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Figure 1. Illustration. Left: Existing feed-forward 3DGS methods (e.g., MVSplat) predict per-pixel Gaussians with local cost volumes.
When accumulating Gaussians from multiple local volumes in global coordinates, we observe inconsistencies in the accumulated Gaussians
(e.g. car in the figure), leading to ghost artifacts in the rendering. In contrast, EVolSplat predicts 3DGS using a global volume, improving
consistency and rendering quality. Right: Our method achieves real-time rendering while maintaining high NVS rendering quality on novel
street scenes with lower memory consumption. The circle size indicates memory consumption during inference.

Abstract

Novel view synthesis of urban scenes is essential for au-
tonomous driving-related applications. Existing NeRF and
3DGS-based methods show promising results in achieving
photorealistic renderings but require slow, per-scene opti-
mization. We introduce EVolSplat, an efficient 3D Gaus-
sian Splatting model for urban scenes that works in a
feed-forward manner. Unlike existing feed-forward, pixel-
aligned 3DGS methods, which often suffer from issues
like multi-view inconsistencies and duplicated content, our
approach predicts 3D Gaussians across multiple frames
within a unified volume using a 3D convolutional network.
This is achieved by initializing 3D Gaussians with noisy
depth predictions, and then refining their geometric prop-
erties in 3D space and predicting color based on 2D tex-
tures. Our model also handles distant views and the sky
with a flexible hemisphere background model. This en-
ables us to perform fast, feed-forward reconstruction while
achieving real-time rendering. Experimental evaluations on
the KITTI-360 and Waymo datasets show that our method
achieves state-of-the-art quality compared to existing feed-
forward 3DGS- and NeRF-based methods.

B Corresponding author.

1. Introduction

Novel view synthesis (NVS) of urban scenes is essential
for autonomous driving applications [7, 24, 33]. Although
NeRF-based approaches have shown promising results in
urban environments [23, 26, 37, 48], their slow render-
ing speeds limit practical applications. Recently, newer
methods have employed 3DGS for urban view synthe-
sis [5, 16, 17, 45, 55, 57]. However, they still require ap-
proximately one hour of training per urban scene.

To reduce training time while maintaining rendering ef-
ficiency, recent methods have explored feed-foward 3DGS
predictions [2, 6, 21, 28, 31, 32, 39]. These methods share
a similar design, utilizing 2D CNN and transformer archi-
tectures to predict pixel-aligned 3D Gaussians from 2D ref-
erence images. Despite promising NVS results, they en-
counter challenges in street scenes: 1) These methods rely
heavily on feature matching, constructing local frustums
under each reference view to predict per-pixel Gaussians.
However, driving datasets typically feature small parallax
angles and texture-less regions, making depth prediction
through feature matching difficult. 2) The pixel-aligned
design can lead to duplicate and inconsistent Gaussians in
overlapping image regions (e.g. the multi-layer surfaces),
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resulting in ghosting artifacts and increased memory usage,
as illustrated in Fig. 1.

In this paper, we propose Efficient Volume-based Gaus-
sian Splatting (EVolSplat) for fast reconstruction and real-
time rendering of street view images. Unlike existing meth-
ods that predict per-pixel aligned Gaussians, our approach
directly predicts 3D Gaussians over multiple frames, where
the geometry attributes are learned from 3D context and the
color is predicted based on 2D texture information. Specif-
ically, given a sequence of sparse images, we initialize our
model by accumulating their monocular depth predictions
into a noisy point cloud. This point cloud is then pro-
cessed by a generalizable 3D-CNN, which decodes geom-
etry attributes to transform the noisy point cloud into 3D
Gaussians by predicting position offsets, scale, rotation, and
opacity. While the 3D-CNN enables accurate geometry
prediction, it struggles to capture high-frequency appear-
ance details due to its inherent smoothness bias. To address
this, we introduce an occlusion-aware, image-based render-
ing (IBR) module that predicts Gaussian colors from ag-
gregated 2D features for regions within the volume’s range.
For feed-forward inference over unbounded scenes, we fur-
ther model distant views and the sky with 3D Gaussians
positioned on a distant hemisphere.

Our contributions can be summarized as follows: 1) We
introduce a novel feed-forward reconstruction method tai-
lored to unbounded driving scenes, employing two distinct
generalizable components for the foreground and back-
ground. It achieves efficient reconstruction and real-time
rendering from sparse vehicle-mounted cameras. 2) We
predict Gaussian geometric and appearance properties sep-
arately using a global volume-based representation and an
occlusion-aware IBR module. These enhancements enable
high-quality reconstruction of urban scenes, particularly in
the presence of occlusions, while also reducing memory
consumption. Experimental results show that our method
outperforms other generalizable baselines on the KITTI-
360 dataset and exhibits promising zero-short generaliza-
tion abilities on the Waymo dataset.

2. Related Work

Novel View Synthesis for Driving Scenes: The rapid de-
velopment of radiance field techniques[15, 24] have signif-
icantly advanced the development of novel view synthesis
for driving scenes. These approach represent street scenes
as implicit neural fields [8, 12, 26, 40, 41, 48] or anisotropic
3D Gaussians [5, 16, 17, 45, 55, 57], achieving expressive
synthesis quality. A few works [26, 41, 48] leverage sparse
vehicle-mounted LiDAR sensors to boost the training and
learn a robust geometry. Other works also incorporate ad-
ditional semantic and geometry cues as priors or supervi-
sion to enhance scene comprehension, including semantic

understanding [11, 19, 40], geometric constraints [12, 17]
and static-dynamic decomposition [47, 57]. However, these
methods require expensive per-scene optimization. Our
generalizable method, in contrast, aims to perform efficient
reconstruction on novel street scenes.

