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Abstract

In this supplementary document, we first give a detailed overview of our architectures, baseline implementations and
training procedure in Section 1. Details regarding the data generation and preprocessing can be found in Section 2. Finally,
we provide additional experimental results, both qualitatively and quantitatively in Section 3.

1. Implementation
In this section, we first provide detailed descriptions of the architectures we used for the occupancy and velocity networks

as well as the spatial and temporal encoders. Next, we explain implementation details for the baselines and details regarding
the training process. Finally, we discuss details regarding mini-batch processing for the forward and backward flow.

1.1. Architectures

1.1.1 Occupancy and Velocity Networks

We use similar architectures for the occupancy and velocity networks fxθ and vx
θ̂

in all experiments (see Fig. 1). The inputs
for both networks are the latent codes cs and ct provided by the spatial and temporal encoders gsθ and gt

θ̂
as well as Np points.

For both networks, we use five ResNet [6] blocks, each consisting of two fully connected layers with skip connections and
ReLUs [5] as activation functions. For the occupancy network, we adopt the conditional batch normalization (CBN) scheme
from [9] to inject the latent code cs. As we experienced difficulties with CBN and the ODE Solver, we pass the latent code ct

+

(a) Occupancy Network fx
θ

++

(b) Velocity Network vx
θ̂

Figure 1: Occupancy and Velocity Network Architectures. This figure shows the architectures of the occupancy network
fxθ and the velocity network vx

θ̂
. Fig. 1a is adopted from [9] and slightly adjusted to our setting. In both figures, light green

shows input, cyan fully connected layers, and grey other operations.
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provided by the temporal encoder gt
θ̂

through a fully connected layer and add the result to the activation before every ResNet
block for the velocity network. While the occupancy network outputs an occupancy probability for each of the Np points,
the velocity field returns a 3D motion vector for every point in space and time.

1.1.2 Spatial and Temporal Encoders

We use task-specific architectures for the spatial and temporal encoders gsθ and gt
θ̂

(see Fig. 2). For point cloud completion,
we use ResNet variants of PointNet [12] for both encoder networks. For the temporal encoder, we concatenate the L input
point clouds along the last dimension and adjust the input dimension of the PointNet to 3L (Fig. 2a). As the spatial encoder
only encodes the first input point cloud, we can keep the input dimension of 3. Similarly to [9], we use four ResNet blocks
with additional pooling and expansion layers to enable inter-layer communication. The final feature vectors of dimension
512 are obtained by passing the output of the last ResNet block through a max-pooling operation and a 512-dimensional fully
connected layer.

For reconstruction from image sequences, we use a 3D convolutional network with 6 convolutional layers as the temporal
encoder (Fig. 2b). For the spatial encoder, we use a pre-trained ResNet-18 [6]. In both networks, we add a final fully
connected layer to obtain the final 256-dimensional feature vectors ct and cs.

For the correspondence and interpolation experiments, we only use the temporal encoder as no spatial reconstruction has
to be performed. We use a single PointNet encoder for both the start and the end point cloud and concatenate the final outputs
(Fig. 2c). The weights are shared in siamese fashion. We choose the dimension of the concatenated latent code ct to be
512. As we use two corresponding point clouds as input for the interpolation task, we can either use the same encoder or
the temporal encoder from the point cloud completion experiment with L = 2. Again, we choose the dimension of the final
output to be 512.

1.2. Baselines

In all reconstruction experiments, we compare against ONet 4D, the 4D variant of Occupancy Networks (ONet) [9]. We
keep the architecture from the original publication except that we adjust the input dimension from 3 to 4. This way, we are
able to use points sampled in space and time as input.

In addition, we compare in all reconstruction experiments against PSGN 4D, the 4D variant of Point Set Generation
Networks [4]. We adopt a network architecture consisting of four fully connected layers with hidden dimension of size 512
and ReLUs as activations as it was shown to improve results compared against the more complex 2-branch version from
the original publication [9]. We adjust the output dimension from 1024 × 3 to 1024 × L × 3 because we are interested in
producing trajectories of 3D points instead of single 3D points. PSGN is trained by minimizing the Chamfer distance between
the predicted and target points, and there are two ways to transfer this to the temporal domain: a) We calculate the Chamfer
distances in R3 for all L time steps individually and sum over them or b) we reshape the predicted points to dimension 3L
and calculate the Chamfer distance for these predicted and the ground truth trajectories in R3L. Note that while the first
variant does not use any correspondences over time during training, the second variant does. To distinguish between the two
variants, we name the latter one PSGN 4D (w/ correspond.). We compare against PSGN 4D in all reconstruction experiments
and against PSGN 4D (w/ correspond.) in both experiments on the D-FAUST dataset.

1.3. Training Details

For all experiments, we use the Adam optimizer [8] with learning rate γ = 10−4 and train with a batch size of 16. We
evaluate all models on the validation set every 1,200 iterations during training. To provide a fair comparison in the final
evaluation on the test set, we use the model state which performed best on the validation set.

For solving the differential equations, we use the Dormand–Prince method “dopri5” [3] with relative and absolute error
tollerances of 10−3 and 10−5, respectively.

For every training example, we sample a fixed number of points in space and time to calculate the loss. For the recon-
struction loss Lrecon, we sample 512 points at time 0 and 512 points at a random time step t > 0. All points at the respective
time are sampled uniformly in the bounding volume of the 3D shapes. For the correspondence loss Lcorr, we sample 100
trajectories each consisting of L points in R3. The start points of the trajectories are uniformly sampled on the start mesh.

