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Abstract

In this supplementary document, we present our inference algorithm as well as additional qualitative results. We start
by deriving the message expressions for the sum-product belief propagation algorithm used for approximate inference in
our Markov Random Field. Subsequently, we show additional results from the aerial dataset from different viewpoints
and we compare RayNet with commonly used disparity methods like ZNCC, with a probabilistic method [5] and with a
learning-based approach [2]. In all cases, our method outperforms the baseline methods, thus resulting in significantly
smoother reconstructions, while retaining sharp object boundaries. Finally, we present visualizations of the completeness of
the predicted reconstructions on the DTU dataset and we compare against SurfaceNet [3].

1. Markov Random Field Inference
Our inference algorithm is based on the sum-product belief propagation [4]. The detailed derivations of the belief propa-

gation equations is presented in Section 1.1.

1.1. Sum-product Message Derivations

The sum-product algorithm for factor graphs works by passing messages between factors and variables. The general form
of messages is given by

µf→x(x) =
∑
Xf\x

φf (Xf )
∏

y∈Xf\x

µy→f (y) (1)

µx→f (x) =
∏

g∈Fx\f

µg→x(x) (2)

where Xf denotes all variables associated with factor f and Fx is the set of factors to which variable x connects. Upon
termination (namely either at convergence or until a maximum number of iterations has been reached), the approximate
marginal distribution of each variable can be computed as the product of messages from all neighbouring factors according
to Equation 3.

p(x) ∝
∏
g∈Fx

µg→x(x) (3)

In our case, the factor graph of the MRF consists of the occupancy variables o = {oi|i ∈ X}, where X is the set of voxels
in the voxel grid, the unary factors ϕi(oi), defined for every voxel i ∈ X and the ray factors ψr(or), defined for every ray
r ∈ R, where R is the set of all rays and or = (or1, o

r
2, . . . , o

r
Nr

) denotes the ordered set of occupancy variables associated
with the voxels which intersect ray r.
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Figure 1: Factor Graph of the MRF for a single ray. Unary factors ϕi(oi) are defined for every voxel i ∈ X of the voxel
grid. Ray factor ψr(or) is defined for the query ray r ∈ R and connects to the variables along the ray or = (or1, . . . , o

r
Nr

).

Consider a single ray r associated with a ray factor ψr(or). The ray factor ψr is associated with Nr occupancy variables,
namely this ray passes through Nr voxels. The corresponding factor graph is illustrated in Fig. 1.

1.1.1 Ray factor to occupancy variables messages µψr→ori

The ray potentials encourage the predicted depth at pixel/ray r to coincide with the first occupied voxel along the ray, thus
we can rewrite the expression for the ray potentials as follows

ψr(or) =

Nr∑
i=1

ori
∏
j<i

(1− ori )sri =


sr1, if or1 = 1

sr2, if or1 = 0, or2 = 1

. . .

srNr
, if or1 = 0, or2 = 0, . . . , orNr−1 = 0, orNr

= 1

(4)

where sri is the probability that the surface intersects ray r at voxel i as predicted by the neural network described in the main
submission.

We first derive the message equations from the ray factor to the ith occupancy variable, when it is occupied (ori = 1).
Eq. 1 becomes

µψr→ori (o
r
i = 1) =

∑
or1

· · ·
∑
ori−1

∑
ori+1

· · ·
∑
orNr

ψr(or)

Nr∏
j=1
j 6=i

µorj→ψr (o
r
j) (5)

We carry out the summations over the occupancy variables one by one. We begin the summation over or1 according to
Equation 5

µψr→ori (o
r
i = 1) =

(♦)︷ ︸︸ ︷
µor1→ψr (o

r
1 = 1)

[∑
or2

· · ·
∑
ori−1

∑
ori+1

· · ·
∑
orNr

ψr(o
r
1 = 1, . . . , orNr

)

Nr∏
j=2
j 6=i

µorj→ψr (o
r
j)

]
+

µor1→ψr (o
r
1 = 0)

[∑
or2

· · ·
∑
ori−1

∑
ori+1

· · ·
∑
orNr

ψr(o
r
1 = 0, . . . , orNr

)

Nr∏
j=2
j 6=i

µorj→ψr (o
r
j)

]
︸ ︷︷ ︸

(†)

(6)

In the first term of Eq. 6, marked with (♦) we can replace the ray potential ψr(or1 = 1, . . . orNr
= 0) = sr1 from Eq. 4.

