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Abstract

In this supplementary document, we first discuss network architectures and baseline implementations in Section 1. Next,
we discuss data generation and preprocessing steps in Section 2. Finally, we provide additional qualitative as well as
quantitative experimental results in Section 3. In the supplementary video, we show animations in which we control the
scene during image synthesis.

1. Implementation
In this section, we discuss the network architectures of our 3D-aware image generator (Section 1.1), our camera generator

(Section 1.2), and our discriminator (Section 1.3) as well as baseline implementations (Section 1.4).

1.1. Generator Architecture

We implement our fore- and background models as fully-connected multi-layer perceptrons (MLPs) which map an input
point x ∈ R3 and viewing direction d ∈ S2 together with latent shape and appearance codes zs, zn ∈ RLz to a density

Type Layer Activation Input Dim Output Dim.

Position Input Linear ReLU Lx + Lz = 191 128

Hidden Layer Linear ReLU 128 128
Hidden Layer Linear ReLU 128 128
Hidden Layer Linear ReLU 128 128
Hidden Layer Linear ReLU Lx + Lz + 128 = 319 128
Hidden Layer Linear ReLU 128 128
Hidden Layer Linear ReLU 128 128
Hidden Layer Linear ReLU 128 128
Hidden Layer Linear ReLU 128 128

Density Head Linear ReLU 128 1

View Input Linear ReLU Ld + Lz = 155 128
Color Head Linear Sigmoid 128 3

Table 1: Image Generator Architecture. We show the network architecture of our foreground and background model of
our 3D-aware image generator, where Lx = 2 · 3 · 10 + 3 = 63 and Ld = 2 · 3 · 4 + 3 = 27 are the output dimensions of the
positional encodings for the input point x and viewing direction d, respectively, and Lz = 128 the dimension of the latent
code. Note that we add the output of the last hidden layer onto the output of the view input layer before ReLU activation to
enable weight sharing between the view-independent and the view-dependent branch.



Type Layer Activation Input Dim Output Dim.

Input Mapping Linear ReLU 5 64

Hidden Layer Linear ReLU 64 64
Hidden Layer Linear ReLU 64 64
Hidden Layer Linear ReLU 64 64
Hidden Layer Linear ReLU 64 64

Output Mapping Linear - 64 5

Table 2: Camera Generator Architecture. We show the network architecture of our camera generator for 180◦ rotation
scenes where the 5-dimensional camera ξ consists of two focal lengths, a rotation angle, an elevation angle, and a camera
radius (see Sec. 3.2 of the main paper). For 360◦ rotation scenes, we set the input and output dimension to 8 as we regress a
2× 2 matrix instead of a scalar for the rotation, avoiding periodic boundary issues and ensuring well-behaved gradients (see
Sec. 3.2 of the main paper).

σ ∈ R3 and a color value c ∈ R3 (see Eq. 4 of the main paper). As indicated in the main paper, we apply a predefined
positional encoding [8, 13] to the input and viewing direction before passing it to the MLP. More specifically, we apply

γ : R× N→ RLγ (t, L) 7→
(
t, sin(20tπ), cos(20tπ), . . . , sin(2Ltπ), cos(2Ltπ)

)
(1)

elementwise to x and d, where t is the scalar input and L the number of frequency octaves.
We use 8 hidden layers of dimension 128 and with ReLU activation for our fore- and background model (see Tab. 1) and

add a skip connection to the fourth layer [10]. Similar to previous works [8, 12], we use 10 and 4 frequency octaves for the
positional encoding applied to input point x and viewing direction d, respectively. We project the hidden features to the first
output, a one-dimensional density value, and use a single hidden layer with ReLU activation for the view-dependent branch
(see Tab. 1) which we then project to the second output, a three-dimensional color value. To enable shape and appearance
disentanglement, we concatenate the latent shape code to the input point and the latent appearance code to the viewing
direction following [12]. We sample the latent codes from a 128-dimensional Gaussian distribution.