We implemented the OFlow variants and all baselines in PyTorch 1.0.1

1https://pytorch.org/

https://pytorch.org/
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(a) Point cloud completion. We concatenate the L noisy input point clouds each consisting of M points along the last dimension.
This tensor is passed through four ResNet blocks with skip connections and additional max-pooling and expansion layers. The final
512-dimensional feature vector is obtained by passing the output of the final ResNet block through a max-pooling operation and a fully
connected layer.

(b) 4D reconstruction from Image Sequences. The L = 17 input RGB images are concatenated to obtain a tensor of size 3×17×224×
224. We pass the tensor through six convolutional layers which downsample the input while increasing the number of feature maps. The
final feature vector is obtained by passing the output through a 256-dimensional fully connected layer.

+ +

+ +

(c) Shape Matching. Both the start and the end point cloud is passed through the same PointNet in a siamese fashion. The networks
consist of four ResNet blocks with additional max-pooling and expansion operations. We obtain the final 512-dimensional feature vector
by concatenating the two latent codes for the start and end point cloud.

Figure 2: Temporal Encoder. This figure shows architectures of the temporal encoder gt
θ̂

for the point cloud completion
(Fig. 2a), 4D reconstruction from image sequences (Fig. 2b), and the shape matching experiments (Fig. 2c). In all figures,
light green shows input, cyan fully connected layers, dark blue convolutional layers, red concatenation and pooling layers,
and grey other operations.



(a) Backward flow of velocity network vθ̂
(b) Forward flow of adjusted velocity network v̂θ̂

Figure 3: Batch Processing. The figure illustrates how we reformulate the backward flow of vθ̂ as the forward flow of the
adjusted velocity network v̂θ̂ (1) to perform batch processing of points pi with different time values τi.

1.4. Batch Processing for the ODE Solver

For both Lrecon and Lcorr we use the adjoint sensitivity method [2, 11] to obtain gradients. We adjust the GPU imple-
mentation provided by Chen et al. [2] to our needs.2 While batch-wise processing is already implemented for the forward
flow Φθ̂, we make use of a small trick for the backward flow Ψθ̂ as follows.

Let pi be sampled points at random times τi ∈ (0, T ]. During training, we get the location of these points for time 0 by
calculating the backward flow using the parameterized velocity network vθ̂. The time values τi are not equal for all points
pi, so that batch processing is not as straightforward as for the forward flow. To obtain a batch-wise implementation, we
reformulate this problem as solving the forward flow from time 0 to time τi using the adjusted velocity network

v̂θ̂(pi, t) := −vθ̂(pi, τi − t) (1)

It results in exactly the same transformation (Fig. 3) while allowing us to use the same start time 0 for all points pi. This
way, we are able to use the same batch-wise implementation as for the forward flow.

1.5. Additional Argument Passing to the ODE Solver

In the reconstruction and interpolation experiments, we condition the velocity network vx
θ̂

on some input x in the form of
a latent code ct provided by the temporal encoder gt

θ̂
(see Section 1.1.2). In the following, we describe how this can be done

although the implementation of Chen et al. [2] allows only for passing points and time values for which the forward flow is
solved.

To condition the velocity network on ct, we first reshape the points tensor of dimension |B| × Np × 3 to |B| × (3Np).
Next, we can concatenate the latent code ct to obtain the input tensor of size |B| × (3Np + cdim) where cdim indicates the
dimension of ct. As the ODE Solver expects the same output dimension of the velocity network vx

θ̂
, we reshape its output to

|B| × 3Np and fill the remaining values with zeros to obtain an output tensor of the same size |B| × (3Np + cdim). The zero
values for the coordinates corresponding to the latent code ct make sure that the ODE Solver only considers the 3D points
for evaluating the forward and backward flow and for choosing the appropriate step size.

2. Data Generation and Preprocessing
In this section, we describe the generation process of the Warping Cars dataset used in the reconstruction experiments as

well as relevant data preprocessing steps.

2.1. Data Generation

To obtain the Warping Cars dataset, we use the ShapeNet [1] “car” category and apply random displacement fields to
obtain a warping motion. To obtain continuous displacement fields, we first sample random Gaussian displacement vectors

2available via https://github.com/rtqichen/torchdiffeq

https://github.com/rtqichen/torchdiffeq


with mean µ = 0 and standard deviation σ = 0.15 in a 3 × 3 × 3 × 5 grid. Here, the first 3 coordinates correspond to the
spatial dimensions and the last coordinate corresponds to the temporal dimension. We then interpolate between these discrete
displacement vectors using radial basis functions (RBFs) [10] to obtain a continuous displacement field in R3 × [0, T ]. To
transform the input meshes, we simply apply this continuous displacement field to each vertex of the mesh individually.

2.2. Data Preprocessing

For detailed descriptions of the sampling process, we refer to [9] and restrict the discussion to the main changes.
To normalize the data while preserving the motion depicted in a sequence, we shift and scale all meshes belonging to the

same sequence with respect to the bounding box of the start mesh. In addition, we set the end time T = 1 so that the time
values lie between 0 and 1. For obtaining trajectories of points on the mesh, we first sample uniformly on the start mesh. We
can track them over time by representing the points using trilinear coordinates with respect to the three vertices spanning the
face on which the points lie.

