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Abstract. In this supplementary document, we initially present an
in-depth overview of our network architecture in Sec. A. Subsequently,
we elaborate on our implementation details in Sec. B, encompassing the
random masking strategy, the sampling strategy, and the point cloud
accumulation configurations. Following this, we introduce the baselines
for comparison in Sec. C, and discuss the datasets utilized in our exper-
iments in Sec. D. Finally, we present additional experimental results in
Sec. E. Besides, the supplementary video showcases our feed-forward
and fine-tuned results across various scenes, along with novel view ren-
derings compared against multiple baselines.

A Network Architecture

A.1 Modulation-based CNN

Our 3D Spatially-Adaptive Normalization convolutional neural network (SPADE
CNN) modulates the feature volume generation at multiple resolutions. It takes
a single voxelized point cloud with dimension 64 × 128 × 256 as input. The
appearance information of the input point cloud is injected into the feature
volume at each resolution. Fig. 1 presents the detailed network architecture.

A.2 Foreground Network Architecture

The feature volume generated by the 3D SPADE CNN provides both geometric
priors and appearance information for foreground contents. Based on a feature
vector f3Dfg ∈ R16 extracted from this feature volume, our density decoder gθ
predicts the density value. In order to capture high-frequency appearance during
feedforward inference, the color decoder hθ combines the 3D feature f3Dfg ∈ R16

and 2D features queried from nearest views f2Dfg ∈ R9 for color prediction. In
addition, the color decoder further takes the positional encoding of x as input,
setting the number of frequencies to 10 following [5]. Furthermore, we inject
viewing direction d ∈ R3 and a per-frame appearance embedding w ∈ R32. We
present the detailed network architecture in Tab. 1.
⋆ Equally contributed. B Corresponding author.
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Fig. 1: Architecture of our 3D SPADE CNN.

Density Decoder
Layer in channels out channels description
LinearRelu0 16 64 in: f3D

fg
LinearRelu1 64 1 out: σfg

Color Decoder
Layer in channels out channels description
LinearRelu0 16+9+63 128 in: f3D

fg , f2D
fg , γ(x)

LinearRelui=1,2 128 128 /
LinearRelu3 128+32+3 128 in: + d,w
LinearRelu4 128 64 /
LinearRelu5 64 3 out: cfg

Table 1: Density and Color Decoder Architectures. From top to bottom: two-
layer MLP for density prediction and six-layer MLP for color prediction.

A.3 Background and Sky Network Architectures

We also build the generalizable model for the background and sky region via the
image-based rendering paradigm as we mentioned in the main paper. We now
show the details of the background and sky network details in Tab. 2.

B Implementation Details

B.1 Input Volume Random Masking

Our target is to perform novel view synthesis from sparse urban images. When
provided with sparse images, the accumulated point clouds are often incomplete
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Background network architecture
Layer in channels out channels description
LinearRelu0 63+9 128 in: f2D

fg , γ(x)
LinearRelui=1,2,3 128 128 /
LinearRelu4 128 16 out: σbg, fe
LinearRelu5 15+3 64 /
LinearRelu6 64 64 /
LinearRelu7 64 3 out: cbg

Sky network architecture
Layer in channels out channels description
LinearRelu0 9+3 3 in: f2D

fg ,d; out: csky

Table 2: Background and Sky Network Architectures. The fe ∈ R15 represents
the geometric embedding vector and serves as the input for background color prediction.

and contain holes due to occlusions or insufficient overlap across the input frames.
To equip EDUS with the capability to handle sparse and incomplete point clouds
by filling in the missing parts, we randomly mask portions of the point cloud
during the training stage. Specifically, we randomly select an 8m × 8m × 12m
cuboid in each iteration, corresponding to a volume of size [40 × 40 × 60], and
eliminate the point cloud within this area. Note that this is not applied in feed-
forward inference nor per-scene fine-tuning. This simple yet effective strategy
enhances the generalizable ability on novel scenes, as shown in our ablation
study in Sec. E.2.

B.2 Hierarchical Sampling

The total number of samples located at the ray is 160 with 128 sampled from
the foreground and 32 from the background. Specifically, we first select 80 points
along the ray within the foreground volume, distributing one-half of these sam-
ples uniformly, while the other half is allocated linearly based on disparity spac-
ing, following Nerfacto [7]. Next, we iteratively perform importance sampling
to sample valid regions containing solid contents based on the coarse density
prediction following NeuS [9], with three iterations and 16 samples for each it-
eration. For the background, we additionally uniformly sample 32 points out of
the foreground volume.

