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In this supplementary document, we first give a detailed overview of our
architectures and baseline implementations in Section 1. We then discuss our
training procedure for both object- and scene-level reconstruction in Section 2.
In Section 3, we describe the generation of the synthetic indoor scene dataset.
Detailed definitions for all three evaluation metrics are then provided in Section 4.
Additional quantitative and qualitative results for all ShapeNet classes can be
found in Section 5. Finally, we provide implementation details of our fully-
convolutional model and more qualitative results on the Matterport3D dataset
in Section 6.

1 Network Architectures

In this section, we provide a detailed description of our network architectures as
well as the implementation of our PointConv baseline.

Point Cloud Encoder: We first use a fully-connected layer followed by a fully-
connected ResNet [5] block to map the three-dimensional input point coordinates
into the feature space. Next, unlike PointNet [12] which pools over all points to
acquire a global feature, we perform the pooling operation locally. Depending
on the defined plane/volume feature maps, we perform max-pooling only over
the features falling into the same pixel/voxel cell. The locally pooled features are
concatenated with the features before pooling, and then fed into the next ResNet
block. We use 5 of these ResNet blocks with intermediate pooling to obtain the
final point-wise features.

Voxel Encoder: Given an occupancy grid as input, we use a single 3D convo-
lutional layer with convolution kernel size 3× 3× 3 to extract voxel-wise features
with dimension of 32.

U-Net: We use a U-Net [14,4] to process the plane or volume features. We
follow [14] and adapt a modified implementation from [6] for our 2D variants.
For our 3D variant, we adapt the 3D U-Net [4] implementation from [16]. We set
the input and output feature dimensions to 32. Note that we choose the depth
of the U-Net such that the receptive field is equal or larger than the size of the
feature plane or volume. For example, when considering a 3D feature volume of
323 or a 2D feature plane of 1282, the depth is set to 3 or 5, respectively.

? This work was done prior to joining Amazon.
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No. Blocks Hidden Dim. GPU Memory IoU Chamfer-L1 Normal Consistency

3 32 2.2G 0.857 0.050 0.936
5 32 2.4G 0.861 0.048 0.937
5 256 3.8G 0.864 0.047 0.941

Table 1. Ablation Study on Network Architecture. We train our 3-plane method
with resolution of 642 on the ShapeNet “chair” class with different numbers of ResNet
blocks and hidden feature dimensions.

Occupancy Prediction Decoder: To predict the occupancy probability of
query points, we use the network of [11] comprising a stack of fully-connected
ResNet blocks. Table 1 provides an overview over the number of ResNet blocks
and hidden dimensions. For all experiments in the main paper, we use a hidden
feature dimension of 32 and 5 ResNet blocks for the occupancy prediction network.

Architecture Comparison with ONet [9]: For point cloud inputs, ONet
uses a PointNet [12] as point cloud encoder and 5 fully-connected ResNet blocks
as occupancy decoder. Both networks have a hidden dimension of 512, resulting
in 10.4 million parameters in total. In contrast, our method uses shallow variants
for both networks with a hidden dimension of 32: as discussed, we use a shallow
local PointNet and consider the less memory-intense conditioning in the decoder
from [11]. Combined, our shallow PointNet and our decoder have 43k parameters.
Our 2D/3D U-Net has roughly 1 million parameters depending on the depth.
Thus, our final model is more memory-efficient than ONet. Moreover, we perform
batch-processing over instances as well as points. Hence, the decoder is queried
more often than the encoder. As we are able to use a shallow decoder, this further
reduces memory consumption in practice.

