
Supplementary Material for
Learning Situational Driving

Eshed Ohn-Bar1,3 Aditya Prakash1 Aseem Behl1,2 Kashyap Chitta1,2 Andreas Geiger1,2
1Max Planck Institute for Intelligent Systems, Tübingen 2University of Tübingen 3Boston University

{firstname.lastname}@tue.mpg.de

Abstract

In this supplementary document, we discuss (1) network architecture and training details, including reward function
definition, and (2) additional details regarding the experiments and evaluation in the main paper. Please also see the
provided supplementary video for a summary of the work.

1. Training and Implementation Details

Image Input: The model observes a 256 × 256 pixels image, the speed of the ego-vehicle, and a high-level command.
Starting from a 800× 600 image, we follow [4] and crop 125 pixels from the top and 90 at the bottom of the image.

Command Input: We encode the high-level command c as a one-hot vector and input it to the network, unlike the hand-
defined control gating for the policy heads employed in most previous studies [3, 4, 8]. While the two architecture design
choices are orthogonal, there are two main practical reasons for this modification. This architecture modification allows us
to isolate the benefits of data-driven prediction heads, i.e., in the mixture model formulation. As we vary the number of
components, the number of prediction heads can be set higher than the number of high-level commands. Second, with c as an
input the network can potentially learn to leverage similarities among the commands, as opposed to learning a control output
for each command separately (indeed, there are control similarities between right and left turn, as well as forward and stay in
lane). Hence, our approach can potentially better scale for real-world applications, i.e., beyond CARLA, where there could
be a variety of high-level commands.

Network Architecture: Table 1 and Table 2 show the architectures for the MoE and VAE models, respectively. To ensure
sufficient network capacity throughout the experiments we employ a ResNet-50 backbone, but keep the VAE and recon-
struction branch shallow [9]. We collect a large driving demonstration dataset during training of about 50 hours in total.
Visualizing the dataset in Fig. 1 shows clear multi-modal patterns. Therefore, an MoE model is well-suited for modeling the
multiple modalities in the training data.

0 1
throttle

fr
eq

ue
nc

y

0 1
brake

fr
eq

ue
nc

y

-1 0 1
steer

fr
eq

ue
nc

y

0 10
speed (m / s)

fr
eq

ue
nc

y

Figure 1: Expert Demonstrations Statistics. The figure summarizes the training data used in the experiments. As described
in the main paper, the data is indeed multi-modal.

Context Embedding: The goal of the context embedding is to provide a general purpose context feature of the ego-vehicle’s
surroundings. This standalone module trained with a separate objective can also provide additionally diversity during the

1

Table 1: MoE Architecture.

Module Input Output

Image Encoder ResNet [7] 512

Speed 1 512
512 512

Command 4 512
512 512

Speed Prediction
512 512
512 512
512 1

Expert Prediction
512× 3 512

512 512
512 6

Table 2: VAE Encoder Architecture. We train a Convolutional VAE. The decoder for up-sampling the latent code back to a
256× 256 image is symmetric wrt. the encoder.

Module Input Output

ConvVAE Encoder

256× 256 3
127× 127 16
62× 62 32
30× 30 64
14× 14 128
6× 6 256
2× 2 512

µz 2048 128
σz 2048 128

policy learning process, and can be easily trained over all experienced visual observations. Moreover, the purpose of this
learned image embedding is to provide additional model capacity (i.e., over the already strong experts) during the task-driven
optimization step. Although beyond the scope of our work, more sophisticated image embedding architectures can also be
investigated in the future, e.g., [1]. The encoder/decoder utilizes 4× 4 convolutional/deconvolution filters at a stride of 2. We
also find that enforcing a Gaussian prior over the latent vector z impacts the learned policy performance significantly, and set
β = 1 as in [6]. In contrast, setting β = 0 deteriorates driving performance. Hence, we can explain this impact on policy
learning by the latent code normalization that the β value provides.

Task-Driven Policy Refinement: The driving policy is further optimized using CMA-ES for 1000 generations and a
population of 8 agents. To optimize with respect to the task, we define a reward function as a combination of several task-
based metrics, computed over measurements from the simulator. Following an action in each time step, the immediate reward
is computed as,

rt(ot, ct,at,pt, et) = rgoalt + rspeedt + rsteert + rlanet + rlightt + rcollisiont + rsafedistt (1)

While some of the reward terms can be computed using the velocity measurements, the high-level command, and the actions
of the ego-vehicle, others employ the current ego-vehicle position pt and additional properties of the environment, et, i.e.,
for the purpose of infraction detection, as described next.