1.2. Camera Generator

Implementation: We implement the camera generator as a fully-connected MLP with ReLU activation (see Tab. 2). We use
4 hidden layers of dimension 64. As discussed in Sec. 3.2 of the main paper, we add a skip connection from the input pose
ξprior ∼ pξ to the network output. We clamp the final output to be within a specified range. More specifically, we allow the
focal lengths to be such that the resulting fields of view (FoVs) are in [10◦, 60◦]. We define the camera radius to be within
[0.5, 1], the camera elevation in [−90◦, 90◦], and the camera rotation in [−90◦, 90◦] for 180◦ scenes (CelebA and Cats), and
in [−180◦, 180◦] for full rotation scenes (Cars, Chairs1, and Chairs2). We set the radius of the foreground sphere rfg to 0.5.
Prior Distributions: As indicated in the main publication, we define the prior distribution as Gaussian or uniform distribu-
tions. More specifically, we use the Gaussian distribution N (0, 13.5) for rotation and elevation on 180◦ rotation scenes (all
values in degrees), and a uniform distribution over the entire rotation and elevation range on 360◦ rotation scenes. For the
radius and focal lengths, we always use the Gaussian distributions N (0.75, 0.0375) and N (35, 3.75) as prior distributions,
respectively.

1.3. Discriminator Architecture

We implement the discriminator Dφ using ResNet [4] blocks of CoordConv [6] layers (see Tab. 3) similar to [2]. More
specifically, we map the RGB input image to a hidden dimension of 64 using a single 1 × 1 CoordConv layer and leaky
ReLU activation. We then apply ResNet blocks consisting of two 3 × 3 CoordConv layers with leaky ReLU activation and
an average pooling layer. We add a residual connection from input to output. Finally, we project the hidden features to the
one-dimensional output using a 4× 4 CoordConv layer.

As indicated in Sec 3.3 of the main publication, we train using progressive growing. For the earlier progressive growing
stages, we add input mappings (see Tab. 3) from the lower-resolution input images to the respective ResNet blocks. When
reaching a new progressive growing stage, we fade in newly added layers over 15,000 iterations following [2, 5].



Type Layer Kernel Size Stride Padding Activation Feature Out. Dim. Spatial Out. Dim.

Input Mapping CoordConv 1× 1 1 0 LReLU 64 128× 128

ResNet Block
CoordConv 3× 3 1 1 LReLU 128 128× 128
CoordConv 3× 3 1 1 LReLU 128 128× 128
AvgPool - - - - 128 64× 64

ResNet Block
CoordConv 3× 3 1 1 LReLU 256 64× 64
CoordConv 3× 3 1 1 LReLU 256 64× 64
AvgPool - - - - 256 32× 32

ResNet Block
CoordConv 3× 3 1 1 LReLU 400 32× 32
CoordConv 3× 3 1 1 LReLU 400 32× 32
AvgPool - - - - 400 16× 16

ResNet Block
CoordConv 3× 3 1 1 LReLU 400 16× 16
CoordConv 3× 3 1 1 LReLU 400 16× 16
AvgPool - - - - 400 8× 8

ResNet Block
CoordConv 3× 3 1 1 LReLU 400 8× 8
CoordConv 3× 3 1 1 LReLU 400 8× 8
AvgPool - - - - 400 4× 4

Output Mapping CoordConv 4× 4 1 0 - 1 1× 1

Table 3: Discriminator Architecture. We show the network architecture of our discriminator Dφ at 1282 pixels. Note that
in each ResNet block, we add a skip connection from the input to the output. For earlier stages of progressive growing, we
have additional input mappings from the image of a smaller resolution to the respective ResNet block.

1.4. Baseline Implementations

We use the official implementations for the baselines HoloGAN [9] and GRAF [12].1 In contrast to our method, the
baselines require tuning of camera parameters, and we therefore report results for them in tuned and non-tuned settings
(see Sec. 4 of the main paper). More specifically, we use the camera ranges reported by the authors for the tuned setting.
For the non-tuned setting, we use the ranges of our prior distribution (see Section 1.2). As the baselines assume a uniform
distribution, we use ± two standard deviations when converting from a Gaussian to a uniform range. Further, while our
method also learns the camera’s focal lengths, both baselines use fixed intrinsics. To account for this, we increase their camera
radius range accordingly. More specifically, we sample the radius in [7.5, 12.5] for GRAF and [0.8, 1.5] for HoloGAN.