As in [9], we perform offline sampling for computational efficiency. To this end, we perform sampling before training,
saving the points to files instead of sampling online during training. To do this, we save 100,000 points uniformly sampled
in the bounding volume and 100,000 points uniformly sampled on the mesh for all L time steps to files. For the former, we
also save the respective occupancy values and for the latter, we save corresponding points so that we obtain corresponding
trajectories over time.

3. Experiments
In this section we provide additional quantitative and qualitative results for the representation power (Section 3.1), re-

construction (Section 3.2 and Section 3.3), interpolation (Section 3.4), and generative experiments (Section 3.5). We further
investigate differences of the OFlow and ONet 4D representations and additional properties of OFlow in Section 3.6.

3.1. Representation Power

Num. Seq. Seq. Length IoU Chamfer Correspond.

32 17 91.2 % 0.032 0.061
10 50 88.5 % 0.043 0.085

Table 1: Additional Representation Power Experi-
ments. We report IoU (higher is better), Chamfer
distance (lower is better), and correspondence distance
(lower is better) for representation power experiments
with different numbers and lengths of sequences.

The goal of the representation power experiment is to in-
vestigate how well OFlow can represent 3D shapes in motion.
To disentangle the influence of the spatial and temporal en-
coders gsθ and gt

θ̂
from the representation power, we trained

OFlow to represent single sequences of length L = 50 with no
input at all (see main publication) and to represent 10 differ-
ent sequences of length L = 50 with IDs as input. In addition,
we also trained a model to represent 32 sequences of length
L = 17 with point cloud input similar to the 4D point cloud
completion training setup without adding Gaussian noise.

Table 1 shows quantitative results of the additional representation power experiments with different numbers of sequences
and lengths of sequences. Although slightly decreased compared to the single sequence setting from the main publication
(IoU of 93%), the results indicate that OFlow can represent the more complex data well (IoU scores above 88%) regardless
of the input.

3.2. Point Cloud Completion

In Table 2, 3, and 4 we show detailed results for the point cloud completion experiments from Section 4.2 in the main pub-
lication. We evaluate IoU, Chamfer distance, and the correspondence distance in 17 equally spaced time steps between 0 and
1. We observe that the OFlow variants outperform ONet 4D in terms of IoU and achieve lower Chamfer and correspondence
distances than PSGN 4D and ONet 4D over all time steps on the D-FAUST dataset. On the synthetic warping cars dataset,
we can see that PSGN 4D obtains the lowest Chamfer distance which comes as no surprise because this method, in contrast
to OFlow, is directly trained on this metric.

3.3. 4D Reconstruction from Image Sequences

The complete results for the 4D reconstruction from image sequences can be found in Table 5, 6, and 7. The relative
results are similar to the point cloud completion experiment with the OFlow variants achieving the best IoU scores and lowest
correspondence distances. Depending on the dataset, either OFlow or PSGN 4D obtains the lowest Chamfer distances which
comes as no surprise because PSGN 4D directly optimizes this metric. As indicated in Section 4.3 of the main publication,



(a) (b)

Figure 4: 4D Point Cloud Completion (D-FAUST). This figure shows two examples 4a and 4b from the test set of the point
cloud completion experiment on the D-FAUST dataset. For both examples, we show the input as well the output of OFlow ,
ONet 4D, and PSGN 4D for 9 equally spaced time steps between 0 and 1.



IoU Chamfer Correspond.
PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - - 76.3 % 80.5 % 83.1 % 0.110 0.104 0.090 0.070 0.059 0.075 0.068 - 0.068 0.057
0.0625 - - 77.1 % 80.8 % 83.1 % 0.108 0.103 0.087 0.069 0.059 3.466 0.073 - 0.074 0.062
0.125 - - 77.5 % 80.7 % 82.8 % 0.107 0.102 0.085 0.069 0.060 3.496 0.081 - 0.085 0.069
0.1875 - - 77.8 % 80.5 % 82.5 % 0.107 0.102 0.084 0.070 0.061 3.447 0.090 - 0.096 0.077
0.25 - - 78.0 % 80.3 % 82.2 % 0.106 0.101 0.083 0.071 0.062 3.438 0.097 - 0.105 0.083
0.3125 - - 78.2 % 80.1 % 82.0 % 0.106 0.101 0.082 0.072 0.063 3.450 0.102 - 0.113 0.088
0.375 - - 78.3 % 80.0 % 81.8 % 0.106 0.101 0.082 0.072 0.064 3.442 0.106 - 0.120 0.092
0.4375 - - 78.4 % 79.9 % 81.6 % 0.106 0.101 0.081 0.073 0.064 3.415 0.109 - 0.125 0.095
0.5 - - 78.5 % 79.8 % 81.4 % 0.106 0.101 0.081 0.073 0.065 3.495 0.111 - 0.130 0.098
0.5625 - - 78.5 % 79.8 % 81.3 % 0.107 0.101 0.081 0.074 0.066 3.399 0.111 - 0.133 0.101
0.625 - - 78.4 % 79.8 % 81.1 % 0.107 0.101 0.082 0.074 0.066 3.450 0.112 - 0.136 0.103
0.6875 - - 78.4 % 79.8 % 81.0 % 0.107 0.100 0.082 0.074 0.067 3.409 0.112 - 0.138 0.106
0.75 - - 78.2 % 79.7 % 80.8 % 0.108 0.100 0.083 0.075 0.068 3.441 0.112 - 0.141 0.108
0.8125 - - 78.1 % 79.6 % 80.6 % 0.108 0.100 0.083 0.075 0.069 3.424 0.112 - 0.143 0.111
0.875 - - 77.8 % 79.3 % 80.3 % 0.109 0.101 0.085 0.076 0.070 3.429 0.113 - 0.147 0.114
0.9375 - - 77.4 % 78.8 % 80.0 % 0.110 0.101 0.086 0.078 0.071 3.385 0.115 - 0.152 0.119
1.0 - - 76.9 % 78.2 % 79.5 % 0.113 0.103 0.089 0.081 0.073 3.309 0.120 - 0.160 0.125

mean - - 77.9 % 79.9 % 81.5 % 0.108 0.101 0.084 0.073 0.065 3.234 0.102 - 0.122 0.094