PointConv: We provide implementation details of our baseline method Point-
Conv in the following. The point-CNN based PointNet++ [13] is used to extract
point-wise features. We use the semantic and part segmentation architecture
provided in [13] which contains three set abstraction layers and two point feature
propagation layers. We adapt the PyTorch implementation from [17]. Given the
point features, we interpolate them using Gaussian kernel regression for query
points. More specifically, we first calculate the Euclidean distance between a query
point and all points in the input point cloud. The weights are then computed
using a Gaussian kernel with 0.1 as the defined variance. After performing weight
normalization, we acquire interpolated point-wise features for query points and
estimate its occupancy probability with an occupancy network as discussed before.
We train PointConv end-to-end by backpropagating through the convolutional
operations and the Gaussian kernel regression.
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2 Training Details

All methods are trained for at least 300000 iterations. We use the Adam opti-
mizer [8] with a learning rate of 10−4 for all methods. We perform evaluations
on the validation set every 10000 iterations and pick the model for testing which
performs best wrt. volumetric IoU on the validation set.

Object-Level Reconstruction: For the reconstruction from point cloud ex-
periments, we use a batch size of 32 for all our methods including ONet [9], and
24 for the baseline PointConv. For the voxel super-resolution tasks, we train all
methods with a batch size of 64.

Scene-Level Reconstruction: We use the official implementation1 of ONet [9]
but change the batch size to 12 in order to fit into GPU memory. For the baseline
PointConv the batch size is set to 16. Our lightweight architectures allow us
to set the batch size to 32 for our plane encoder for a resolution of 1282 and
3× 1282, as well as the volumetric encoder for a resolution of 323. For our variant
combining 2D and 3D features, the batch size is 24, while we use a batch size of
6 for our volumetric approach with a resolution of 643.

3 Data Generation

In this section, we provide details regarding data generation of our synthetic
scenes dataset. We use the watertight meshes from the Choy et al. [3] subset of
the ShapeNet dataset from [9]. Training, validation, and test splits are from [3].

We generate scenes with 4 to 8 objects and for each type we generate 1000
scenes, so there are 5000 scenes in total. For a single scene, we sample the x-y
ratio of the ground plane uniformly between 0.3 and 1.0. For each object in the
scene, we sample a rotation angle around the z-axis and a scaling factor uniformly
from an interval which depends on how many objects are in the scene in total.
We place the objects randomly in the scene via rejection sampling. We draw 4
samples from a Bernoulli distribution to decide whether to add a wall to the
respective border of the scene. We sample the wall height uniformly from the
interval between 0.2 and 0.4.

We divide the generated scenes into training, validation, and test sets. We
further adhere to the object-level splits from [3] to not have similar objects in
scenes of different splits.

4 Metrics

In this section, we provide the formal definitions of all three metrics that we use
for evaluation. We follow the definition from [9].

Volumetric Intersection over Union (IoU): Let Mpred and MGT be the
set of all points that are inside or on the surface of the predicted and ground truth

1 https://github.com/autonomousvision/occupancy networks

https://github.com/autonomousvision/occupancy_networks
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mesh, respectively. The volumetric IoU is the volume of two meshes’ intersection
divided by the volume of their union:

IoU(Mpred,MGT) ≡ |Mpred ∩MGT|
|Mpred ∪MGT|

. (1)

We randomly sample 100k points from the bounding boxes and determine if the
points lie inside or outside Mpred and MGT, respectively.

Chamfer-L1: Define an accuracy and completeness score of Mpred wrt. MGT:

Accuracy(Mpred|MGT) ≡ 1

|∂Mpred|

∫
∂Mpred

min
q∈∂MGT

‖p− q‖dp (2)

Completeness(Mpred|MGT) ≡ 1

|∂MGT|

∫
∂MGT

min
p∈∂Mpred

‖p− q‖dq (3)

where ∂Mpred and ∂MGT denote the surfaces of the two meshes. Then, the
Chamfer-L1 distance between two meshes is defined as below:

Chamfer-L1(Mpred,MGT) =

1

2
(Accuracy(Mpred|MGT) + Completeness(Mpred|MGT))

(4)

Normal Consistency: we define the normal consistency score as

Normal-Con.(Mpred,MGT) ≡ 1

2 |∂Mpred|

∫
∂Mpred

|〈n(p), n(proj2(p))〉|dp

+
1

2 |∂MGT|

∫
∂MGT

|〈n(proj1(q)), n(q)〉|dq
(5)

where 〈·, ·〉 indicates the inner product, n(p) and n(q) the (unit) normal vectors
on the mesh surface ∂Mpred and ∂MGT, respectively and proj2(p) and proj1(q)
denote the projections of p and q onto ∂MGT and ∂Mpred respectively.