The overall task is captured with a distance to goal reward. Following [5], we compute the distance d traveled towards to
the goal g, in meters, given the ego-vehicle position p,

rgoalt (pt−1,pt,g) = d(pt−1,g)− d(pt,g) (2)

In practice, it is common to add a small constant value to the goal reward term in order to encourage timely arrival. In this
work, we add a penalty based on the current speed to ensure timely completion of the episode,

rspeedt (vt) =

{
−0.01 if vt < 10 km/h
0 otherwise

(3)

When training the task-optimized policy, we found that the agent can still learn to complete the task with the above reward
terms but with unacceptable driving behavior. For instance, the agent may develop a side-to-side wobbling strategy when
driving in the ego-lane. To avoid learning such strategies, following [8], we define a steering term,

rsteert (at, ct) =

−0.05 if at[2] > 0 and ct = left or at[2] < 0 and ct = right

−0.05 if |at[2]| > 0.05 and ct = straight

0 otherwise
(4)

Where at[2] is the second component of the regressed action vector, i.e., the steering control. The steering term also helps
ensure correct turning behavior. Similarly, the agent is penalized for not staying in lane or for driving over the sidewalk,

rlanet (et) =

{
−0.05 if overlap with other lane or sidewalk > 0.2

0 otherwise
(5)

While we terminate an episode due to a time-out or collision, to be consistent with the evaluation on CARLA we allow
running red lights but at a high cost,

rlightt (et) =

{
−10 if ran red traffic light
0 otherwise

(6)

A collision leads to a high negative reward and result in episode termination,

rcollisiont (et) =

{
−100 if any collision
0 otherwise

(7)

Finally, we add a reward term that encourages the agent to maintain a safe distance from dynamic obstacles. The safe
distance term aims to reduce the likelihood of stopping too late and colliding with an object. Moreover, encouraging the
agent to maintain a safe distance results in a more desirable driving behavior. We compute the distance in meters to any
pedestrians ppedestrians or vehicles pvehicles ahead of the ego-vehicle and penalize instances where it is less than one,

rsafedistt (et) =

{
−0.05 if d(pt,ppedestrians) < 1 or d(pt,pvehicles) < 1

0 otherwise
(8)

Although the reward is computed at each time step, it is summed over the entire episode before updating the model. Hence,
this form of reward-based supervision is still somewhat weak, i.e., compared to methods that assume precise knowledge of
the entire 3D state of the surroundings for action prediction supervision at every time step, e.g., as in Chen et al. [2].

2. Experimental Details

Example Model Predictions: Fig. 2 and Fig. 3 show qualitative results for example turn and traffic light scenarios.
Inspecting the individual components (Eq. 1 of the main paper) for these specific cases demonstrates the benefits of the
proposed approach. Specifically, we can see how the expert models produce diverse control actions. Also, as expected, the
actions produced by the mixture of experts model are shown to account for a large portion of the final action. Nonetheless,
the context embedding (after multiplication by Ψ) also produces a significant contribution that is representative of the event,
i.e., steering left during a left turn and braking during a red traffic light.

Visual Observation

Model Components
π πMoE

θ πCE
Ψ,φ

[0.436,−0.511] [0.385,−0.414] [0.051,−0.097]

π1
θ π2

θ π3
θ π4

θ π5
θ

[−1.000,−0.455] [0.237,−0.152] [−0.855,−0.364] [0.748,−0.376] [0.969,−0.469]

α1
θ α2

θ α3
θ α4

θ α5
θ

[0.148, 0.002] [0.119, 0.173] [0.027, 0.001] [0.703, 0.000] [0.003, 0.824]

Figure 2: Example Model Components During a Turn. To understand the situational policy components, we inspect the
model predictions (see Eq. 1 in the main paper) given example input observations. We show predictions for: final action
[throttle/brake, steering] output from policy π, the output of the mixture of experts policy πMoE

θ , the output of the context
embedding policy πCE

Ψ,φ (i.e., π = πMoE
θ + πCE

Ψ,φ), the individual expert models predictions provided by πk
θ , and the mixture

weights αk
θ.