Table 2: Point Cloud Completion for Seen Individuals (D-FAUST). We report IoU, Chamfer distance, and correspondence
distance for all 17 time steps for the point cloud completion experiment for the test set consisting of seen individuals (but
unseen motions) of the D-FAUST dataset. As both PSGN 4D variants output point sets without connectivity, IoU cannot
be measured for these methods. ONet 4D only predicts occupancy probabilities for 4D points without any correspondence
information between time values, so that no correspondence distance can be calculated.

IoU Chamfer Correspond.
PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - - 64.8 % 70.4 % 74.2 % 0.130 0.121 0.148 0.091 0.077 0.104 0.093 - 0.093 0.077
0.0625 - - 65.7 % 70.7 % 74.1 % 0.129 0.120 0.143 0.090 0.077 3.261 0.098 - 0.098 0.082
0.125 - - 66.2 % 70.6 % 73.8 % 0.127 0.119 0.141 0.090 0.078 3.281 0.105 - 0.108 0.089
0.1875 - - 66.5 % 70.4 % 73.4 % 0.127 0.118 0.139 0.091 0.079 3.239 0.112 - 0.117 0.096
0.25 - - 66.7 % 70.2 % 73.0 % 0.126 0.118 0.138 0.092 0.081 3.225 0.120 - 0.127 0.102
0.3125 - - 66.9 % 70.0 % 72.7 % 0.125 0.118 0.137 0.093 0.082 3.243 0.126 - 0.135 0.108
0.375 - - 67.0 % 69.8 % 72.4 % 0.125 0.119 0.137 0.094 0.083 3.231 0.130 - 0.143 0.113
0.4375 - - 67.1 % 69.7 % 72.2 % 0.125 0.119 0.136 0.095 0.084 3.202 0.134 - 0.149 0.117
0.5 - - 67.2 % 69.6 % 72.0 % 0.125 0.119 0.136 0.095 0.085 3.285 0.137 - 0.155 0.121
0.5625 - - 67.3 % 69.6 % 71.9 % 0.125 0.119 0.136 0.096 0.085 3.190 0.140 - 0.160 0.124
0.625 - - 67.3 % 69.5 % 71.8 % 0.125 0.119 0.136 0.096 0.086 3.245 0.142 - 0.164 0.127
0.6875 - - 67.2 % 69.4 % 71.7 % 0.125 0.119 0.137 0.096 0.086 3.208 0.143 - 0.168 0.130
0.75 - - 67.1 % 69.4 % 71.5 % 0.126 0.119 0.138 0.097 0.087 3.236 0.145 - 0.172 0.133
0.8125 - - 66.9 % 69.2 % 71.4 % 0.126 0.119 0.139 0.098 0.087 3.216 0.147 - 0.176 0.136
0.875 - - 66.6 % 68.9 % 71.3 % 0.127 0.119 0.141 0.099 0.088 3.226 0.149 - 0.181 0.140
0.9375 - - 66.3 % 68.5 % 71.0 % 0.128 0.120 0.143 0.100 0.089 3.184 0.153 - 0.187 0.145
1.0 - - 65.8 % 67.9 % 70.7 % 0.130 0.121 0.146 0.102 0.090 3.116 0.157 - 0.195 0.150

mean - - 66.6 % 69.6 % 72.3 % 0.127 0.119 0.140 0.095 0.084 3.041 0.131 - 0.149 0.117

Table 3: Point Cloud Completion for Unseen Individual (D-FAUST). We report IoU, Chamfer distance, and correspon-
dence distance for all 17 time steps for the point cloud completion experiment for the unseen individual of the D-FAUST
dataset.

both the quantitative and qualitative results show that reconstruction from image sequences is a harder task than point cloud
completion. Fig. 10 shows two failure cases for OFlow: as we sample the view point randomly, extreme lighting conditions
and dominant occlusions make it very hard to correctly infer the complex motions. In addition, high frequency motions are
not recovered completely. As OFlow is able to recover the static part of the 3D geometry, we assume that incorporating local
image features would particularly improve the motion reconstruction.

3.4. Interpolation

Figure 8: Interpolation Encoder Comparison.
We show the correspondence distance over time
for the interpolation experiment for the linear in-
terpolation baseline and OFlow with two different
encoding schemes.