Feed-Forward Scene Reconstruction: To perform gen-
eralizable reconstruction, researchers train neural networks
across large-scale datasets to gain domain-specific prior
knowledge. These methods [2, 6, 32, 52–54] have evolved
to work with sparse image sets and can directly reconstruct
scenes via fast feed-forward inference. Generalizable NeRF
performs ray-based rendering and estimates the 3D radiance
field of scenes, which enables superior cross-dataset gen-
eralization capabilities in both small [3, 38, 52] and large
baseline [9, 43] settings. However, NeRF based methods
are notoriously slow to render. Another line of work di-
rectly predicts pixel-aligned 3D Gaussians from sparse ref-
erence images [6, 7, 31, 32, 39, 54]. These methods ei-
ther utilize an epipolar transformer [2, 39] or construct local
cost volumes [6, 21, 53] for learning geometry. However,
most of these methods focus on small-scale scenes and re-
quire overlaps in the input images, making them difficult to
apply in driving scenes with large camera movements and
small parallax. Our method predicts the global scene rep-
resentation instead of per-pixel Gaussian by accumulating
and refining depth information in 3D space. This improves
global consistency and reduces ghosting artifacts when ren-
dering new images from new viewpoints. In related work,
Flash3D [31] and DrivingForward [36] also uses monoc-
ular depth predictions to initialize Gaussian locations but
regresses pixel-aligned Gaussian parameters from a 2D fea-
ture map. In contrast, we downsample the initial primitives
to reduce computation and learn Gaussian geometry in 3D,
better incorporating neighbor information.

Point-based Novel View Synthesis: Point clouds cap-
ture the geometric structure of a scene, making them a
popular representation for enhancing NVS quality. While
points can be augmented with learnable descriptors [27, 30],
they often lead to rendering holes. To address this, some
methods extend point primitives to continuous 3D Gaus-
sians [15], or use neural networks for post-processing to fill
gaps [1, 10, 27]. Although these approaches are efficient
for rendering complex geometry, they rely on per-scene op-
timization. In contrast, we propose a generalizable model
based on point cloud data.

A few works [13, 46] pretrain an encoder-decoder archi-
tecture with skip connections to extract the spatial and local
features of point clouds for downstream tasks like object
detection and semantic segmentation, but do not consider
unbounded street views. PointNeRF [44] and EDUS [23]
learn implicit radiance fields from dense input point clouds,
limiting their practical applicability due to slow rendering.
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Figure 2. Method. EVolSplat learns to predict 3D Gaussians of urban scenes in a feed-forward manner. Given a set of posed images
{In}Ni=1, we first leverage off-the-shelf metric depth estimators to provide depth estimations {Dn}Nn=1. The depth maps are unprojected
and accumulated into a global point cloud P, which is fed into a sparse 3D CNN for extracting a feature volume F. We leverage the 3D
context of F to predict the geometry attributes of 3D Gaussians, including their center µ, opacity α, and covariance Σ. Furthermore,
we project the 3D Gaussians to the nearest reference views to retrieve 2D context, including color window {ck}Kk=1 and visibility maps
{vk}Kk=1 to decode their color. To model far regions, we propose a generalizable hemisphere Gaussian model, where the geometry is fixed
and the color is predicted in a similar manner as the foreground volume.

Our method achieves real-time rendering by feed-forward
prediction of Gaussian primitives.

3. Method

Our goal is to learn a feed-forward 3DGS model for efficient
street scene reconstruction from sparse input views, with
optional fine-tuning for further improvement. An overview
of EVolSplat is provided in Fig. 2. We decompose the en-
tire street scene into foreground and background, and rep-
resent them via two independent GS prediction models Gfg

and Gbg . The term foreground denotes the region within
a predefined volume that encompasses the vehicle’s trajec-
tory, while background refers to the distant scenery and
sky outside this volume.

We begin with a set of sparse images and exploit an off-
the-shelf depth model to initialize global primitives (Sec-
tion 3.2), which are transformed into an encoding volume to
predict the Gaussian geometry and appearance parameters
(Section 3.3). We further train a generalizable hemisphere
model to represent the background (Section 3.4). Finally,
the foreground and background are composed to reconstruct
the full image (Section 3.5).

3.1. Preliminary

3D Gaussian Splatting [15] explicitly parameterizes the 3D
radiance field of the underlying scene as a collection of
3D Gaussians pritmitives G = {(µi,αi,Σi, ci)}Gi=1, with

attributes: a mean position µi, an opacity αi, a covari-
ance matrix Σi and view-dependent color ci (computed by
spherical harmonics). This efficient representation avoids
expensive volumetric sampling and enables high-speed ren-
dering. To render the image from a particular viewpoint,
3DGS employs the tile-based rasterizer for Gaussian splats
to pre-sort and blend the ordered primitives using differen-
tiable volumetric rendering:

c =
∑
i∈G

ciαi

i−1∏
j=1

(1−αj) (1)

3.2. Global Point Cloud Initialization

Depth Estimation: We integrate depth priors into the
vanilla 3DGS framework to model the foreground. GivenN
input images {In}Nn=1 for a single scene, we leverage a pre-
trained depth model to predict metric depth maps {Dn}Nn=1

for each frame (e.g. Metric3D [51], Unidepth [25]). In-
spired by [8, 23], we also apply a depth consistency check
to remove inconsistent depth values, and use 3D filters to
remove clear floating artifacts in the unproject point clouds.
The obtained metric depth information enables us to unpro-
ject per-frame monocular depth predictions to global world
coordinates. We provide the depth consistency check details
in the Supplementary material.