F-Score: We first define recall and precision. As discussed in [15], recall counts
how many points on the GT mesh lie within a certain distance to the reconstruc-
tion. Precision counts the percentage of points on the reconstructed mesh that lie
within a certain distance to the GT. The F-Score is then defined as the harmonic
mean between precision and recall:

F-Score = 2 · Precision · Recall

Precision + Recall
(6)

5 3D Reconstruction on ShapeNet

In this section, we provide additional experimental results on all 13 classes of the
ShapeNet subset of Choy et al. [3].
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IoU Chamfer-L1

PointConv ONet Ours-2D Ours-2D Ours-3D PointConv ONet Ours-2D Ours-2D Ours-3D
category (642) (3× 642) (323) (642) (3× 642) (323)

airplane 0.579 0.734 0.844 0.849 0.849 0.140 0.064 0.034 0.034 0.033
bench 0.537 0.682 0.756 0.830 0.791 0.120 0.067 0.047 0.035 0.041
cabinet 0.824 0.855 0.882 0.940 0.923 0.115 0.082 0.067 0.046 0.054
car 0.767 0.830 0.870 0.886 0.877 0.149 0.104 0.081 0.075 0.080
chair 0.667 0.720 0.791 0.871 0.853 0.129 0.095 0.067 0.046 0.049
display 0.743 0.799 0.863 0.927 0.904 0.106 0.082 0.056 0.036 0.042
lamp 0.495 0.546 0.668 0.785 0.792 0.215 0.159 0.098 0.059 0.066
loudspeaker 0.807 0.826 0.878 0.918 0.914 0.148 0.118 0.086 0.064 0.065
rifle 0.565 0.668 0.798 0.846 0.826 0.098 0.066 0.037 0.028 0.031
sofa 0.811 0.865 0.912 0.936 0.923 0.104 0.073 0.050 0.042 0.046
table 0.654 0.739 0.803 0.888 0.860 0.113 0.076 0.056 0.038 0.043
telephone 0.856 0.896 0.936 0.955 0.942 0.061 0.046 0.032 0.027 0.030
vessel 0.652 0.729 0.826 0.865 0.860 0.138 0.094 0.054 0.043 0.045

mean 0.689 0.761 0.833 0.884 0.870 0.126 0.087 0.059 0.044 0.048

Normal Consistency F-Score
PointConv ONet Ours-2D Ours-2D Ours-3D PointConv ONet Ours-2D Ours-2D Ours-3D

category (642) (3× 642) (323) (642) (3× 642) (323)

airplane 0.819 0.886 0.924 0.931 0.932 0.562 0.829 0.967 0.965 0.968
bench 0.811 0.871 0.888 0.921 0.911 0.617 0.827 0.917 0.964 0.944
cabinet 0.895 0.913 0.915 0.956 0.953 0.719 0.833 0.874 0.956 0.931
car 0.845 0.874 0.884 0.893 0.891 0.577 0.747 0.827 0.849 0.834
chair 0.851 0.886 0.902 0.943 0.942 0.618 0.730 0.847 0.939 0.930
display 0.910 0.926 0.935 0.968 0.965 0.679 0.795 0.891 0.971 0.956
lamp 0.779 0.809 0.855 0.900 0.910 0.453 0.581 0.761 0.892 0.910
loudspeaker 0.894 0.903 0.918 0.939 0.942 0.647 0.727 0.827 0.892 0.881
rifle 0.796 0.849 0.905 0.929 0.924 0.682 0.818 0.947 0.980 0.969
sofa 0.900 0.928 0.945 0.958 0.956 0.697 0.832 0.925 0.953 0.943
table 0.878 0.917 0.932 0.959 0.956 0.694 0.824 0.897 0.967 0.953
telephone 0.961 0.970 0.976 0.983 0.981 0.880 0.930 0.974 0.989 0.987
vessel 0.817 0.857 0.898 0.919 0.919 0.550 0.734 0.881 0.931 0.927