B.3 Accumulated Point Cloud

We design our accumulated point cloud to encourage the model to learn comple-
tion. Considering that the sparsity level in real-world driving data is unknown
in advance, we aim to train a single generalizable model and evaluate its per-
formance at different sparsity levels. In our main experiments, all generalizable
methods are trained at the sparsity level of the drop50 setting, i.e., 50% images
are available for supervision. Instead of directly using the 50% reference images
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to create the accumulated point cloud, we create a more sparse point cloud for
training to encourage the model to learn scene completion. Specifically, the ac-
cumulated point cloud we use for training is from every fifth of the stereo pairs.
Note that during the feed-forward inference or per-scene optimization, we al-
ways use the given reference images of different sparsity levels (50%, 80%, or
90%) to generate the corresponding accumulated point cloud. This ensures fair
comparison to the baselines and further verifies our method’s robustness to the
density of the input point cloud.

C Baselines

Generalizable NeRFs We utilize the official implementations of IBR-Net,
MVSNeRF, Neo360, and MuRF. For each method, we pretrain the model using
80 scenes from the KITTI360 dataset [4] under a 50% drop rate. In the case of
IBR-Net, MVSNeRF, and MuRF, we select the nearest three training frames of
the target view as reference frames. As MVSNeRF constructs local cost volumes
defined at reference views, we adjust the fine-tuning strategy of MVSNeRF to
dynamically use the nearest reference frames to construct the cost volume, sim-
ilar to the pre-training phase, rather than employing a fixed set of frames as in
their original implementation.

Test-Time Optimization Methods The test-time optimization approaches
are individually trained for each scene under three sparsity levels. We employ
the official codebase of MixNeRF [6] and implement SparseNeRF [8] and DS-
NeRF [2] by integrating stereo depth supervision onto Nerfstudio’s Mip-NeRF
model [1, 7]. Additionally, we utilize the splatfacto model of Nerfstudio to train
our 3D GS [3]. To ensure a fair comparison, we provide the depth maps used
in our approach to train the depth-supervision methods [2, 8]. When it comes
to point cloud-based methods [3], we find that the missing of sky may lead to a
decline of performance, so we keep the sky in the point cloud and initialize the
model with it.

D Datasets

D.1 KITTI-360

We follow the 50% drop rate (Drop50) and 90% drop rate (Drop90) settings
of the KITTI-360 dataset and expand them into 80% drop rate (Drop80). To
be more specific, we take a pair of left and right eye image pairs as the unit.
In the Drop50 setting, we use odd-numbered image pairs as the training set.
Similarly, in the Drop80 and Drop90 settings, we use every fifth or every tenth
pair of images for training, respectively. Note that all test frames are the same
to allow comparison across different sparsity levels. For example, considering
ten consecutive image pairs, Drop50 refers to using pairs of id 0, 2, 4, 6, 8 for
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training, whereas Drop80 and Drop90 refer to using 0, 5 and 0, respectively. The
test frames are selected as the left-eye image of 1, 3, 7, 9 pairs to avoid overlapping
with the training frames.

D.2 Waymo

We use the same drop rate setting and point cloud accumulation scheme as
the KITTI-360 dataset for Waymo. Note that we only use the front camera of
the Waymo dataset. Therefore, every odd-numbered image is used for training
for the Drop50 setting, and every fifth or tenth image is used for Drop80 and
Drop90, respectively. The test views are configured to encompass frames at the
3rd and 7th positions, as well as frames with id equivalent to 3 or 7 plus the
multiples of 10, which has no overlapping with the training set.

E Additional Experimental Results

E.1 Qualitative Results of Ablation Study

Fig. 2 demonstrates the qualitative outcomes of our ablation study. These results
are all derived from feed-forward inference images under the Drop50 sparsity
level, which align seamlessly with the corresponding quantitative results in Table
3 of the main paper. The substitution of the modulated SPADE CNN with a
conventional 3D U-Net leads to less detailed prediction and yields blurriness
in some regions. The elimination of the 2D image-based feature results in the
high-frequency contents losing their sharpness and becoming noticeably blurry.
Moreover, if we solely represent the scene as foreground, it results in artifacts
in the distant region, due to the wrong modeling of the scene geometry. Our
fully integrated model exhibits the highest quality of reconstruction, effectively
validating our design choices.

E.2 Additional Ablation of Input Volume Random Masking

As shown in Tab. 3, the random mask strategy helps improve our feed-forward
performance, which means our model is equipped with filling capacity to process
the incomplete point cloud by adding random masking.

E.3 Additional Comparison on Waymo Dataset

We conduct zero-shot NVS under a drop rate of 50% using the model trained
on the KITTI-360 dataset, and the rendered images are shown in Fig. 3. To
further verify our method’s performance given different training scenes, we train
all generalizable methods on the Waymo dataset and evaluate them on Waymo
and KITTI-360, see Tab. 4. Specifically, all models are trained with the Drop50
setting on the Waymo dataset. Our model has better performance under 80%
drop rate thanks to the depth-guided global volume and achieves the best metrics
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(a) 3D U-Net (b) w/o f2Dfg

(c) w/o decomposition (d) Full model

(e) GT

Fig. 2: Qualitative Results of Ablation Study. The experiments are conducted
on KITTI-360 under Drop50 sparsity level.