The goal of the interpolation experiment is to investigate to which
degree OFlow can be used for shape interpolation. The task is to
find a continuous transformation between start and end mesh MS =(
{viS}i, F

)
and ME =

(
{viE}i, F

)
where the two shapes have cor-

responding vertices viS and viE and the same faces F . As both,
the start and the end shape are given in this task, we can predict
a transformation from MS to ME as well as the other way round,
from ME to MS . The predictions for the first case are given by
M t

forward =
(
{Φθ̂(v

i
S , t)}i, F

)
. For predicting the vertex locations

from the end to the start mesh, we propagate the vertices viE from
time t = 1 backwards to time t using the backward flow Ψθ̂. Let



IoU Chamfer Correspond.
PSGN 4D ONet 4D OFlow PSGN 4D ONet 4D OFlow PSGN 4D ONet 4D OFlow

time step

0.0 - 73.7 % 80.9 % 0.146 0.165 0.117 0.095 - 0.080
0.0625 - 73.7 % 78.4 % 0.146 0.165 0.130 4.188 - 0.138
0.125 - 71.6 % 74.6 % 0.152 0.178 0.149 4.018 - 0.210
0.1875 - 69.5 % 71.9 % 0.157 0.191 0.162 4.103 - 0.258
0.25 - 68.9 % 70.9 % 0.159 0.195 0.166 4.230 - 0.275
0.3125 - 69.3 % 71.3 % 0.157 0.194 0.165 4.138 - 0.269
0.375 - 69.7 % 71.6 % 0.157 0.191 0.164 4.192 - 0.266
0.4375 - 69.6 % 71.1 % 0.158 0.190 0.165 4.219 - 0.279
0.5 - 69.2 % 70.9 % 0.159 0.191 0.166 4.095 - 0.289
0.5625 - 69.7 % 70.9 % 0.157 0.187 0.166 4.167 - 0.289
0.625 - 70.1 % 70.5 % 0.156 0.184 0.169 4.068 - 0.293
0.6875 - 69.3 % 69.2 % 0.158 0.189 0.176 4.140 - 0.313
0.75 - 68.6 % 68.1 % 0.160 0.193 0.182 4.043 - 0.330
0.8125 - 69.2 % 67.8 % 0.159 0.190 0.184 4.151 - 0.334
0.875 - 69.9 % 67.3 % 0.157 0.187 0.188 4.126 - 0.344
0.9375 - 68.1 % 65.3 % 0.160 0.202 0.201 4.022 - 0.387
1.0 - 64.4 % 62.0 % 0.172 0.232 0.222 4.066 - 0.462

mean - 69.7 % 70.7 % 0.157 0.190 0.169 3.886 - 0.283

Table 4: Point Cloud Completion (Warping Cars). We report IoU, Chamfer distance, and correspondence distance for all
17 time steps for the test set of the warping cars dataset.

(a) (b)

Figure 5: 4D Point Cloud Completion (Warping Cars). This figure shows two examples from the test set of the point cloud
completion experiment on the warping cars dataset. For both examples, we show the input as well the output of OFlow, ONet
4D, and PSGN 4D for 9 equally spaced time steps between 0 and 1.



IoU Chamfer Correspond.
PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - - 44.6 % 58.4 % 60.5 % 0.252 0.264 0.343 0.181 0.160 0.203 0.219 - 0.167 0.158
0.0625 - - 44.7 % 58.4 % 60.5 % 0.252 0.263 0.343 0.182 0.160 2.717 2.616 - 0.177 0.163
0.125 - - 44.6 % 58.3 % 60.5 % 0.252 0.264 0.343 0.182 0.160 2.678 2.738 - 0.194 0.172
0.1875 - - 44.6 % 58.0 % 60.4 % 0.253 0.264 0.343 0.184 0.161 2.732 2.661 - 0.214 0.182
0.25 - - 44.5 % 57.7 % 60.3 % 0.254 0.265 0.343 0.186 0.162 2.783 2.707 - 0.235 0.192
0.3125 - - 44.4 % 57.4 % 60.2 % 0.255 0.265 0.344 0.188 0.163 2.761 2.753 - 0.256 0.203
0.375 - - 44.3 % 57.0 % 60.0 % 0.256 0.265 0.344 0.190 0.164 2.721 2.791 - 0.276 0.213
0.4375 - - 44.2 % 56.7 % 59.9 % 0.256 0.265 0.345 0.191 0.165 2.775 2.771 - 0.294 0.222
0.5 - - 44.1 % 56.4 % 59.7 % 0.257 0.265 0.346 0.193 0.166 2.750 2.721 - 0.311 0.231
0.5625 - - 44.0 % 56.1 % 59.6 % 0.258 0.266 0.347 0.195 0.167 2.710 2.711 - 0.325 0.240
0.625 - - 43.9 % 55.8 % 59.4 % 0.259 0.266 0.349 0.197 0.168 2.678 2.719 - 0.338 0.247
0.6875 - - 43.8 % 55.6 % 59.2 % 0.260 0.266 0.350 0.198 0.169 2.725 2.758 - 0.349 0.254
0.75 - - 43.7 % 55.4 % 59.1 % 0.261 0.267 0.352 0.199 0.170 2.767 2.793 - 0.357 0.261
0.8125 - - 43.5 % 55.3 % 58.9 % 0.262 0.267 0.353 0.200 0.171 2.707 2.749 - 0.364 0.267
0.875 - - 43.4 % 55.1 % 58.6 % 0.263 0.267 0.354 0.201 0.173 2.710 2.797 - 0.369 0.273
0.9375 - - 43.2 % 55.0 % 58.4 % 0.264 0.266 0.356 0.202 0.174 2.704 2.716 - 0.371 0.278
1.0 - - 43.0 % 54.9 % 58.1 % 0.265 0.267 0.357 0.203 0.175 2.671 2.633 - 0.373 0.283

mean - - 44.0 % 56.6 % 59.6 % 0.258 0.265 0.348 0.193 0.166 2.576 2.580 - 0.292 0.226

Table 5: 4D Reconstruction from Image Sequences for Seen Individuals (D-FAUST). The table shows IoU, Chamfer
distance, and correspondence distance for the 17 time steps evaluated on the test set of seen individuals (but unseen motions)
of the D-FAUST dataset. IoU cannot be measured for PSGN 4D due to missing connectivity information and for ONet 4D,
correspondence distances cannot be calculated as no correspondence information is predicted.