Visual Observation

Model Components
π πMoE

θ πCE
Ψ,φ

[−0.064, 0.082] [−0.046, 0.089] [−0.018,−0.007]

π1
θ π2

θ π3
θ π4

θ π5
θ

[−0.615, 0.097] [−0.295, 0.093] [−1.000, 0.047] [0.780, 0.100] [0.666, 0.101]

α1
θ α2

θ α3
θ α4

θ α5
θ

[0.134, 0.001] [0.246, 0.895] [0.210, 0.092] [0.402, 0.001] [0.008, 0.010]

Figure 3: Example Model Components During a Red Traffic Light. We show predictions for: final action
[throttle/brake, steering] output from policy π, the output of the mixture of experts policy πMoE

θ , the output of the con-
text embedding policy πCE

Ψ,φ (i.e., π = πMoE
θ + πCE

Ψ,φ), the individual expert models predictions provided by πk
θ , and the

mixture weights αk
θ.

Model Limitations in Harsh Environments and the AnyWeather Benchmark: In this section, we provide additional
details about the generalization experiment in the main paper. For clarity, we illustrate all the weathers used in the experiments
in Fig. 4. As can be seen, some weathers are significantly more challenging to drive in than others due to limited visibility
and reflections.

Seen in Training
Clear Noon Wet Noon Hard Rain Noon Clear Sunset

Not Seen in Training
Cloudy Noon Wet Cloudy Noon Mid Rain Noon Soft Rain Noon

Cloudy Sunset Wet Sunset Wet Cloudy Sunset Mid Rain Sunset*

Hard Rain Sunset* Soft Rain Sunset

Figure 4: Visualization of All Weathers in the AnyWeather Benchmark. We evaluate driving models on a larger number
of weathers that were not seen during training. The experiment enables us to better understand the limitations of current
state-of-the-art driving models. A “*” indicates the two most challenging weathers, not commonly used in evaluation in
related literature.

Environment Limitations: In this section, we discuss limitations in the CARLA 0.8.4 environment as these could be taken
into account in future studies. As shown in Table 5 in the main paper, the expert agent does not achieve 100% success rate.
In particular, there are a couple of issues under dense evaluation settings due to the high number of vehicles and pedestrians.
While designing an expert driver for such conditions is more challenging, upon inspection we can also see that the dense
settings may lead to issues unrelated to the ego-vehicle’s behavior. For instance, intersections may become congested to
the point of no movement by any surrounding agent for lengthy periods of time Fig. 5. As a result, the episode then times-
out while our agent waits to enter the intersection. Moreover, as the collision checks with pedestrians are not accurate and
pedestrian behavior is somewhat random, unrealistic collisions can occur.

Figure 5: Environment Limitations. The intersection ahead becomes congested as the agent waits for it to be cleared.
Consequently, the episode times-out. There is a 30 second time difference between the top image and bottom image.

References
[1] C. P. Burgess, L. Matthey, N. Watters, R. Kabra, I. Higgins, M. Botvinick, and A. Lerchner. Monet: Unsupervised scene decomposition

and representation. arXiv, 1901.11390, 2019. 2
[2] D. Chen, B. Zhou, and V. Koltun. Learning by cheating. In CoRL, 2019. 3
[3] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy. End-to-end driving via conditional imitation learning. In ICRA. 1
[4] F. Codevilla, E. Santana, A. M. López, and A. Gaidon. Exploring the limitations of behavior cloning for autonomous driving. ICCV,

2019. 1
[5] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving simulator. In CoRL, 2017. 3
[6] D. Ha and J. Schmidhuber. Recurrent world models facilitate policy evolution. In Advances in Neural Information Processing Systems,

2018. 2
[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016. 2
[8] X. Liang, T. Wang, L. Yang, and E. Xing. CIRL: Controllable imitative reinforcement learning for vision-based self-driving. In ECCV,

2018. 1, 3
[9] X. Wang, F. Yu, L. Dunlap, Y.-A. Ma, R. Wang, A. Mirhoseini, T. Darrell, and J. E. Gonzalez. Deep mixture of experts via shallow

embedding. ICML, 2018. 1