Since sr1 only depends on the or1, it can be brought out of the summations over the other occupancy variables. Furthermore,

the remaining term
∑
or2

· · ·
∑
ori−1

∑
ori+1

· · ·
∑
orNr

Nr∏
j=2
j 6=i

µorj→ψr
(orj) evaluates to 1 because we assume that all incoming messages are

normalized such that they sum to 1. The last term, marked with (†), does not simplify.



Subsequently, we expand the summation over or2

µψr→ori (o
r
i = 1) =µor1→ψr

(or1 = 1)sr1 + µor1→ψr
(or1 = 0)

[

µor2→ψr (o
r
2 = 1)

[∑
or3

· · ·
∑
ori−1

∑
ori+1

· · ·
∑
orNr

ψr(o
r
1 = 0, or2 = 1, . . . , orNr

)

Nr∏
j=3
j 6=i

µorj→ψr (o
r
j)

]
+

µor2→ψr (o
r
2 = 0)

[∑
or3

· · ·
∑
ori−1

∑
ori+1

· · ·
∑
orNr

ψr(o
r
1 = 0, or2 = 0, . . . , orNr

)

Nr∏
j=3
j 6=i

µorj→ψr (o
r
j)

]] (7)

The second term of Eq. 7 can be further simplified by replacing the ray potential from Eq. 4 and by assuming normalized
assuming messages with µor1→ψr

(or1 = 0)µor2→ψr
(or2 = 1)sr2.

We continue carrying out the summations until (including) the ori−1 occupancy variables and we get

µψr→ori (o
r
i = 1) =

i−1∑
j=1

µorj→ψr
(orj = 1)

j−1∏
k=1

µork→ψr
(ork = 0)srj +

i−1∏
j=1

µorj→ψr
(orj = 0)×

[∑
ori+1

· · ·
∑
orNr

ψ(or1 = 0, . . . , ori−1 = 0, ori = 1, . . . , orNr
)

Nr∏
j=i+1

µorj→ψr
(orj)

]
︸ ︷︷ ︸

(‡)

(8)

In the last term of Eq. 8, marked with (‡), we can substitute the ray potential ψ(or1 = 0, . . . , ori−1 = 0, ori = 1, . . . , orNr
)

with sri and we get the final form of the message when the ith voxel is occupied as follows

µψr→ori (o
r
i = 1) =

i−1∑
j=1

µorj→ψr (o
r
j = 1)

j−1∏
k=1

µork→ψr (o
r
k = 0)srj +

i−1∏
j=1

µorj→ψr (o
r
j = 0)sri (9)

Following a similar technique we derive the message expression when the ith voxel is free, namely (ori = 0) as follows

µψr→ori (o
r
i = 0) =

i−1∑
j=1

µorj→ψr (o
r
j = 1)

j−1∏
k=1

µork→ψr (o
r
k = 0)srj +

i−1∏
k=1

µork→ψr (o
r
k = 0)×

[∑
ori+1

· · ·
∑
orNr

ψ(or1 = 0, . . . , ori−1 = 0, ori = 0, . . . , orNr
)

Nr∏
j=i+1

µorj→ψr
(orj)

]
︸ ︷︷ ︸

(q)

(10)

The last term of Eq. 10, marked with (q) can be simplified by summing out all occupancy variables one by one as follows

µori+1→ψr (o
r
i+1 = 1)sri+1 + · · ·+ µori+1→ψr (o

r
i+1 = 0) . . . µorNr−1→ψr (o

r
Nr−1 = 0)µorNr

→ψr (o
r
Nr

= 1)srNr
(11)

The resulting expression when the ith voxel is free becomes

µψr→ori (o
r
i = 0) =

i−1∑
j=1

µorj→ψr
(orj = 1)

j−1∏
k=1

µork→ψr
(ork = 0)srj +

Nr∑
j=i+1

µorj→ψr
(orj = 1)

j−1∏
k=1
k 6=i

µork→ψr
(ork = 0)srj (12)



1.1.2 Occupancy variable to ray factor messages µori→ψr

Using Equation 2, we derive the message from the ith occupancy variable to the ray factor ψr. This message can be defined
as the product of all messages from the set of factors Fori to which the occupancy variable ori is connected (except for the
ψr factor). The Fori set consists of the unary to occupancy variable message, namely µϕi→ori (o

r
i ) as well as all the factor-to-

occupancy messages for all the k ∈ L rays, except for the r ray.