Global Point Cloud Construction: We accumulate the
predicted metric depth maps {Dn}Nn=1 into a global point



cloud. Specifically, we lift the RGB images {In}Nn=1

into 3D space and accumulate them to construct a global
scene point cloud P ∈ RNp×3 in world coordinates with
the calibrated intrinsic matrices {Kn}Nn=1 and extrinsic
matrices{Tn = Rn | tn}Nn=1:

P =

N⋃
π−1 (In, Dn,Tn,Kn) (2)

where π−1 denotes pixel unprojection. Previous pixel-
aligned 3DGS methods will inevitably generate redundant
and inconsistent primitives in overlapping region. To ad-
dress this problem, we apply a uniform filter for the raw
points P in 3D space to delete duplicate primitives while
keeping the scene structure. Note that the processed prim-
itives still contain noise, so we apply a statistical filter to
remove floaters and explain how to further refine their loca-
tions in the next section.

3.3. Volume-Based Gaussian Generation

Construct Neural Volume: We draw inspiration from [4,
13, 14] and train a generalizable 3D latent neural volume
for modeling prior knowledge across scenes. More specifi-
cally, We construct the sparse tensor from initialized noisy
primitives P and employ an efficient sparse U-Net style
3DCNN ψ3D to aggregate the neural feature volume F ∈
RH×W×D×C , where H ×W ×D denotes the spatial reso-
lution and C denotes the feature dimension. The sparse 3D
ConvNet follows an encoder-decoder structure with a bot-
tleneck of low spatial dimension. We additionally add skip
connections to keep both local and global information.

F = ψ3D(P). (3)

Different from other feed-forward GS works using a 2D
image-to-image neural network to encode the scene, this 3D
latent representation helps integrate local and global infor-
mation in different network layers for faithful reconstruc-
tions. Note that the output feature volume F is aligned with
the world coordinate system.

Gaussian Geometry Parameters Prediction: We decode
the geometry attributes of Np 3D Gaussians based on the
feature volume F, taking the scene point cloud P as the
initial Gaussian centers, i.e., µinit

i = pi ∈ P . For each
µinit
i , we query a latent feature from F using trilinear in-

terpolation, and map it to a position offset ∆µi, opacity αi,
and covariance matrix Σi based on three independent MLP
heads, respectively.

Considering that the network is supposed to gradually
move the 3D Gaussians to the correct locations over the
training process, we aim to use the updated locations µi +
∆µi to query the feature volume to decode αi and Σi. This
encourages the network to predict αi and Σi at a more ac-
curate position, i.e., near the object surface. However, we

don’t have a good estimation of the ∆µi before training.
Therefore, we build an updating rule, with which ∆µi con-
verges at the end of the training. Specifically, we keep track
of the network’s prediction of ∆µi from the last iteration as
∆µprev

i . For each iteration, we query F at µinit
i + ∆prev

i ,
obtaining a feature vector fi:

fi =F(µinit
i +∆µprev

i ) (4)
αi =Dopa(fi), Σi = Dcov(fi) (5)

∆µi =Tanh(Dpos(fi)) · vsize, µi = µinit +∆µi (6)

where Dopa, Dcov and Dpos denote MLP heads, and µi,αi

and Σi are subsequently used for rendering. Here, the out-
put of Dpos is passed through a Tanh() activation function,
and then scaled by the voxel size vsize to yield the final ad-
justment. Note that this leads to a recursive formulation of
∆µi where its value depends on the output of the previous
estimations. We show that ∆µi is stabilized to a station-
ary point at infinite training iterations in the supplementary.
During inference, we initialize ∆µprev

i = 0, recursively ex-
ecute Eq. (4) and Eq. (6), and use the converged point to
query αi and Σi. We empirically find that it is sufficient to
only execute the recursion twice to obtain a converged ∆µi.

As shown in our ablation experiment, the inclusion of
offset allows our method to compensate for noisy positions
and enhances the representational capacity.

Occlusion-Aware IBR-based Color Prediction: Our
foreground volume-based representation downsamples the
initial primitives, which risks losing high-frequency appear-
ance details. To trade off memory consumption and model
high-detail appearance, we introduce the image-based ren-
dering technique to learn Gaussian appearance. However,
two challenges arise when applying IBR to urban scenes:
1) coarse Gaussian centers initialization results in inaccu-
rate 2D projection, and 2) the retrieved color is inconsistent
for a Gaussian due to occlusions, as illustrated in Fig. 3.
To address these issues, we extend the projection location
into a local sample window and leverage the depth priors to
eliminate the invisibility projection.

Specially, for one Gaussian primitive Gi, we project its
center µi to the nearby K reference frames and sample
the local color

{
cik ∈ RW×W×3

}K

k=1
with a predefined

W × W window centered at the 2D projection of the 3D
Gaussian. This strategy allows for integrating additional
2D texture information, enhancing the model’s robustness
against noisy 3D Gaussian locations. We experimentally
observe that W = 3 is an effective choice, as demonstrated
in the ablation study.

