canon-
ical space to the observation space. Inspired by [44], we
leverage the as-isometric-as-possible constraint [15] to re-
strict neighboring 3D Gaussian centers to preserve a similar
distance after deformation. We further augment the con-

straint to Gaussian covariance matrices:

N
'Cisopos = Z Z ‘d(xgi)’ ng)) — d(x(()i)7 xg])))
i=1 jEN (i)
(18)

N
[’isocov - Z Z ‘d(EEl), EEJ)) — d(zg’)’ Z(()J))'
i=1 jEN(3)
(19)

where N denotes the number of 3D Gaussians. N}, denotes
the k-nearest neighbourhood, and we set k£ to 5. We use
L2-norm as our distance function d(-, -).

Loss function. Our full loss function consists of a RGB
loss L,.gp, a mask loss L4, @ skinning weight regulariza-
tion loss Lk, and the as-isometric-as-possible regulariza-
tion loss for both position and covariance L;sopos, Lisocov-
For further details of the loss definition and respective
weights, please refer to Appendix A.

S. Experiments

In this section, we first compare the proposed approach with
recent state-of-the-art methods [7, 12, 40, 61, 62], demon-
strating that our proposed approach achieves superior ren-
dering quality in terms of LPIPS, which is more informa-
tive under monocular setting, while achieving fast training
and real-time rendering speed, respectively 400x and 250x
faster than the most competitive baseline [62]. We then sys-
tematically ablate each component of the proposed model,
showing their effectiveness in better rendering quality.

5.1. Evaluation Dataset

ZJU-MoCap [40]. This is the major testbed for quanti-
tative evaluation. We pick six sequences (377, 386, 387,
392, 393, 394) from the ZJU-MoCap dataset and follow
the training/test split of HumanNeRF [62]. The motion of
these sequences is repetitive and does not contain a suffi-
cient number of poses for meaningful novel pose synthesis
benchmarks. Thus we focus on evaluating novel view syn-
thesis (PSNR/SSIM/LPIPS) and show qualitative results for
animation on out-of-distribution poses. Note that LPIPS in
all the tables are scaled up by 1000.

PeopleSnapshot [1]. We also conduct experiments on 4
sequences of the PeopleSnapshot dataset, which includes
monocular videos of people rotating in front of a camera.
We follow the data split of InstantAvatar [12] and compare
to [12] on novel pose synthesis. For a fair comparison, we
use the provided poses optimized by Anim-NeRF [38] and
do not further optimize it during our training.
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Figure 3. Qualitative Comparison on ZJU-MoCap [40]. We show the results for both novel view synthesis and novel pose animation of
all sequences on ZJU-MoCap. Our method produces high-quality results that preserve cloth details even on out-of-distribution poses.



Table 3. Quantitative Results on ZJU-MoCap [40]. We outperform both competitive baselines [61, 62] in terms of LPIPS while being
two orders of magnitude faster in training and rendering. Cell color indicates best and second best. Instant-NVR [7] is trained and tested
on a refined version of ZJU-MoCap, thus is not directly comparable to other baselines quantitatively. We train our model on the refined
dataset for fair quantitative comparison to Instant-NVR and the metrics are reported in the last two rows of the table.

Subject: 377 386 387 392 393 394

Metric: GPU| FPSt|PSNRT SSIMT LPIPS| |PSNRT SSIMt LPIPS| | PSNRT SSIMt LPIPS) | PSNRT SSIM{ LPIPS) | PSNRT SSIM{ LPIPS) | PSNRT SSIMT LPIPS,
NeuralBody [40]  12h 2 | 29.11 09674 4095 | 3054 09678 4643 | 27.00 00518 5947 | 30.10 09642 5327 | 2861 09590 59.05 | 29.10 09593 5455
HumanNeRF [62] >8d 0.2 | 3041 09743 2406 | 3320 09752 2899 | 28.18 09632 3558 | 31.04 09705 3212 | 2831 09603 3672 | 3031 09642 3289
MonoHuman [74]  4d 0.1 | 29.12 09727 2658 | 3294 09695 3604 | 27.93 09601 4176 | 2050 09635 3945 | 27.64 09566 43.17 | 29.15 09595 38.08
ARAH [61] 8d 0.1 | 3085 09800 2660 | 3350 09781 3140 | 2849 09656 4043 | 3202 09742 3528 | 2877 09645 4230 | 2946 09632 40.76
Ours 0Sh 50 | 3064 09774 2088 | 3363 09773 02577 | 2833 09642 3424 | 3166 09730 30:14 | 2888 09635 3526 | 3054 09661 3121
TnsanCNVR* [7]  0.Ih 3 | 3128 09789 2537 | 3371 09770 3281 | 2839 09640 4597 | 3185 09730 3947 | 29.56 09641 46.16 | 31.32 0.9680 40.63
Ours* 05h 50 | 3096 09778 19.85 | 33.94 09784 2470 | 2840 09656 3296 | 32.10 09739 2920 | 2930 09645 34.03 | 3074 09662 31.00

Table 4. Quantitative Results on PeopleSnapshot [1].

