

Learning Unsupervised Hierarchical Part Decomposition of 3D Objects from a Single RGB Image

Despoina Paschalidou^{1,2,5} Luc van Gool^{2,3,5} Andreas Geiger^{1,4,5}

¹Max Planck Institute for Intelligent Systems Tübingen ²Computer Vision Lab, ETH Zürich ³KU Leuven ⁴University of Tübingen ⁵Max Planck ETH Center for Learning Systems

Motivation

- Existing shape representations focus on recovering the local 3D geometry of an object without considering its part-based decomposition or relations between its parts.
- Goal: Jointly recover the geometry of an object as a set of primitives and their latent hierarchical layout without part-level supervision.

Our Representation

Idea: Model the hierarchical decomposition of various objects as a binary tree of primitives of depth D, where simple parts are modelled with fewer primitives and more complex parts with more.

At every depth level, each of the $2^d \mid d = \{0, \dots, D\}$ nodes is recursively split into two nodes (its children) until reaching the maximum depth.

Network Architecture and Loss

Given an input and a target mesh represented as a set of occupancy pairs $\mathcal{X} = \{(\mathbf{x}_i, o_i)\}_{i=1}^N$, our network predicts a binary tree of primitives $\mathcal{P} = \{\{p_k^d\}_{k=0}^{2^d-1} \mid d = \{0...D\}\}$. For each primitive p_k^d the network regresses its parameters λ_k^d and its reconstruction quality q_k^d .

The **predicted shape** at depth d is $G^d(\mathbf{x})$ is the union of the per-primitive occupancy functions $g_k^d(\mathbf{x}, \lambda_k^d)$ at depth d.

- Structure Loss: $\mathcal{L}_{str}(\mathcal{H}; \mathcal{X}) = \sum_{h_k^d \in \mathcal{H}} \frac{1}{2^d 1} \sum_{(\mathbf{x}, o) \in \mathcal{X}_k^d} o \|\mathbf{x} \mathbf{h}_k^d\|_2$
- Reconstruction Loss: $\mathcal{L}_{rec}(\mathcal{P}; \mathcal{X}) = \sum \sum L\left(G^d(\mathbf{x}), o\right) + \sum \sum L\left(g_k^d\left(\mathbf{x}; \lambda_k^d\right), o\right)$
- Compatibility Loss: $\mathcal{L}_{comp}(\mathcal{P}; \mathcal{X}) = \sum_{k} \sum_{j} (q_k^d \mathbf{IoU}(p_k^d, \mathcal{X}_k^d))^2$
- Proximity Loss: $\mathcal{L}_{prox}(\mathcal{P}) = \sum \sum \|\mathbf{t}(\lambda_k^d) \mathbf{h}_k^d\|_2$

 \mathbf{SQs}

Input

Single Image 3D Reconstruction on D-FAUST

Predicted Hierarchy

Single Image 3D Reconstruction on ShapeNet

- Our representation outperforms primitive-based methods and the OccNet w.r.t. IoU and is the second best w.r.t. Chamfer-L1.
- Associate every primitive with a unique color, thus primitives illustrated with the same color correspond to the same object part

Predicted Hierarchy