To perform an occlusion check, we bilinearly retrieve the
monocular depth Dr as pseudo ground truth and estimate
the visibility maps {vik ∈ RW×W } based on the differ-
ence between the projected depth and Dr. Specifically, let
δik denote the distance between one Gaussian center µi and



Figure 3. Occlusion Illustration. One Gaussian in 3D space may
retrieve inaccurate color information from 2D reference images
due to occlusions. EVolSplat comprises geometric priors to re-
duce the impact of invisible colors to enhance rendering quality.

the projected camera center tk, i.e., δik = ∥µi − tk∥2. We
estimate the visibility based on the depth window dik ∈
RW×W corresponding to cik, where vik = (δik−dik)/δik.
With the powerful input depth priors as guidance, our
method effectively distinguishes the occlusion-caused fea-
ture, allowing it to focus on the visible views. Instead of
removing invisible projections that require a manually de-
termined threshold, we propose an aggregation module M
to derive the Gaussian color ci by combining the local win-
dow colors with their corresponding visibility terms. We
implement M as a three-layer MLP of width 64 and adopt
the spherical harmonics coefficients (SH) to represent the
color. Inspired by [22], we further take as input the distance
and relative direction between Gaussian and target camera
to make our model structure-aware and facilitate better im-
age synthesis quality.

ci = M
(
{cik,vik, δik,

−→
θ ik}Kk=1

)
,
−→
θ ik =

µi − tk
∥µi − tk∥2

(7)

3.4. Generalizable Background Model

In this section, we introduce our generalizable background
design tailored for driving scenes to model infinite sky and
distant landscapes (often 100 meters away). Obviously, the
volume-based representation covers a limited street scene
and is insufficient for the unbounded region. Previous
work [5, 26, 42, 49] construct environment map conditioned
on input direction for a special scene, hence struggle to han-
dle multiple scenes simultaneously.

Given that the background region is far away, we propose
a generalizable hemisphere Gaussian model to represent the
background. We uniform sampling points over the hemi-
sphere and project all these points to reference images to
query the 2D color {ck}Kk=1 on the reference image. This
background hemisphere has a fixed radius rbg that moves
along with the camera motion such that the relative dis-
tance is fixed wrt. the target view. To convert each point on

this hemisphere into Gaussian primitives Gbg , we employ a
lightweight two-layer MLP Mbg to learn its color and scale
from {ck}Kk=1.

cbg, sbg = Mbg({ck}Kk=1) (8)

Note that we use fixed parameters for its rotation and opac-
ity, see supplementary for more details. This simple strat-
egy allows our model to reconstruct the full image via effi-
cient 3DGS rasterization while keeping the desirable back-
ground rendering.

3.5. Training & Fine-tuning

Training Loss: We jointly train our scene representation,
foreground volume, and hemisphere background models.
We apply L1 and SSIM losses between rendered and ob-
served images for supervision of RGB rendering.

Lrgb = (1− λr)L1 + λrLssim (9)

Following[12, 45], we additionally adopt entropy regular-
ization loss on the foreground accumulated alpha value Ofg
to encourage opaque rendering.

Lentropy = −
∑

(Ofg logOfg + (1−Ofg) log (1−Ofg))

(10)
The total loss can be summarized as follows:

L = (1− λr)L1 + λrLssim + λeLentropy (11)

Fine-tuning: Once fine-tuning is applied, our EVolSplat-
can achieve photorealism on par with or surpassing other
methods, leveraging powerful pretrained weights. Specifi-
cally, we first predicts a set of 3D Gaussian primitives for
initialization via a direct feed-forward process, where both
the geometry and color attributes are generated. The fine-
tuning process follows the vanilla 3DGS [15], where we op-
timize all geometry and color attributes directly. We also
enable the growing and pruning of 3D primitives during
fine-tuning. During fine-tuning, the number of Gaussians
is significantly reduced, as the initial feed-forward Gaus-
sians are redundant. As a result, our model maintains high
fidelity while reducing memory consumption. We demon-
strate that the pretrained priors accelerate network training
and enable faster convergence compared to other test-time
optimization methods.

Implementation Details: We train EVolSplat on multi-
ple scenes using Adam optimizers [18] with learning rate
1×10−3. We use torchsparse [35] as the implementation of
3D sparse convolution and choose gsplat [50] as our Gaus-
sian rasterization library. We set the SH degree to 1 for
simplicity, following StreetGaussian [45]. During training,
we set λr = 0.2, λe = 0.1 as loss weights in our work. For
each iteration, our model randomly selects a single image
from a random scene as supervision.



Method
KITTI-360 Waymo

FPS↑ Mem.(GB)↓
PSNR(dB)↑ SSIM↑ LPIPS↓ PSNR(dB)↓ SSIM↑ LPIPS↓

MVSNeRF [3] 18.44 0.638 0.317 17.86 0.595 0.433 0.025 12.03
MuRF [43] 22.77 0.780 0.229 23.33 0.770 0.269 0.31 26.45
EDUS [23] 22.13 0.745 0.178 23.18 0.745 0.164 0.14 5.75

MVSplat [6] 21.22 0.695 0.268 21.33 0.665 0.308 81.58 16.14
PixelSplat [2] 19.41 0.584 0.357 16.65 0.541 0.579 70.46 26.75
Ours 23.26 0.797 0.179 23.43 0.786 0.202 83.81 10.41

Table 1. Quantitative results on KITTI-360 and Waymo datasets with other generalizable methods. All models are trained on the KITTI-
360 dataset using drop50% sparsity level. Metrics are averaged on five validation scenes without any finetuning. Our EVolSplat generalizes
better than all the baselines in terms of PSNR and SSIM on both KITTI-360 and Waymo open datasets. It is also worth noting that our
method is more memory efficient compared with other 3DGS-based methods.