µori→ψr (o
r
i ) = ϕi(o

r
i )

∏
ψk∈L\ψr

µψk→ori (o
r
i ) (13)

1.1.3 Messages from and to the unary factors µϕi→ori and µori→ϕi

The messages from and to the unary factors are straightforward to compute using Equations 1 and 2. The message from the
occupancy variable ori to the unary factor φi is defined as the product of all messages from the set of factors Fori to which the
occupancy variable ori is connected (except for the ϕi factor). The set of factors Fori includes all the ψr(.) factors, one for
each ray that might pass through the ith voxel. Let L be the set of rays that pass through the ith voxel, the µori→ϕi becomes

µori→ϕi
(ori ) =

∏
g∈For

i
\ϕi

µg→ori (o
r
i ) =

∏
ψr∈L

µψr→ori (o
r
i ) (14)

Regarding the message from unary factor ϕi to the occupancy variable ori , each unary factor is associated with the occu-
pancy variable of the ith voxel ori , thus the unary factor to occupancy variable message is expressed as

µϕi→ori (o
r
i ) = ϕi(o

r
i ) = γo

r
i (1− γ)1−o

r
i (15)

1.2. Depth Estimation Derivation

In this section, we provide details for our depth estimation procedure. As described in Section 3.2 of the submission, we
associate the occupancy and depth variables along a ray using the Eq. 16.

dr =

Nr∑
i=1

ori
∏
j<i

(1− ori )dri (16)

Using the sum-product belief propagation and the message expressions derived in Section 1.1 we estimate a probability
distribution p(dr = dri ) for each depth variable dr.

Eq. 16 encourages that the predicted depth at pixel/ray r coincide with the first occupied voxel along the ray, thus it can
be rewritten as follows

dr =

Nr∑
i=1

ori
∏
j<i

(1− orj)dri =


dr1, if or1 = 1

dr2, if or1 = 0, or2 = 1

. . .

drNr
, if or1 = 0, or2 = 0, . . . , orNr−1 = 0, orNr

= 1

(17)

Taking into account the above expression for the depth formation process and the fact that we always assume that there
exists at least one occupied voxel along the ray, the probability distribution p(dr = dri ) becomes

p(dr = dri ) = p(or1 = 0, . . . , ori−1 = 0, ori = 1) (18)

We can easily estimate the marginal distribution of the occupancy variables from Eq. 3 as follows

p(or1, . . . , o
r
Nr

) ∝ ψr(o)
Nr∏
i=1

µori→ψr
(ori ) (19)

However, we only want to estimate the p(or1 = 0, . . . , ori−1 = 0, ori = 1) ∀i = 1, . . . , Nr. This can be done by simply
summing out all the other occupancy variables from Eq. 19



p(or1 = 0, . . . , ori−1 = 0, ori = 1) =
∑
ori+1

· · ·
∑
orNr

p(or1 = 0, . . . , ori−1 = 0, ori = 1, ori+1, . . . , o
r
Nr

)

∝
∑
ori+1

· · ·
∑
orNr

ψ(or1 = 0, . . . , ori−1 = 0, oi = 1, ori+1, . . . , o
r
Nr

)

×

[
µori→ψr

(ori = 1)

i−1∏
j=1

µorj→ψr
(orj = 0)

]
︸ ︷︷ ︸

(�)

Nr∏
j=i+1

µorj→ψr
(orj)

(20)