2. Data
We describe the generation of our Chairs datasets in Section 2.1 and report any data preprocessing steps in Section 2.2.

2.1. Dataset Generation

Next to the commonly-used CelebA [7], Cats [14], and Cars [12] datasets, we create two additional datasets to test our
model on more complex camera rotation and elevation distributions (see Sec. 4 of the main paper). We create photorealistic
renderings of the Photoshape chairs [11] using Blender [3]. More specifically, we predefine mixtures of Gaussians for the
rotation and elevation distributions and render 4 images per chair, resulting in 21,808 images. In Fig. 1 and 2, we show
random samples of the two datasets.

For Chairs1, we use a mixture ofN (−10, 5) andN (40, 20) for the rotation andN (55, 5) andN (−20, 10) for the elevation
distribution (all values in degrees), where the mixture weights are 0.5. For Chairs2, we use a mixture of N (−140, 5),
N (−80, 10), N (10, 5), N (50, 5), and N (100, 5) for the rotation distribution with equal mixture weights (0.2). For the
elevation, we use a mixture ofN (70, 5),N (15, 5),N (−30, 5), andN (−70, 5) with equal mixture weights (0.25). In Fig. 3,
we visualize the camera rotation and elevation distributions for the two datasets.

1HoloGAN: https://github.com/thunguyenphuoc/HoloGAN, GRAF: https://github.com/autonomousvision/graf

https://github.com/thunguyenphuoc/HoloGAN
https://github.com/autonomousvision/graf


Figure 1: Random GT Samples from Chairs1 Dataset.

2.2. Data Preprocessing

In contrast to previous works on 3D-aware image synthesis [9, 12], we use a center crop of the entire image for CelebA
instead of a close-up region (see Sec. 4 of the main paper). Learning a 3D-consistent representation becomes more challeng-
ing as the data variety becomes larger. Further, the models ideally disentangle fore- from background. In Fig. 4, we show
random samples of the processed CelebA dataset.



Figure 2: Random GT Samples from Chairs2 Dataset.

3. Additional Experimental Results
3.1. Baseline Comparison

In Tab. 4 and Fig. 5, we report additional quantitative and qualitative comparisons to baselines. Although our method
does not require any tuning, we achieve similar or better KID scores [1] compared to baselines if they are tuned. Further, the
baselines’ results degrade if the data’s camera distribution is not matched. In contrast, we learn a camera generator jointly
with the image generator leading to more 3D consistent results (see Fig. 5) although no tuning is required.
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Figure 3: Camera Distributions of Chairs Datasets. We visualize the camera rotation and elevation distributions for the
created datasets Chairs1 and Chairs2.

Tuned? Cats CelebA Carla Chairs1 Chairs2

HGAN [9] yes 2.32 5.42 11.55 - -
no 3.41 7.89 12.78 9.02 8.65

GRAF [12] yes 1.46 2.48 1.48 - -
no 5.83 6.12 4.95 3.40 3.48

Ours no 1.74 2.19 2.42 1.57 1.75

Table 4: Quantitative Comparison. We report KID×100 (↓) for our method and baselines at 1282 pixels.

3.2. Controllable Image Synthesis

We show additional examples for controllable image synthesis on Cats in Fig. 6, on CelebA in Fig. 7 and on Cars in Fig. 8.
Further, we show random samples from our learned camera distribution for Chairs1 in Fig. 9 and for Chairs2 in Fig. 10.
Next, we show visualizations of the learned depth for CelebA in Fig. 11 and for Chairs2 in Fig. 12. Additional examples
for fore- and background disentanglement on CelebA are shown in Fig. 13. In Fig. 14 we show outputs of our model when
fixing the prior instrinsics distribution and in Fig. ?? we show changes in focal length at test time. Finally, in Fig. 16 we show
qualitative results for π-GAN [2] with tuned and non-tuned cameras as well as in combination with our camera generator.