4. Experiment
4.1. Experimental Setup

Dataset and metrics: We pretrain our model on the
KITTI-360 dataset [20]. In the case of training scenes,
we collect 160 sequences from different geographic varia-
tions, with each sequence comprising 30 stereo images. We
use five public validation sets from the KITTI-360 dataset,
which has no overlapping with the training set. Addition-
ally, we access the zero-shot generalization performance on
the public Waymo Open Dataset [29]. In our experiments,
we apply 50% drop rate for all training and validation sce-
narios to amplify the movement between adjacent cameras.

For novel view synthesis, we adopt existing evaluation
protocols, including PSNR, SSIM, and LPIPS, for quantita-
tive assessments. Regarding the render efficiency, we report
frames per second (FPS) and inference memory usage on
the same device to ensure a fair comparison.

Volume Setup: In this paper, we construct the axis-aligned
bounding box to partition the foreground. We set the height
(Y-axis) and width (X-axis) of the foreground volume to
encompass objects in the field, with a height of 12.8m and
a width of 32m. The Z-axis is set to cover the vehicle’s
forward trajectory with a length of 64m. The input point
cloud is voxelized with a voxel size of (0.1m, 0.1m, 0.1m),
resulting in the volume dimension of 128× 320× 640. No-
tably, our 3D CNN effectively handles arbitrary volume
size well during inference. Compared to KITTI-360, the
Waymo dataset captures urban data with a wider field of
view and clearer distant scenes. Therefore, we adjust the
foreground volume range to (50m, 20m, 128m) in our zero-
shot inference experiment.

Baselines: We compare EVolSplat with several repre-
sentative feed-forward methods, including MVSNeRF [3],
MuRF [43], EDUS [23], MVSplat [6] and PixelSplat[2].
Unless stated otherwise, we train and evaluate all general-
izable models using the same data as EVolSplat. Note that
We train MVSplat and PixelSplat on NVIDIA V100 since

their transformer-based architecture requires a large amount
of GPU memory, making it hard to train on consumer GPU
(e.g., RTX4090 which we use for EVolSplat) at a full res-
olution. Additionally, we compare the NVS quality and
reconstruction time with other fast per-scene optimization
methods: Nerfacto [34] and 3DGS [15].

4.2. Comparison with Feed-Forward Methods

Rendering Quality: Tab. 1 and Fig. 4 present quanti-
tative and qualitative comparison results for feed-forward
inference, respectively. We adopt the 50% drop rate fol-
lowing existing evaluation protocols [20, 40, 55]. Our
proposed EVolSplat achieves on par or better photoreal-
ism with the recent state-of-the-art NeRF-based method,
while significantly improving rendering speed. Compared
with feed-forward 3DGS prediction methods, our method
achieves higher rendering quality. Specifically, MVS-
NeRF [3] mainly focuses on object-level scenes and strug-
gles with unbounded street views, leading to blurry images.
We note that EDUS achieves good LPIPS, but has visual
artifacts in thin structure and lower PSNR. MVSplat [6] es-
timates depth for each reference frame using a Transformer,
which results in inconsistent 3D Gaussian primitives and
causes ghost artifacts under large camera movements.

Model Efficiency: We report the memory consumption
during inference on a full-resolution 376 × 1408 image of
KITTI-360 in Tab. 1. MuRF [43] and PixelSplat [2] fail
to train with full-resolutionon a consumer GPU (24GB)
since their transformer architecture requires computation
resources. In contrast, our method leverages an efficient
sparse 3DCNN for generalizable reconstruction with only
10.41GB usage, demonstrating superior memory efficiency
and practical utility. Additionally, we note that EDUS [23]
consumes 5.75GB of memory for inference as its NeRF-
based representation only casts 4096 rays each iteration, re-
sulting in lower memory usage but significantly slow ren-
dering speed (0.14fps).

Zero-shot Inference on Waymo: To further verify the
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Figure 4. Qualitative Comparison with generalizable baselines on the KITTI-360 dataset.

a) MuRF b) MVSplat

c) EDUS d) Ours

Figure 5. Qualitative Comparisons with baselines for zero-shot inference on the Waymo Open dataset.

generalization capability, we evaluate different methods on
an unseen dataset, the Waymo Open dataset [29]. This is
an out-of-domain setting for all methods as the models are
trained on the KITTI-360 dataset. We set the image res-
olution to 640 × 960 and evaluate the rendering quality
and predicted geometry, see Tab. 1 and Fig. 5. As can be
seen, our EVolSplat achieves state-of-the-art performance
(PSNR: 23.43dB) on the unseen dataset. We observe that
MuRF [43] also achieves promising rendering results on
Waymo, but it struggles with poor geometric reconstruction
in texture-less areas, such as road, due to its strong reliance
on feature mapping (as shown in the Fig. 5), which limits
its practical applicability on autonomous driving scenes. In
contrast, our method benefits from the powerful geometric
priors, demonstrating superior zero-shot generalization per-
formance.

4.3. Comparison with Optimization-based Methods

We further compare the finetuning results with other test-
time optimization methods and report the PSNR and LPIPS
curve on the same test set in Fig. 6. 3DGS [15] and Ner-
facto [34] reconstruct the scenes from scratch, requiring
longer training time. By leveraging pretrained weights, our
model converges with fewer training steps (steps < 1000).
Note that our method outperforms 3DGS in terms of LPIPS
and has comparable PSNR after convergence.