IoU Chamfer Correspond.
PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.) PSGN 4D PSGN 4D (w/ cor.) ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - - 36.2 % 42.9 % 43.8 % 0.302 0.295 0.387 0.285 0.269 0.247 0.247 - 0.286 0.281
0.0625 - - 36.3 % 43.0 % 43.8 % 0.302 0.296 0.388 0.285 0.269 2.590 2.505 - 0.293 0.286
0.125 - - 36.3 % 43.0 % 43.8 % 0.305 0.298 0.388 0.285 0.269 2.556 2.624 - 0.307 0.296
0.1875 - - 36.3 % 42.9 % 43.8 % 0.306 0.299 0.389 0.285 0.270 2.606 2.553 - 0.324 0.309
0.25 - - 36.3 % 42.9 % 43.7 % 0.308 0.301 0.389 0.286 0.271 2.652 2.603 - 0.342 0.322
0.3125 - - 36.3 % 42.8 % 43.7 % 0.309 0.303 0.390 0.287 0.271 2.638 2.644 - 0.361 0.335
0.375 - - 36.2 % 42.6 % 43.6 % 0.311 0.304 0.391 0.288 0.272 2.605 2.685 - 0.379 0.349
0.4375 - - 36.1 % 42.5 % 43.5 % 0.312 0.306 0.392 0.289 0.273 2.664 2.667 - 0.396 0.361
0.5 - - 36.0 % 42.4 % 43.4 % 0.313 0.308 0.393 0.290 0.274 2.642 2.621 - 0.412 0.374
0.5625 - - 35.9 % 42.3 % 43.3 % 0.314 0.310 0.395 0.291 0.275 2.604 2.617 - 0.426 0.385
0.625 - - 35.8 % 42.2 % 43.2 % 0.315 0.311 0.396 0.292 0.277 2.575 2.626 - 0.438 0.396
0.6875 - - 35.6 % 42.1 % 43.1 % 0.316 0.312 0.397 0.294 0.278 2.619 2.660 - 0.449 0.406
0.75 - - 35.5 % 42.0 % 43.0 % 0.318 0.314 0.398 0.295 0.279 2.658 2.696 - 0.458 0.416
0.8125 - - 35.3 % 41.9 % 42.9 % 0.318 0.315 0.400 0.296 0.280 2.606 2.660 - 0.465 0.426
0.875 - - 35.1 % 41.8 % 42.7 % 0.318 0.316 0.401 0.297 0.282 2.611 2.705 - 0.471 0.434
0.9375 - - 34.9 % 41.7 % 42.6 % 0.319 0.316 0.402 0.298 0.283 2.604 2.632 - 0.476 0.442
1.0 - - 34.7 % 41.6 % 42.4 % 0.319 0.316 0.403 0.299 0.284 2.578 2.550 - 0.479 0.449

mean - - 35.8 % 42.4 % 43.3 % 0.312 0.307 0.394 0.291 0.275 2.474 2.488 - 0.398 0.369

Table 6: 4D Reconstruction from Image Sequences on Unseen Individual (D-FAUST). We show IoU, Chamfer distance,
and correspondence distance for all 17 time steps evaluated on the test set of the unseen individual of the D-FAUST dataset.

Ψθ̂(p, 1, t) indicate the position of point p from time t = 1 at time t ≤ 1 when following the velocity field vθ̂(·, ·) back-
wards in time. The backward predictions are then M t

backward =
(
{Ψθ̂(v

i
E , 1, t)}i, F

)
. We obtain our final predictions by

interpolating between the two predictions:

M t
pred =

(
{(1− t) · Φθ̂(v

i
S , t) + t ·Ψθ̂(v

i
E , 1, t)}i, F

)
(2)

In Fig. 8 we show a comparison of OFlow with two different encoder architectures and the linear interpolation baseline.
As discussed in Section 1.1.2, the start and end point clouds can either be encoded in a siamese fashion by encoding each
point cloud individually or by concatenating the start and end locations. The figure shows that encoding the point clouds
individually with the same network achieves slightly better results. This comes as a surprise as this encoding scheme does
not directly use the correspondences between the start and end point clouds.

In Fig. 9 we show additional qualitative results from the test set of the interpolation experiment. They show that, in
contrast to linear interpolation, OFlow is able to capture the non-linear motion of the non-rigid body shapes from the D-
FAUST dataset.