Subject: female-3-casual female-4-casual male-3-casual male-4-casual
Metric: GPU| FPST|PSNRT SSIM{ LPIPS||PSNRt SSIMt LPIPS|[PSNR1 SSIM1 LPIPS[PSNR* SSIM? LPIPS |
InstantAvatar [12] 5min. 15 | 27.66 0.9709 21.00 | 29.11 0.9683 16.70 | 29.53 0.9716 15.50 | 27.67 0.9626 30.7
Ours 45 min. 50 | 30.57 0.9581 20.86 | 33.16 0.9678 15.74 | 34.28 0.9724 14.92 | 30.22 0.9653 23.05

5.2. Comparison with Baselines

We compare our approach with NeuralBody [40], Human-
NeRF [62], MonoHuman [74], ARAH [61] and Instant-

Table 5. Ablation Study on ZJU-MoCap [40]. The proposed
model achieves the lowest LPIPS, demonstrating the effectiveness
of all components.

NVR [7] under a monocular setup on ZJU-MoCap. Since Metric: PSNRt SSIMt LPIPS)
ARAH and MonoHuman are not trained on HumanNeRF’s Full model 30.61 0.9703 29.58
data split, we re-train new models using their public code w/o color MLP 30.55 0.9700 31.24
and report metrics on these re-trained models. The quanti- W/0 Lisocon 30.61 09703 29.84
tative results are reported in Tab. 3. W/0 Lisoposs Lisocow  30.59 09699  30.25
NeuralBody is underperforming compared to other ap- w/o pose correction ~ 30.60  0.9703  29.87

proaches. Overall, our proposed approach produces com-
parable performance to ARAH on PSNR and SSIM, while
significantly outperforming all the baselines on LPIPS. We
argue that LPIPS is more informative compared to the other
two metrics, as it is very difficult to reproduce exactly the
ground-truth appearance for novel views due to the monoc-
ular setting and the stochastic nature of cloth deformations.
Meanwhile, our method is also capable of fast training and
renders at a real-time rendering frame rate, being 400 times
faster for training (30 GPU minutes vs. 8 GPU days) and
250 — 500 times faster for inference (50 FPS vs. 0.1 FPS
for ARAH and 0.2 FPS for HumanNeRF). We also note
that Instant-N'VR trains on a refined version of ZJU-MoCap,
which provides refined camera parameters, SMPL fittings,
and more accurate instance masks with part-level annota-
tion that is essential for running their method. Hence their
metrics are not directly comparable to other methods in
Tab. 3. We train our model on the refined dataset for a
fair quantitative comparison, which clearly shows that our
method outperforms Instant-NVR in most scenarios.
Qualitative comparisons on novel view synthesis can be
found in Fig. 3. We observe that our method preserves
sharper details compared to ARAH and does not produce
fluctuating artifacts as in HumanNeRF caused by noisy de-

formation fields. Instant-NVR produces an oversmooth ap-
pearance and tends to generate noisy limbs.

Additionally, we animate our learned avatars with pose
sequences from AMASS [27] and AIST++ [20], shown in
the rightmost column of Fig. 3. This shows that our model
could generalize to extreme out-of-distribution poses.

The quantitative comparison of our method with Instan-
tAvatar [12] on PeopleSnapshot is reported in Tab. 4. Our
approach significantly outperforms InstantAvatar on PSNR
and LPIPS, while being more than 3x faster during infer-
ence.

5.3. Ablation Study

We study the effect of various components of our method
on the ZJU-MoCap dataset, including the color MLP, the
as-isometric-as-possible regularization and the pose correc-
tion module. The average metrics over 6 sequences are re-
ported in Tab. 5. We show that all proposed techniques are
required to reach the optimal performance, best reflected by
LPIPS which is the most informative metric for novel view
synthesis evaluation under a monocular setup.