mean 0.858 0.891 0.914 0.938 0.937 0.644 0.785 0.887 0.942 0.933

Table 2. 3D Reconstruction from Point Clouds on ShapeNet. This table shows
a per-category comparison of baselines and different variants of our approach. For this
experiment, we train all methods simultaneously on all 13 classes.

Reconstruction from Noisy Point Clouds: Table 2 shows a quantitative
comparison of the baselines and our methods. Our method outperforms all
baselines on all classes and often by a significant margin. Fig. 2 and Fig. 3 show
additional qualitative results.

Generalization: In this experiment, we train only on the “chair” category and
test on “table”. In contrast to the baselines, our method degrades gracefully
(see Fig. 1). This emphasizes the importance of equivariant representations and
geometric reasoning using both local and global features.

Reconstruction from Noisy Partial Point Clouds: We also investigate
our method’s capability to reconstruct shapes from partial point clouds. To this
end, we first randomly select one axis of the x, y, z directions and calculate its
coordinate range r. Then, we uniformly sample an offset between [0.7r, r] and
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ONet [9] PointConv Ours-2D Ours-3D GT mesh
(3× 642) (323)

Fig. 1. Generalization (Chair → Table). We analyze the generalization perfor-
mance of our method and the baselines by training them on the ShapeNet “chair”
category and evaluating them on the “table” category.

filter out all points with coordinates larger than the offset along that axis. The
offset is always a positive value, so that e.g. for the z axis, we always crop from
the top. Finally, 3000 points are uniformly sampled from the cropped point clouds.
Fig. 4 shows our qualitative results.

6 3D Reconstruction on Matterport3D

In this section, we provide implementation details of our fully-convolutional
model as well as more qualitative results on the Matterport3D dataset [1].

Implementation Details of Fully-Convolutional Model: We perform train-
ing and inference within the unit cube for both, the object-level as well as the
synthetic scene reconstruction experiments. However, this does not fully exploit
the translation equivariant property of convolution networks and does not scale
to arbitrarily sized scenes.

In this section, our goal is to apply our model to scenes of arbitrary size
represented in metric real-world units (i.e., in meters). Therefore, our model
should be translational equivariant and not depend on a global coordinate system,
but only on relative local coordinates.

For this experiment, we use our synthetic scene dataset for training. A scene
consists of multiple objects from the ShapeNetCore [2] dataset, see Section 3
in supplementary for details. While no real-world units are provided in this
dataset, we find that the synthetic scenes roughly correlate to a real-world unit
of 4.4m × 4.4m × 4.4m. The voxel size s is a hyperparameter of our model
and determines the granularity of the convolutional part. In all experiments,
we set s = 0.02m. Therefore, each scene is contained in a regular grid of size
220× 220× 220 voxels.
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To train the network, we predict the occupancy of query points inside grid
volumes cropped randomly within the scene. Specifically, at each iteration, we
randomly sample one point within the scene as the center of the crop. The crop
size is H ×W ×D, which is defined as 25× 25× 25 voxels in our experiments.
Since the receptive field of our network is r = 64, the corresponding input crop
has a size of (H + 63) × (W + 63) + (D + 63) = 88 × 88 × 88 voxels. We use
the point cloud encoder described in Section 1 to encode the input point clouds
inside each input crop. We use a batch size of 2 crops in practice.

Similarly, at inference time, we split the scene into overlapping crops so that
we can perform occupancy prediction of every crop in a sliding-window manner.
The crop size is determined to fit into GPU memory. Note that the input crops
overlap, such that no padding is needed.