3.5. Probabilistic Latent Variable Model

We further conducted experiments investigating the generative capabilities of our representation. For this, we slightly
adjust the spatial and temporal encoders gsθ and gt

θ̂
for 4D point cloud completion to predict means and log standard deviations

(µs, log σs) and (µt, log σt) of Gaussian distributions qsθ(z|x) and qt
θ̂
(z|x) instead of latent codes cs and ct. We then obtain

the spatial and temporal latent codes zs and zt for conditioning the occupancy and velocity networks by sampling from the



IoU Chamfer Correspond.
PSGN 4D ONet 4D OFlow OFlow (w/ cor.) PSGN 4D ONet 4D OFlow OFlow (w/ cor.) PSGN 4D ONet 4D OFlow OFlow (w/ cor.)

time step

0.0 - 67.2 % 71.2 % 72.6 % 0.191 0.213 0.185 0.169 0.144 - 0.136 0.125
0.0625 - 62.9 % 66.6 % 67.7 % 0.212 0.251 0.218 0.198 4.277 - 0.257 0.250
0.125 - 57.7 % 60.7 % 61.0 % 0.239 0.297 0.260 0.240 4.191 - 0.409 0.405
0.1875 - 54.6 % 57.2 % 56.9 % 0.257 0.326 0.286 0.270 4.151 - 0.508 0.508
0.25 - 53.9 % 56.5 % 55.9 % 0.261 0.332 0.290 0.277 4.180 - 0.531 0.531
0.3125 - 54.7 % 57.6 % 57.0 % 0.256 0.326 0.280 0.269 4.141 - 0.502 0.499
0.375 - 55.1 % 58.2 % 57.7 % 0.253 0.322 0.274 0.263 4.214 - 0.489 0.482
0.4375 - 54.3 % 57.1 % 56.9 % 0.258 0.328 0.281 0.267 4.154 - 0.522 0.511
0.5 - 53.7 % 56.2 % 56.2 % 0.262 0.334 0.289 0.273 4.344 - 0.552 0.542
0.5625 - 54.0 % 56.6 % 56.5 % 0.259 0.332 0.287 0.271 4.111 - 0.549 0.541
0.625 - 54.5 % 57.1 % 56.8 % 0.255 0.329 0.285 0.270 4.097 - 0.539 0.533
0.6875 - 54.0 % 56.3 % 56.0 % 0.258 0.335 0.292 0.277 4.254 - 0.555 0.552
0.75 - 53.3 % 55.3 % 54.9 % 0.262 0.341 0.299 0.286 4.201 - 0.574 0.574
0.8125 - 53.6 % 55.7 % 55.2 % 0.259 0.338 0.297 0.285 4.092 - 0.559 0.561
0.875 - 54.6 % 56.8 % 56.4 % 0.252 0.329 0.288 0.276 4.160 - 0.521 0.524
0.9375 - 54.4 % 56.4 % 56.0 % 0.255 0.333 0.291 0.279 4.221 - 0.527 0.530
1.0 - 52.1 % 53.5 % 52.9 % 0.275 0.356 0.314 0.303 4.200 - 0.612 0.616

mean - 55.6 % 58.2 % 58.0 % 0.251 0.319 0.277 0.263 3.949 - 0.491 0.487

Table 7: 4D Reconstruction from Image Sequences (Warping Cars). We report IoU, Chamfer distance, and correspon-
dence distance for all 17 time steps for the test set of the warping cars dataset.

resulting distributions qsθ and qt
θ̂
. In contrast to having only one latent space, this decoupling of shape and motion allows us

to sample spatial and temporal latent codes individually.
We combine the reconstruction and correspondence loss with the KL-divergence between the predicted and prior distribu-

tions to optimize a lower bound to the negative log-likelihood of our generative model:

Lgenerative
(
θ, θ̂
)

= Lrecon
(
θ, θ̂
)

+ Lcorr
(
θ̂
)

+
β

|B|
∑
x∈B

(KL(qsθ(z|x), ps0) + KL(qt
θ̂
(z|x), pt0)) (3)

We choose the prior distributions ps0 and pt0 to be Gaussian distributions. The hyperparameter β can be interpreted as a
weighting between the reconstruction and the regularization term [7]. In our experiments we set β := 10−4.

Fig. 11 shows a t-SNE embedding of the motion codes of the training examples of the D-FAUST dataset. Fig. 12 shows
latent shape and motion interpolations. We show the interpolation between two shape samples z0s and z1s with a fixed motion
sample zt in Fig. 12a. Similarly, we show the interpolation between two motion samples z0t and z1t with a fixed shape sample
zs in Fig. 12b. Finally, in Fig. 13 we show three examples of the motion transfer experiment. For this, we select a shape S
and a sequence x from the D-FAUST dataset. We then encode the motion of sequence x to latent code zt (predicted mean
of qt

θ̂
(x)) and apply this motion to shape S. We are able to apply motion zt directly to the ground truth shape S due to our

vector field-based motion representation.
The results show that OFlow is able to learn a meaningful latent space representation. The decoupling of shape and motion

allows to encode and sample the two components individually. This flexibility enables OFlow to be used in various tasks
ranging from shape or motion interpolation to motion transfer.

A limiting factor of this approach is that motion transfers could not work for completely different shapes, e.g. a human
upside-down, as we do not condition the motion on the shape. However, the simple solution to condition the motion distribu-
tion on the drawn shape sample would drastically reduce the flexibility and variety of drawn samples. We plan to investigate
how to combine these approaches in future work.

3.6. Additional Comparisons and Experiments

In the following we compare the OFlow and ONet 4D representation (Section 3.6.1), analyze the connectivity-preserving
property of OFlow (Section 3.6.2) and show that it can be trained on multiple categories simultaneously without degraded
results (Section 3.6.3).