3.3. Random Samples

We show random samples for our method on CelebA in Fig. 17, on Cats in Fig. 18, on Cars in Fig. 19, on Chairs1
in Fig. 20, and on Chairs2 in Fig. 21.



Figure 4: Random GT Samples for the CelebA Dataset. In contrast to previous works on 3D-aware image synthesis [9,12],
we use a center crop of the entire image for CelebA instead of a close up region (see Sec. 4 of the main paper) resulting in
more challenging and more varied data.



(a) GRAF [12] (w./ Camera Tuning) (b) GRAF [12] (wo./ Camera Tuning) (c) Ours (No Tuning Required)

Figure 5: Qualitative Comparison. We show camera rotation examples for GRAF [12] with and without camera param-
eter tuning and our method for CelebA at 128 × 128 pixels. State-of-the-art 3D-aware synthesis models typically require
hand-tuning of camera parameters (Fig. 5a), and results degrade if the camera distribution does not match the data distri-
bution (Fig. 5b). In contrast, we learn a camera generator jointly with the image generator leading to more consistent 3D
representations (Fig. 5c) without the need for any tuning.

(a) Rotation (b) Elevation

Figure 6: Controllable Image Synthesis on Cats. We show examples in which we control the rotation or elevation angle of
the camera for Cats at 128× 128 pixels.



(a) Rotation (b) Elevation

Figure 7: Controllable Image Synthesis on CelebA. We show examples in which we control the rotation or elevation angle
of the camera for CelebA at 128× 128 pixels.

(a) Rotation (b) Elevation

Figure 8: Controllable Image Synthesis on Cars. We show examples in which we control the rotation or elevation angle of
the camera for Cars at 128× 128 pixels.



Figure 9: 3D- and Camera-Aware Image Synthesis on Chairs1. We show examples in which we sample camera poses
from our learned distribution for Chairs1 at 128× 128 pixels.

Figure 10: 3D- and Camera-Aware Image Synthesis on Chairs2. We show examples in which we sample camera poses
from our learned distribution for Chairs2 at 128× 128 pixels.



(a) RGB Color (b) Depth

Figure 11: Foreground Depth Visualization on CelebA. As we disentanglement fore- from background, we can render
individual components. We visualize the foreground depth for CelebA at 128 × 128 pixels. Note that as we train from raw
image collections, fore- and background disentanglement as well as 3D consistency are learned completely unsupervised.



Figure 12: Depth Visualization on Chairs2. We show RGB color (top) and depth (bottom) for samples from our learned
camera distributions for Chairs2 at 128× 128 pixels. Note that as we train from raw image collections, no depth information
has been used during training.



Figure 13: Fore- and Background Disentanglement on CelebA. We show the generated image, foreground alpha mask,
and generated background to visualize fore- and background disentanglement for CelebA at 128× 128 pixels.

Figure 14: Importance of Learning Instrinsics. We show rotations for our model without learning instrinsics on CelebA and Carla (i.e.
fixing the instrinsics distribution to the prior). Similar to the quantitative results, they are qualitatively degraded and less consistent.

(a) Change in x direction (b) Change in y direction (c) Change in both direction

Figure 15: Change of Focal Length. We change the focal length in x, y, and both directions.

(a) π-GAN (not tuned) (b) π-GAN + Ours (not tuned) (c) π-GAN (tuned)

Figure 16: π-GAN as Image Generator. We show random samples for π-GAN [2] with and without tuned camera poses,
and with our camera generator. Similar to the quantitative results (Tab. 3 of main publication), π-GAN’s performance drops
for non-tuned cameras, but using our camera generator leads to similar results to π-GAN (tuned) while no tuning is required.



Figure 17: Random Samples for CelebA.



Figure 18: Random Samples for Cats.



Figure 19: Random Samples for Cars.



Figure 20: Random Samples for Chairs1.



Figure 21: Random Samples for Chairs2.
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