We further show qualitative comparison on out-of-



Full model

w/0 Lisocovs Lisopos

Figure 4. Ablation Study on as-isometric-as-possible regularization, which removes the artifacts on highly articulated poses.

distribution poses in Fig. 4, which demonstrates that the as-
isometric-as-possible loss helps to constrain the 3D Gaus-
sians to comply with consistent movement during deforma-
tion, hence improving generalization on novel poses. Al-
beit marginally, each individual component contributes to a
better novel-view rendering quality and particularly gener-
ates more plausible results with respect to novel pose ani-
mation.

6. Conclusion

In this paper, we presented 3DGS-Avatar, one of the first
methods that utilize the explicit representation of 3DGS
for efficient reconstruction of clothed human avatars from
monocular videos. Our method achieves photorealistic ren-
dering, awareness of pose-dependent cloth deformation,
generalization to unseen poses, fast training, and real-time
rendering all at once.

Experiments show that our method is comparable to or
even better than the state-of-the-art methods in terms of ren-
dering quality while being two orders of magnitude faster in
both training and inference. Furthermore, we propose to re-
place spherical harmonics with a shallow MLP to decode
3D Gaussian color and regularize deformation with geo-
metric constraints, both proved to be effective in enhanc-
ing rendering quality. We hope that our new representation
could foster further research in fast, high-quality animatable
clothed human avatar synthesis from a monocular view.
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3DGS-Avatar: Animatable Avatars via Deformable 3D Gaussian Splatting
Supplementary Material

A. Loss Definition

In Sec. 4.4 of the main paper we describe our loss term which can be formulated as follows:
L= )\llﬁll + )\perc‘cperc + )\mask‘cmask + )\skin‘cskin + )\isopos‘cisopos + )\z'socov‘cisocov (20)

We describe how each loss term is defined below:

RGB Loss: We use an [1 loss to compute pixel-wise error and a perceptual loss to provide robustness to local misalign-
ments, which is critical for the monocular setup. Following [62], we optimize LPIPS as the perceptual loss with VGG as
the backbone. However, unlike NeRF-based methods which train on random ray samples, we render the whole image via
rasterization and thus do not require patch sampling. For computational efficiency, we crop the tight enclosing bounding box
with the ground truth mask and compute the VGG-based LPIPS as our perceptual loss.

Mask Loss:  To boost the convergence of 3D Gaussian positions, we use an explicit mask loss. For each pixel p, we compute
the opacity value O, by summing up the sample weights in the rendering equation Eq. (5) in the main paper , namely:

O,=)_ o H:l(l —af) @1

We thus supervise it with the ground truth foreground mask via an /1 loss. Experiments show that the 1 loss provides faster
convergence than the Binary Cross Entropy (BCE) loss.

Skinning Loss: We leverage SMPL prior by sampling 1024 points X;, on the surface of the canonical SMPL mesh and
regularizing the forward skinning network with corresponding skinning weights w interpolated with barycentric coordinates.

1
Es in ™ T~ [ skin) — 2 22
k ‘Xskin| Z ||f€7‘(x k ) W|| ( )

Xskin €EXskin

As-isometric-as-possible Loss: Please refer to the second paragraph of Sec. 4.4 in the main paper for details.
We set \j1 = 1, Apere = 0.01, Mpasie = 0.1, Aisopos = 1, Aisocon = 100 in all experiments. For Ay, we set it to 10 for
the first 1% iterations for fast convergence to a reasonable skinning field, then decreased to 0.1 for soft regularization.

B. Implementation Details

We initialize the canonical 3D Gaussians with N = 50k random samples on the SMPL mesh surface in canonical pose.
During optimization, we follow the same strategy from [14] to densify and prune the 3D Gaussians, using the view-space
position gradients derived from the transformed Gaussians G, in the observation space as the criterion for densification.

We then describe the network architectures of our learned neural components. For the forward skinning network fy,_,
we use an MLP with 4 hidden layers of 128 dimensions which takes x, € R® with no positional encoding and outputs a
25-dimension vector. This vector is further propagated through a hierarchical softmax layer that is aware of the tree structure
of the human skeleton to obtain the skinning weights w that sum up to 1. To normalize the coordinates in the canonical space,
we proportionally pad the bounding box enclosing the canonical SMPL mesh instead of using the same length in all axes as
in [61]. This allows us to use a lower resolution in the flat z-dimension of the human body.

For the non-rigid deformation network fy, ., the 3D position x, is normalized with the aforementioned bounding box
and first encoded into representative features with a multi-level hash grid, whose parameters are defined in Tab. 6. The
concatenation of the hash grid features and the pose latent code Z,, then go through a shallow MLP with 3 hidden layers of
128 dimensions to decode pose-dependent local deformation.