In contrast to Occupancy Networks [9], our method is equivariant to trans-
lations that are multiples of the voxel size s. This is achieved by first mapping
the global 3D coordinates p to local voxel-centric 3D coordinates p′ = h((p
mod s)/s), where “mod” denotes the element-wise modulo operation for real
numbers. Note that p ∈ [0, 1], h(·) is a continuous transfer function which in the
simplest case is linear h(x) = x, but which could also be a non-linear mapping
such as the positional encoding described in [10]. In this work, we restrict our
analysis to using the identity function, but plan to explore more complex transfer
functions in the future.

Additional Qualitative Results: In order to better visualize the reconstruc-
tion, we first cut out the ceiling in the z direction and also cut one side of the
walls in either x or y direction. This preprocessing was done on the provided
region meshes. Next, we combine all the processed meshes into one big mesh for
the entire scene. Surface points are then uniformly sampled from this final mesh
and used as input to our method. For SPSR, we additionally provide the surface
normals for every point in the input point cloud.

In Fig. 5 and Fig. 6, we show more qualitative results of our fully-convolutional
model on Matterport3D dataset. Given a reasonable amount of surface points, our
method is able to reconstruct scenes of different sizes, ranging from apartments
to entire buildings.

Fig. 8 and Fig. 7 show a comparison over SPSR [7]. Note that SPSR requires
additional surface normals as input, whereas our method only needs raw point
clouds. Moreover, SPSR requires a carefully chosen trimming factor. In contrast,
our method does not require any such hyperparameter tuning. Our results indicate
that our method better preserves details and the reconstructions contain less
artifacts.
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Input PointConv ONet [9] Ours-2D Ours-2D Ours-3D GT mesh
(642) (3× 642) (323)

Fig. 2. Object-Level 3D Reconstruction from Point Clouds. We show qualita-
tive results of ONet, PointConv, and our variants on the ShapeNet “lamp” and “rifle”
categories. We choose these two categories since many objects have fine geometric
details and thin structures. Note that the models are trained on all classes.
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Input PointConv ONet [9] Ours-2D Ours-2D Ours-3D GT mesh
(642) (3× 642) (323)

Fig. 3. Object-Level 3D Reconstruction from Point Clouds. We show qualita-
tive results for ONet, PointConv and our variants on the ShapeNet “plane”, “bench”
and “vessel” categories. Here we select objects with complicated details to visualize the
reconstruction quality among different methods. Note that the models are trained on
all classes.
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Input Ours-2D GT mesh Input Ours-2D GT mesh
(3× 642) (3× 642)

Fig. 4. Object-Level 3D Reconstruction from Partial Point Clouds. We show
qualitative results on the ShapeNet “plane”, “car”, “chair” and “table” categories. Our
method is able to correctly reconstruct 3D shapes from partial point clouds. Note that
the models are trained on all classes.
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(a) Ours

(b) GT Mesh

Fig. 5. Scene-Level Reconstruction on Matterport3D. Scene size: 18.5m ×
9.6m× 2.2m. No. points in input point cloud: 60K.

(a) Ours (b) GT Mesh

Fig. 6. Scene-Level Reconstruction on Matterport3D. Scene size: 11.3m ×
6.6m× 4.0m. No. points in input point cloud: 100K.
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SPSR (trimming factor = 6) [7]

Ours (fully-convolutional)

GT mesh

Fig. 7. Comparison of Building-Level Reconstruction on Matterport3D.
Scene size: 19.7m × 10.9m × 9.4m. 200K points are sampled from the GT mesh and
used as the input to SPSR and our method.
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SPSR (trimming factor = 6) [7]

Ours (fully-convolutional)

GT mesh

Fig. 8. Comparison of Building-Level Reconstruction on Matterport3D.
Scene size: 15.7m × 12.3m × 4.5m. 200K points are sampled from the GT mesh and
used as the input to SPSR and our method.
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