4.4. Ablation study and analysis

For fast ablation experiments, We select a subset of the
training sequences from the KITTI-360 datasets for train-
ing. We use these pretrained model to evaluate their feed-
forward performance on drop50% sparsity level to ablate
the design choices of EVolSplat. Tab. 2 and Fig. 7 presents



PSNR↑ SSIM↑ LPIPS↓
w/o IBR 21.06 0.706 0.274
w/o refine offset 22.76 0.780 0.195
w/o occlusion check vk 22.54 0.781 0.197
Full model 22.83 0.786 0.190

Table 2. Ablation Analysis on KITTI-360 dataset.

Figure 6. Comparison with Optimization-based Methods. We
show PSNR and LPIPS on the test set at different training steps.
Compared with test-time optimization baselines, our method with
generalizable priors converges faster and achieves better LPIPS.

the quantitative and qualitative results respectively.

Effectiveness of IBR Module: We evaluate the impact of
the IBR module by comparing our method to a variant that
uses the initial point cloud’s color without an appearance
learning scheme. In this variant, global points learn geo-
metric attributes via networks but retain appearance infor-
mation from the initial point cloud. Due to the misalign-
ment that exists in the monocular depth predictions, this
naı̈ve strategy results in blurry renderings in new scenes (see
Fig. 7a). In contrast, our method leverages the IBR module,
enabling high-detail rendering by predicting and retrieving
colors from reference images.

Effectiveness of Refine offset: We now ablate the position
refinement strategy. Our model updates the primitive loca-
tions during training considering the predicted depth may
be inaccurate. We compare our method with a variant that
does not output the position offset ∆µi, using only the pre-
dicted positions as Gaussian locations. The results in Tab. 2
show a slight decrease in rendering quality, with more no-
ticeable declines in SSIM and LPIPS metrics. This indicates
that our generalized priors effectively compensate for depth
estimation errors, facilitating improved rendering quality.

Effectiveness of Occlusion Check: To investigate the oc-
clusion check importance, we perform a study that removes
the visibility maps and aggregates all 2D retrieved colors.
As illustrated in Fig. 7b, the rendering quality in occluded
regions suffers from noticeable blurriness. This is because
3D Gaussians can retrieve inconsistent colors due to the oc-
clusions. By incorporating a visibility map vk as guidance,
our model can effectively remove the impact of these incon-
sistencies, resulting in an overall improvement of about 0.3
dB PSNR as reported in Tab. 2.

PSNR↑ SSIM↑ LPIPS↓
W = 1 22.54 0.771 0.216
W = 3 22.83 0.786 0.190
W = 5 22.84 0.785 0.201

Table 3. Ablation Study on different widow size.

(a) w/o IBR (b) w/o occlusion check vk

(c) Full model (d) Ground Truth

Figure 7. Qualitative Results of Ablation Study. We represent
rendering images via feed-forward inference on one novel scene.

Analysis of color window size: We further study the ef-
fect of different projection window. As presented in Tab. 3,
we compare three window sizes: W = {1, 3, 5} and eval-
uate their performance in feed-forward inference on novel
scenes. When W = 1, each Gaussian retrieves a single
pixel in each reference image for color prediction, resulting
in the lowest PSNR. This is because inaccurate Gaussian
positions lead to inaccurate 2D projections. With increased
W = 3, more color information is integrated to compen-
sate for projection inaccuracies, resulting the better image
quality. At W = 5, while more information is queried, the
redundancy can cause the image to become blurry, leading
to an increase in LPIPS and higher memory consumption.
We show more qualitative results in supplementary.

5. Conclusion
This paper presents EVolSplat, a method for efficient urban
scene reconstruction in a feed-forward manner. Unlike pre-
vious pixel-aligned 3DGS frameworks, we use geometric
priors to construct a global volume and predict a standalone
3D representation, achieving state-of-the-art performance
across several street-view datasets and enabling real-time
rendering, making it well-suited for urban scenes. However,
driving scenes still pose significant challenges, particularly
in handling dynamic agents such as other vehicles. In future
work, we will explore ways to generalize the reconstruction
of dynamic street scenes.
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6. Analysis of the convergence of ∆µi

In this section, we will show the position offset ∆µi con-
verge to a fixed value at the infinite training iterations. Re-
call that the ∆µi in the iteration k can be formulated as:

fi =F(µinit
i +∆µk−1

i ) (12)

∆µk
i =Tanh(Dpos(fi)) · vsize (13)

We can derive the ∆µk
i as:

∆µk
i =Tanh(Dpos(F(µ

init
i +∆µk−1

i ))) · vsize (14)

We define H ≜ Tanh(Dpos(F(·))) · vsize for simplicity, i.e.,

∆µk
i = H(µinit

i +∆µk−1
i ) (15)

Given that ∆µi small, we apply the first-order Taylor ex-
pansion to approximate Eq. 15:

∆µk
i = H(µinit

i ) + · ∂H
∂µ

∣∣∣∣
µinit
i

∆µk−1
i (16)

Considering that β ≜ H(µinit
i ) and Γ ≜ ∂H

∂µ

∣∣∣
µinit

are both

constants, we reformulate Eq. 16 as:

∆µk
i =β + Γ∆µk−1

i (17)

The training converges in our experimental observations.
Therefore, we assume ∆µ∞

i converges as k approaches the
infinite step, i.e., k → ∞. This allows us to derive ∆µ∞

i :

∆µ∞
i =β + Γ∆µ∞

i (18)

=(I − Γ)−1β (19)

This indicates that µ∞
i converges to a constant value. In

supplementary Sec. 9.2, we show that µt
i converges quickly

at early steps during inference.