3.6.1 Comparison of the ONet 4D and OFlow Representations

The qualitative and quantitative results clearly demonstrate that OFlow performs better than ONet 4D on unseen data while
both methods exhibit similar representation capabilities (see Section 4.1 of the main publication). While ONet 4D predicts



(a) (b)

Figure 6: 4D Reconstruction from Image Sequences (Warping Cars). This figure shows two examples from the test set of
the 4D reconstruction from image sequence experiment on the warping cars dataset. For both examples, we show the input
as well the output of OFlow, ONet 4D, and PSGN 4D for 9 equally spaced time steps between 0 and 1.

occupancy probabilities in space for all time steps individually, OFlow propagates the predicted 3D shape from time 0 forward
by using the parameterized vector field, hence exploiting the physical properties of objects in motion. This way, the tasks of
shape and motion reconstruction are decoupled resulting in a more intuitive and simpler problem as the motion vectors, in
contrast to occupancy values, often only change slightly over time. Importantly, while the proposed OFlow model is able to
exploit the smoothness properties of the motion field, the naı̈ve ONet 4D approach does not, hence leading to higher sampling
complexity and degraded results. In Fig. 14 we show an example highlighting the differences of the two approaches: While
ONet 4D often produces overly-smooth results, OFlow is able to better preserve the 3D shape over time.



3.6.2 Connectivity-Preserving Property of the OFlow Representation

Figure 15: Reconstruction of Touching Hands.
Note that the objects keep their form/topology and
do not merge during touching.

We model the velocity field as an invertible mapping which preserves
connectivity information. To investigate this property, we trained a
model to represent a short sequence of touching hands extracted from
the MANO dataset [13]. Indeed, the touching hands in Fig. 15 keep
their form and do not merge. While OFlow is not able to represent
merging of two objects due to its bijectivity, the spatial proximity of
the objects in the reconstruction is small enough to realistically model
the motion. Depending on the application, this property can also be
an advantage, e.g. not leading to self-intersections.

3.6.3 Training on Multiple Object and Motion Categories

IoU Chamfer Correspond
mul. cat. sin. cat. mul. cat. sin. cat. mul. cat. sin. cat.

D-FAUST 79.9 % 79.9 % 0.073 0.073 0.122 0.122
War. Cars 68.3 % 70.7 % 0.196 0.169 0.319 0.283

Table 8: 4D Point Cloud Completion on Multi-
ple Categories. The columns show if the model
was trained on a single (sin. cat.) or multiple cat-
egories (mul. cat.), and the rows show on which
dataset the model is evaluated.

Table 8 shows quantitative results of the 4D point cloud completion
experiment for OFlow trained and tested on D-FAUST and Warping
Cars simultaneously. We observe no or only slight changes wrt. the
single category models. This shows that OFlow can be trained with
different classes of objects and motions simultaneously without a sig-
nificant change in performance.



(a) (b)

Figure 7: 4D Reconstruction from Image Sequences (D-FAUST). This figure shows two examples from the test set of the
4D reconstruction experiment on the D-FAUST dataset. For both examples, we show the input as well the output of OFlow,
ONet 4D, and PSGN 4D for 9 equally spaced time steps between 0 and 1.



Figure 9: Interpolation Results. The figure shows two examples from the test set of the interpolation experiment on the
D-FAUST dataset. It shows linear interpolation (left) and the output of OFlow (right) conditioned on the start and end point
clouds. For both examples, the qualitative differences are most profound in the arm and hand region. In contrast to linear
interpolation, OFlow is able to better preserve the lengths and shapes of the arms and hands over the whole sequence.



(a) High frequency motion failure case. (b) Extreme lighting condition failure case.

Figure 10: Failure Cases for 4D Reconstruction from Image Sequences. We show five equally spaced times steps for
the input and the output of OFlow of two examples from the 4D reconstruction from image sequences experiment on the
D-FAUST dataset. While in Fig. 10a OFlow is not able to fully recover the high frequency motion, the extreme lighting
conditions and the occluded left arm in Fig. 10b cause a nearly static output. As OFlow is able to recover the static part of
the 3D geometry, we assume that incorporating local image features would particularly improve the motion reconstruction.

Figure 11: t-SNE Visualization. The figure shows a 2D t-SNE embedding of the motion codes of training examples of
the D-FAUST dataset. The small line structures are formed by similar sub-sequences which are a result of our sub-sampling
process of the D-FAUST dataset. The clustering shows that OFlow is able to learn a meaningful representation of the motions.
The overlapping of different clusters often makes sense, e.g. “one leg jump” and “one leg loose” or “light hopping stiff” and
“light hopping loose.”



(a) Shape Interpolation with Fixed Motion. (b) Motion Interpolation with Fixed Shape.

Figure 12: Latent Space Interpolations. In Fig. 12a we show three equally spaced steps of a latent shape interpolation with
fixed motion. Similarly, in Fig. 12b we show three equally spaced steps of a latent motion interpolation with fixed shape. The
figures show that OFlow is able to learn a meaningful latent representation of both the shape and the motion.



Figure 13: Motion Transfer. We show three examples of the motion transfer experiment. We take a start shape (first column)
and encode the motion from another sequence (second column) to transfer this motion to the shape (third column). We see
that OFlow is able to transfer the motion to another shape reasonably well despite changes in topology and pose.



Figure 14: Comparison of ONet 4D and OFlow. The figure shows three equally spaced time steps between 0 and 1 of the
output of ONet 4D (left) and OFlow (right) for an example from the test set of the point cloud completion experiment on the
D-FAUST dataset. While ONet 4D predicts occupancy probabilities in 4D space, OFlow propagates the predicted 3D shape
information from time 0 forward in time. As a result, OFlow better preserves the geometry over the whole sequence, here
shown in greater detail for the foot area.
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