Note that the term marked with (�) does not depend on the occupancy variables summed, hence it can be taken out of the
summations as follows

p(or1 = 0, . . . , ori−1 = 0, ori = 1) ∝ µori→ψr
(ori = 1)

i−1∏
j=1

µorj→ψr
(orj = 0)×

∑
ori+1

· · ·
∑
orNr

ψ(or1 = 0, . . . , ori−1 = 0, ori = 1, ori+1, . . . , o
r
Nr

)

Nr∏
j=i+1

µorj→ψr
(orj)︸ ︷︷ ︸

(†)

(21)

The ray potential ψ(or1 = 0, . . . , ori = 1, ori+1, . . . o
r
Nr

) term in the expression marked with (†) can be replaced with sri
from Eq. 4, hence it can also been taking out of the summations, resulting in

p(or1 = 0, . . . , ori−1 = 0, ori = 1) ∝ µori→ψr
(ori = 1)

i−1∏
j=1

µorj→ψr
(orj = 0)sri ×

∑
ori+1

· · ·
∑
orNr

Nr∏
j=i+1

µorj→ψr
(orj)︸ ︷︷ ︸

this term evaluates to 1

(22)

However, as we have already mentioned before all incoming messages are normalized such that the sum to 1, thus the
joint probability simplifies to

p(or1 = 0, . . . , ori−1 = 0, ori = 1) ∝ µori→ψr (o
r
i = 1)

i−1∏
j=1

µorj→ψr (o
r
j = 0)sri (23)

By substituting Eq. 23 in Eq. 18, we get the final expression for the probability distribution

p(dr = dri ) =
1

Z
µori→ψr (o

r
i = 1)

i−1∏
j=1

µorj→ψr (o
r
j = 0)sri (24)

where Z is a normalization constant such that the depth distribution sums to 1.

2. Aerial Dataset
In this Section, we provide additional qualitative results on the aerial dataset. We compare RayNet with the zero-mean

normalized cross correlation (ZNCC), which is a commonly used disparity method, calculated over multiple input views.
In addition, we also compare our method with the probabilistic 3D reconstruction method by Ulusoy et al. [5]. We further
compare against the learning based approach of Hartmann et al. [2]. For more detailed analysis regarding the implementations
of these baselines please refer to Section 4.1 of our submission.

Fig. 2 and Fig. 3 depict the predicted depth maps for all methods for a set of images from different viewpoints. In all
images, both ZNCC and the Hartmann et al. [2] baselines result in smoother depth maps with artefacts around the image
boundaries. In contrast, our CNN baseline as well as the probabilistic approach by Ulusoy et al [5] yield sharped boundaries
with significant noise. In general, facades of the buildings are considered to be problematic areas, because they lack any
texture. It is important to point out, that also in this case (Fig. 3m), our method results in more accurate reconstructions
compared to the other baselines.



(a) Image (b) Ours (CNN) (c) Ours (CNN+MRF)

(d) ZNCC (e) Ulusoy et al. [5] (f) Hartmann et al. [2]

(g) Image (h) Ours (CNN) (i) Ours (CNN+MRF)

(j) ZNCC (k) Ulusoy et al. [5] (l) Hartmann et al. [2]

(m) Image (n) Ours (CNN) (o) Ours (CNN+MRF)

(p) ZNCC (q) Ulusoy et al. [5] (r) Hartmann et al. [2]

Figure 2: Qualitative Results on Aerial Dataset for images from different viewpoints. We show the depth maps predicted
by our method (b+c,i+h, n+o) as well as three baselines (d-f,j-l, p-r) for three input images from different viewpoints (a,g,
m). Darker colours correspond to closer regions.



(a) Image (b) Ours (CNN) (c) Ours (CNN+MRF)

(d) ZNCC (e) Ulusoy et al. [5] (f) Hartmann et al. [2]

(g) Image (h) Ours (CNN) (i) Ours (CNN+MRF)

(j) ZNCC (k) Ulusoy et al. [5] (l) Hartmann et al. [2]

(m) Image (n) Ours (CNN) (o) Ours (CNN+MRF)

(p) ZNCC (q) Ulusoy et al. [5] (r) Hartmann et al. [2]

Figure 3: Qualitative Results on Aerial Dataset for images from different viewpoints. We show the depth maps predicted
by our method (b+c,i+h, n+o) as well as three baselines (d-f,j-l,p-r) for two input images from different viewpoints (a,g,m).
Darker colours correspond to closer regions.