The details of our color network structure Fy_ are well elaborated in Sec. 4.3 of the main paper. For frames outside the
training set, we follow [61] and use the latent code of the last frame in the training sequence.



Parameter Value
Number of levels 16
Feature dimension per level 2
Hash table size 216
Coarsest resolution 16
Finest resolution 2048

Table 6. Hash table parameters.

To reduce overfitting, we add noise to the pose and viewing direction input. Specifically, we add a noise drawn from the
normal distribution A/(0,0.1) to the SMPL pose parameters 6 with a probability of p = 0.5 during training. The viewing
direction d is first canonicalized to the canonical space and then augmented with a random rotation derived from uniformly
sampled roll, pitch, and yaw degrees € [0, 45). Adding noise to training signals helps the model to better generalize to novel
poses and views.

Our model is trained for a total of 15k iterations on the ZJU-MoCap dataset in 30 minutes and 30k iterations on Peo-
pleSnapshot in 45 minutes on a single NVIDIA RTX 3090 GPU. We use Adam [16] to optimize our model and the per-frame
latent codes with hyperparameters 51 = 0.9 and 82 = 0.999. The learning rate of 3D Gaussians is exactly the same as the
original implementation from [14]. We set the learning rate for forward skinning network 6, to 1 x 107% and 1 x 1072 for
all the others. An exponential learning rate scheduler is employed to gradually decrease the learning rate by a factor of 0.1
on neural networks. We also apply a weight decay with a weight of 0.05 to the per-frame latent codes.

Following prior works [62, 67], we split the training stage and learn the whole model in a coarse-to-fine manner. In the
first 1% iterations, we freeze everything except the forward skinning network fy_ to learn a coarse skinning field with Lz,
and prevent the noisy gradients from moving the 3D Gaussians away from the initialization. We then enable optimization
on the 3D Gaussians after 1% steps. To decouple rigid and non-rigid motion, we start to optimize the non-rigid deformation
network fp, = after 3k iterations. Lastly, we turn on pose correction after 5k iterations.

C. Implementation Details for Baselines

In this section, we elaborate on the implementation details of baselines used for comparison to our proposed method, i.e.
NeuralBody [40], HumanNeRF [62], ARAH [61], Instant-NVR [7], MonoHuman [74] and InstantAvatar [12].

C.1. NeuralBody

For the quantitative evaluation, we use the results of NeuralBody [40] reported in HumanNeRF [62] which follows the same
data split.

C.2. HumanNeRF

We use pre-trained models provided by the official code repository' for both quantitative and qualitative evaluation.

C.3. ARAH

For the quantitative evaluation, we use the same setup as HumanNeRF (i.e. same data split with a reduced image size of
512 x 512) and train the models using the code from official code repository” for 500 epochs. All other hyperparameters
remain unchanged. The trained models are then used for qualitative evaluation and out-of-distribution pose animation.

C.4. Instant-NVR

For quantitative and qualitative evaluation, we retrain the models using the code from official code repository® on the refined
ZJU-MoCap dataset provided by the author. We change the data split to match other baselines while keeping all other
hyperparameters the same.

Uhttps://github.com/chungyiweng/humannerf
Zhttps://github.com/taconite/arah-release
3https://github.com/zju3dv/instant-nvr



Table 7. Additional Ablation Study on ZJU-MoCap [40]. We present the average metrics over 6 sequences.

Metric: PSNRT SSIM?T LPIPS|
Full model 30.61 0.9703  29.58
w/0 L ask 30.58  0.9703 29.90
Random initialization ~ 30.61  0.9701 30.90
7k iterations 30.56  0.9698 31.73

C.5. MonoHuman

We note that MonoHuman uses a different data split from HumanNeRF with the last fifth of the training frames being used for
novel pose synthesis evaluation instead. For fair comparison we retrain the model from official code repository* on the same
data split of HumanNeRF with the provided configs for 400k iterations and recompute the metrics on novel view synthesis.
The trained models are then used for qualitative evaluation and out-of-distribution pose animation.

C.6. InstantAvatar

We follow the original setup and use the provided poses optimized by Anim-NeRF [38] without further pose correction. For
quantitative results we copy the metrics from their table, while for qualitative results we train the model from official code
repository’ as they do not release pretrained checkpoints.