7. Implementation Details
7.1. Remove Depth Outliers

We begin by applying a depth consistency check to filter
out noisy depth data. Specifically, we unproject the depth
map Di of ith frame to 3D and reproject it to a nearby view
j, obtaining a projected depth Di→j . Next, we compare
Di→j and Dj and filter out depths where the absolute rel-
ative error exceeds an empirical threshold σ = 0.2m. We
formulate this process as:

Md = |Di→j −Dj | < σ,Di→j = Dj

(
πjπ

−1
i (ui)

)
(20)

where ui denotes pixel coordinates of ith frame and Md

represents the geometric consistency mask. We further uti-
lize the 3D statistical filter in Open3D [56] to remove the
clear floaters in the unprojected point clouds for each frame.
In our implementation, we set the number of neighbors to
20 and the standard deviation ratio to 2.0.

7.2. Foreground Gaussian Details

Following [15], Σ is decomposed into two learnable com-
ponents: rotation matrix R and a scaling matrix S to holds
practical physical significance, see the following formula:

Σ = RSSTRT (21)

To allow independent optimization of both factors, we use
a 3D vector s representing scaling and a quaternion q for
rotation separately. Instead of directly learning scales s,
we initialize the sinit with the average distance of K near-
est neighbors using the KNN algorithm and learn the scales
residual ∆s from the volume latent feature fi via a decoder
Dcov . We experimentally observe that the residual learning
strategy helps our network converge faster and enhances the
model capacity.

s = sinit +∆s, ∆s = Dcov(fi) (22)

7.3. Hemisphere Background Details

We also develop the generalizable hemisphere model for the
background which typically lies hundreds of meters away
from the vehicle, as discussed in the main paper. Specif-
ically, we initialize the background as a hemisphere with
a fixed radius rbg = 100m as a hyperparameter, with its
center positioned at the midpoint of the foreground volume.
This background hemisphere moves along with the vehicle
such that the relative distance is fixed wrt. the target camera.
We project the points onto K reference images to retrieve
their 2D color {ck}Kk=1 to regress all gaussian parameters
through network Mbg as mentioned in the main paper. Sim-
ilar to the foreground framework, we initialize the Gaussian
scales using the KNN algorithm and learn their scale resid-
uals ∆sbg for each Gaussian.

sbg = ∆sbg + sinitbg , ∆sbg = Mbg

(
{ck}Kk=1

)
(23)

For opacity and rotation, we explicitly set the opacity to 1
and the rotation to a unit quaternion [1, 0, 0, 0] as a reason-
able initialization, without involving them in the network
optimization.



7.4. SparseCNN Network Architecture

We build a generalizable efficient 3DCNN ψ3D to provide
the geometric priors for the foreground contents. Given
the global point cloud P ∈ RNp×3, we quantize the point
cloud with the voxel size vsize = 0.1m and fed these sparse
tensors into the ψ3D to predict the latent feature volumeF.
The sparse 3DCNN uses a U-Net like architecture with skip
connections, comprising some convolution and transposed
convolution layers. The details of 3DCNN are listed in the
Tab. 4. We use torchsparse as the implementation of ψ3D.

SparseCNN Network Architecture
Layer Description In/Out Ch.
Convi=0 kernel = 3× 3× 3, stride = 1 3/16
Convi=1 kernel = 3× 3× 3, stride = 2 16/16
Convi=2 kernel = 3× 3× 3, stride = 1 16/16
Convi=3 kernel = 3× 3× 3, stride = 2 16/32
Convi=4 kernel = 3× 3× 3, stride = 1 32/32
Convi=5 kernel = 3× 3× 3, stride = 2 32/64
Convi=6 kernel = 3× 3× 3, stride = 1 64/64
DeConvi=7 kernel = 3× 3× 3, stride = 2 64/32
DeConvi=8 kernel = 3× 3× 3, stride = 2 32/16
DeConvi=9 kernel = 3× 3× 3, stride = 2 16/16

Table 4. Architecture of SparseConvNet. Each layer consists of
sparse convolution, batch normalization, and ReLU.

8. Baselines
In this section, we discuss the state-of-the-art baselines used
for comparison with our approach.

Feed-Forward NeRFs: We adopt the official implementa-
tions of MVSNeRF [3], MuRF [43] and EDUS [23]. For
each method, we retrain the model using 160 sequences
from KITTI-360 [20] under a 50% drop rate. We select
the three nearest training frames of the target view as ref-
erence images for these methods. MVSNeRF and MuRF
utilize multi-view stereo (MVS) algorithms to construct the
cost volume and apply 3DCNN to reconstruct a neural field
while EDUS leverages the depth priors to learn a generaliz-
able scene representation.

Feed-Forward 3DGS: We adopt the official implementa-
tions of PixelSplat [2] and MVSplat [6]. We find that using
three reference images caused color shifts at novel view-
points in urban scenes, so we use the two nearest training
frames to achieve optimal performance following the orig-
inal paper. PixelSplat predicts 3D Gaussians with a two-
view epipolar transformer and then spawns per-pixel Gaus-
sians. MVSplat exploits multi-view correspondence infor-
mation for geometry learning and predicts 3D Gaussians
from image features. Both methods are trained on a single

Nvidia RTX V100 using the full resolution of KITTI-360.
Additionally, as we illustrated in the teaser figure in the

main paper, these pixel-align 3DGS methods predict incon-
sistent 3DGS when accumulating multiple local volumes.
Note that to ensure a fair comparison, we conduct exper-
iments using a single local volume following their default
setting(use 2 reference images), as reported in Table 1 and
Figure 4 in the main paper.