3. DTU Dataset
In this Section, we show additional qualitative results on the DTU dataset. We evaluate RayNet on six objects from this

dataset: BUNNY, STONE EDGE, BIRD, SNOWMEN, BRICKS and BUDDHA and we compare the predicted reconstruc-
tions against SurfaceNet [3] on the same resolution, namely 2563. Fig. 4 shows the six objects.

(a) BUNNY (b) STONEHENGE (c) BIRD

(d) SNOWMEN (e) BRICKS (f) BUDDHA

Figure 4: DTU dataset. Sample images from DTU [1].

In all experiments, we observe that RayNet leads always to complete reconstructions, while SurfaceNet results in missing
parts. It is also important to note that in the case of SurfaceNet we use the images in their original size, namely 1400 ×
1600, because when we tried to use the downsampled images the reconstruction failed completely. However, this exposes
SurfaceNet to more than 6 times more information/pixels compared to RayNet, which uses the downsampled images.



(a) Ground Truth (b) SurfaceNet [3] (c) RayNet

(d) Ground Truth (e) SurfaceNet [3] (f) RayNet

Figure 5: Qualitative Results on the BIRD. We visualize the ground-truth (a,d) and the depth reconstuctions using Sur-
faceNet (LR) (b,e) and RayNet (c,f)

(a) Ground Truth (b) SurfaceNet [3] (c) RayNet

(d) Ground Truth (e) SurfaceNet [3] (f) RayNet

Figure 6: Qualitative Results on the BUDDHA. We visualize the ground-truth (a,d) and the depth reconstuctions using
SurfaceNet (LR) (b,e) and RayNet (c,f)



(a) Ground Truth (b) SurfaceNet [3] (c) RayNet

(d) Ground Truth (e) SurfaceNet [3] (f) RayNet

(g) Ground Truth (h) SurfaceNet [3] (i) RayNet

(j) Ground Truth (k) SurfaceNet [3] (l) RayNet

(m) Ground Truth (n) SurfaceNet [3] (o) RayNet

Figure 7: Qualitative Results on the STONEHENGE. We visualize the ground-truth (a,d,g,j,m) and the depth reconstuc-
tions using SurfaceNet (LR) (b,e,h,k,n) and RayNet (c,f,i,l,o)



(a) Ground Truth (b) SurfaceNet [3] (c) RayNet

(d) Ground Truth (e) SurfaceNet [3] (f) RayNet

(g) Ground Truth (h) SurfaceNet [3] (i) RayNet

(j) Ground Truth (k) SurfaceNet [3] (l) RayNet

(m) Ground Truth (n) SurfaceNet [3] (o) RayNet

Figure 8: Qualitative Results on the BRICKS. We visualize the ground-truth (a,d,g,j,m) and the depth reconstuctions using
SurfaceNet (LR) (b,e,h,k,n) and RayNet (c,f,i,l,o)



(a) Ground Truth (b) SurfaceNet [3] (c) RayNet

(d) Ground Truth (e) SurfaceNet [3] (f) RayNet

(g) Ground Truth (h) SurfaceNet [3] (i) RayNet

(j) Ground Truth (k) SurfaceNet [3] (l) RayNet

(m) Ground Truth (n) SurfaceNet [3] (o) RayNet

Figure 9: Qualitative Results on the BUNNY. We visualize the ground-truth (a,d) and the depth reconstuctions using
SurfaceNet (LR) (b,e) and RayNet (c,f)



(a) Ground Truth (b) SurfaceNet [3] (c) RayNet

(d) Ground Truth (e) SurfaceNet [3] (f) RayNet

(g) Ground Truth (h) SurfaceNet [3] (i) RayNet

(j) Ground Truth (k) SurfaceNet [3] (l) RayNet

(m) Ground Truth (n) SurfaceNet [3] (o) RayNet

Figure 10: Qualitative Results on the SNOWMEN. We visualize the ground-truth (a,d) and the depth reconstuctions using
SurfaceNet (LR) (b,e) and RayNet (c,f)
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