D. Ablation Study

We conduct additional ablation study and report the average metrics on ZJU-MoCap in Tab. 7.

w/o color MLP Full Model Ground Truth

Figure 5. Qualitative Ablation of Color MLP.

D.1. Ablation on Color MLP

We show in Tab. 5 of the main paper that our proposed color MLP produces rendering with higher quality compared to
learning spherical harmonics coefficients. We hereby show qualitative comparison to corroborate this enhancement in Fig. 5.
Our proposed color MLP helps generate more realistic cloth wrinkles and sharper textures with pose-dependent feature z and
per-frame latent code Z,. as additional inputs.

“https://github.com/Y zmblog/MonoHuman
Shttps://github.com/tijiang 1 3/Instant Avatar



W/0 Lask Full Model Ground Truth

Figure 6. Qualitative Ablation of Mask Loss.

D.2. Ablation on Mask Supervision

Explicit supervision from ground-truth foreground masks only seems to gain slight improvement, as shown in Tab. 7. How-
ever, we observe that the mask loss is useful for removing floating blobs in the empty space. Fig. 6 shows an example for
this, without mask loss, the floating Gaussian with the background color could occlude the subject in novel views.

D.3. Ablation on Gaussian Initialization

Instead of initializing the canonical 3D Gaussians from a SMPL mesh surface, we tried to perform random initialization.
Specifically, we randomly sample N = 50k points in the enclosing bounding box around the canonical SMPL mesh. Experi-
mental results from Tab. 7 demonstrate that our method could as well converge starting from random initialization, with little
performance drop compared to the SMPL initialization scheme. Despite this interesting observation, we decide to use SMPL
initialization as it is more intuitive and does not incur any overhead.

7k iterations (~10 min.) 15k iterations (~24 min.) Ground Truth

Figure 7. Qualitative Ablation of Training Iterations.



D.4. Ablation on Training Iterations

Training for 15k iterations on ZJU-MoCap takes precisely around 24 minutes. We further show that our method can already
achieve high-quality results at 7k iterations in Tab. 7, which takes around 10 minutes, not far away from [12] and [7] that
claim instant training within 5 minutes. Qualitative comparison is shown in Fig. 7.

E. Additional Qualitative Results

We show more qualitative results in this section. For better visualization, we strongly recommend to check our supple-
mentary video.

E.1. Qualitative Results of Novel View Synthesis on ZJU-MoCap

Additional qualitative comparison of novel view synthesis on ZJU-MoCap is shown in Fig. §. HumanNeRF and MonoHuman
preserves sharp details, but often produces undesired distortions and cloud-like effect around the contour. ARAH gives more
rigid body thanks to their explicit modeling of geometry, while they show misalignment and lack fine details. Instant-NVR
synthesizes blurry appearance and obvious artifacts on the limbs. Overall, our method can generate high-quality images with
realistic cloth deformations.

E.2. Qualitative Results of Out-of-distribution Poses on ZJU-MoCap

We present qualitative comparison of extreme out-of-distribution pose animation in Fig. 9. Our method does not produce
obvious artifacts compared to baselines, demonstrating good generalization to unseen poses.

E.3. Qualitative Results on PeopleSnapshot

We show qualitative results on the test set of PeopleSnapshot in Fig. 10. Compared to InstantAvatar, our method produces
sharper results, especially in the face region.

F. Limitations

While our proposed approach achieves state-of-the-art rendering quality of clothed human avatars with an interactive frame
rate of rendering, the training time of our model still does not match those fast grid-based methods [7, 12]. On the other hand,
our method may produce blurry results in areas with high-frequency texture or repetitive patterns, such as striped shirts.
Lastly, our method does not provide accurate geometry reconstruction of the avatar, unlike ARAH [61]. Despite reasonable
rendering quality, our method generates noisy surface normal resulting from the inconsistency of Gaussian splat depth. It
would be particularly interesting to study how to extract a smooth, detailed geometry from the 3DGS avatar model, possibly
by applying regularization to the normal map or attaching 3D Gaussians to an underlying mesh.
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Ours HumanNeRF [62] MonoHuman [74] ARAH [61] Instant-NVR [7]

Figure 8. Qualitative Comparison of Novel View Synthesis on ZJU-MoCap.
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Ours HumanNeRF [62] MonoHuman [74] ARAH [61]

Figure 9. Qualitative Comparison of Out-of-distribution Pose Animation on ZJU-MoCap.

GT Ours InstantAvatar [12] Ours InstantAvatar [12]

Figure 10. Qualitative Comparison on PeopleSnapshot [1]. Best viewed zoomed-in.
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