Test-Time Optimization Methods: To evaluate our fine-
tuning results, we compare them against recent test-time op-
timization methods under the 50% drop rate. Specifically,
we use the latest version of Nerfacto [34] provided by Nerf-
studio and the official codebase of 3DGS [15]. Nerfacto is
a combination of many published methods that demonstrate
strong performance on real-world data, including pose re-
finement, appearance embedding, scene contraction, and
hash encoding. For 3DGS, we initialize the 3DGS model
with our global point cloud to ensure a fair comparison.

9. Additional Experimental Results
9.1. Monocular Depth Modularity

To further evaluate the sensitivity of our method to differ-
ent depth estimation approaches, we conduct experiments
using two distinct metric depth estimators: Metric3D [51]
and UniDepth [25]. Specifically, we pretrain our model
with Metric3D, and evaluate using depth maps of two differ-
ent models for feed-forward inference on novel scenes. As
shown in Tab. 5, our EVolSplat consistently outperforms the
baseline methods on both depth estimators, demonstrating
its robustness in handling depth predictions across varying
distributions.

Depth Method PSNR↑ SSIM↑ LPIPS↓
Metric3D [51] 24.43 0.786 0.202
UniDepth [25] 23.38 0.775 0.223

Table 5. Depth Sensitivity Experiment The results are averaged
on five testsets from the Waymo dataset.

9.2. Additional Ablation for ∆µi

As mentioned in the main paper, ∆µi depends on the pre-
vious estimation ∆µprev

i , but it stabilizes at a stationary
point after infinite training iterations. Note that Dpos is
designed to continually decode the offset ∆ wrt. µinit,
even at the ideal location, avoiding an infinite loop caused
by toggling between the ideal offset and zero. We fur-
ther conduct experiments by recursively updating the offsets
(i = 0, 1, 2, 3) during inference to verify its convergence.
As reported in Tab. 7, our pretrained model successfully re-
fines the noisy primitive’s position after the first inference
(increasing PSNR by approximately 0.46 dB) and maintains
a stable value of 23.78dB even with additional updates.



Method
Waymo KITTI-360

PSNR(dB)↑ SSIM↑ LPIPS↓ PSNR(dB)↓ SSIM↑ LPIPS↓

MuRF [43] 23.66 0.746 0.256 19.83 0.669 0.340
EDUS [23] 23.41 0.769 0.147 20.13 0.659 0.257
MVSplat [6] 24.08 0.758 0.197 17.80 0.581 0.361
Ours 25.06 0.820 0.189 21.23 0.738 0.222

Table 6. Quantitative results on Waymo and KITTI-360 datasets with other generalizable methods. All models are trained on the
Waymo dataset using drop50% sparsity level. Metrics are averaged on five validation scenes without any finetuning.

PSNR↑ SSIM↑ LPIPS↓
i = 0 23.329 0.794 0.175
i = 1 23.787 0.819 0.171
i = 2 23.778 0.819 0.171
i = 3 23.786 0.819 0.171

Table 7. Ablation Study on recursion of ∆µi

Layers Width PSNR↑ SSIM↑ LPIPS↓
2 64 22.61 0.780 0.192
3 128 22.69 0.785 0.189
4 128 22.60 0.785 0.191

Table 8. Ablation study of the background MLP capacity.

9.3. Training on Waymo

To verify our method’s performance given different train-
ing sequences, we train our method on the Waymo dataset
and evaluate its feed-forward performance on Waymo and
KITTI-360, as shown in the Tab. 6. Our method consistently
achieves state-of-the-art performance in terms of PSNR and
SSIM metrics, indicating its robustness for different driving
data distributions.

9.4. Ablation Experiments for Background MLP

Our background model primarily blends colors from nearby
reference images rather than learning textures from scratch.
As shown in Tab. 8, increasing the layers and width of the
background MLP does not yield significant improvements.
A light-weight two-layer MLP provides sufficient capac-
ity to reconstruct backgrounds while minimizing computa-
tional overhead.

10. More Qualitative Results
10.1. More Qualitative Results in Ablation Study

Removing offset refinement and occlusion check leads to
visible artifacts in small regions, such as the car in Fig. 7(b)
and Fig. 8. While these components don’t significantly af-
fect overall quantitative results, they improve local visual
quality. Similarly, the color projection window, which com-
pensates for inaccurate Gaussian positions, also improves
local visual quality, see Fig. 9.

Figure 8. Qualitative Results of offset refine strategy

Figure 9. Qualitative Results of windows size strategy

10.2. More Feed-Forward Inference Qualitative Re-
sults

Our method enables efficient reconstruction and real-time
photorealistic NVS from flexible sparse street view im-
ages. We provide more qualitative results on the KITTI-360
dataset via a feed-forward inference under drop50% setting,
as shown in Fig. 11.

11. Limitions
We present some failure cases in Fig. 10. A key limitation
of the proposed approach is its dependence on the metric
depth estimation. Our method suffers degeneration when
the depth model struggles to provide fine-grained depth es-
timates for thin structures.

Another limitation is that our generalizable hemisphere
background only roughly approximates the geometry of dis-
tant landscapes, leading to artifacts on background region.
However, high-quality rendering of the foreground is gen-
erally more critical for autonomous driving applications. A
potential solution may be to leverage image-based render-
ing techniques to model the background, though this would
reduce rendering efficiency.



Figure 10. Limitations in thin structure and background.

Figure 11. More Qualitative Results on KITTI-360. We visualize synthesized images (odd rows) and the corresponding proxy geometry
(even rows) on novel scenes generated by our pretrained model through a feed-forward inference.
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