Ablation
KITTI360drop50 KITTI360drop80

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o random masking 20.62 0.694 0.228 18.54 0.641 0.288

Full model 21.93 0.745 0.178 19.63 0.668 0.244

Table 3: Ablation Study of Input Volume Random Masking. The results show
that the random masking strategy in the training stage improves the feed-forward
inference performance using different sparse settings.

after fine-tuning. Note that our depth guidance of the Waymo dataset is obtained
from a monocular depth estimation method [11], demonstrating that we are able
to learn an effective generalizable model guided by noisy monocular depth priors.
Fig. 4 shows the feed-forward and fine-tuned qualitative results of our method
trained and evaluated on the Waymo dataset.

E.4 Additional Qualitative Analysis of Geometry Prediction

Fig. 5 shows the novel view synthesis and depth comparison of our method
to other optimization-based methods under Drop90 setting. The quantitative
comparisons are reported in Table 2 of the main paper. Note that all meth-
ods except for Mix-NeRF use the same depth maps as supervision (DS-NeRF,
SparseNeRF) or as input (3DGS, Ours). Although 3DGS [3] renders relatively
good depth maps, it shows obvious flaws in appearance under sparse settings.
Our model shows the best geometry thanks to our generalizable prior. As shown
in Fig. 6, we illustrate the geometry extracted from the feed-forward inference,
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Fig. 3: Zero-shot Inference on Waymo dataset. Our model is trained on the KITTI-
360 dataset using Drop50 sparsity level.
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Fig. 4: Qualitative Results trained and evaluated on Waymo dataset. Our model is
trained on Waymo dataset using Drop50 sparsity level. The feed-forward inference and
fine-tuning are performed under the Drop80 setting.

demonstrating that our EDUS is able to refine the noisy input point cloud and
fill holes with generalizable 3D CNN.

E.5 Number of Reference Views for Generalizable NeRFs

As we have mentioned in the main paper, our method takes input as a point
cloud, which accumulates multi-frame information in addition to the reference
frames. To verify fairness and our advancement compared with other reference-
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Methods Setting Waymodrop50 Waymodrop80 KITTI360drop50

PSNR↑SSIM↑ LPIPS↓ PSNR↑SSIM↑ LPIPS↓ PSNR↑SSIM↑ LPIPS↓

IBR-Net
No

per-scene
opt.

22.90 0.739 0.148 17.90 0.619 0.242 18.88 0.606 0.272
MVSNeRF 18.05 0.595 0.378 17.41 0.581 0.404 15.35 0.524 0.389
Neo360 16.28 0.505 0.569 15.83 0.505 0.584 10.99 0.204 0.687
MuRF 23.66 0.746 0.256 21.25 0.664 0.327 19.83 0.669 0.340
Ours 23.41 0.769 0.147 21.64 0.703 0.204 20.13 0.659 0.257
IBR-Net

Per-scene
opt.

23.71 0.861 0.121 18.58 0.741 0.222 20.78 0.650 0.205
MVSNeRF 22.42 0.699 0.309 20.81 0.657 0.348 18.80 0.611 0.354
Neo360 21.76 0.647 0.517 20.66 0.631 0.533 17.89 0.480 0.571
MuRF 24.06 0.753 0.224 22.85 0.711 0.260 21.24 0.710 0.265
Ours 26.88 0.839 0.109 24.33 0.776 0.164 24.35 0.787 0.145

Table 4: Quantitative Comparison on five test scenes among generalizable meth-
ods. All models are trained on the Waymo dataset using Drop50 sparsity level.

(a) Mix-NeRF (b) DS-NeRF

(c) SparseNeRF (d) 3DGS

(e) Ours (f) GT

Fig. 5: Qualitative Depth Comparison with test-time optimization methods.
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(a) Filling holes in input point clouds.

(b) Removing noise from input point clouds.

Fig. 6: Qualitative Results of density volume extracted from our feed-forward in-
ference.

based methods, we evaluate the state-of-the-art approach MuRF [10] using differ-
ent numbers of reference images. Specifically, we gradually increase the number
of reference frames which is used for feature extraction and conduct feed-forward
inference on our test sequence of the KITTI-360 dataset under Drop80 setting.
We find that increasing the number of reference frames does not improve the
model’s performance. This may be due to the fact that further reference frames
have stronger occlusions, hence increasing the difficulty of feature matching. On
the other hand, the usage of more input frames also increases the burden on com-
puting resources and causes out-of-memory when the number of views achieves
10. On the contrary, our method utilizes a fixed size of point cloud and manages
to combine multi-frame guidance to predict accurate scene geometry. The results
of MuRF using different numbers of reference views are shown in Tab. 5.

E.6 Limitations

Although our approach achieves superior performance on NVS from sparse urban
images, it still suffers degeneration when there is less overlap between the target
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Num. of Views PSNR↑ SSIM↑ LPIPS↓

2 18.06 0.606 0.374
3 18.69 0.639 0.353
4 18.47 0.633 0.361
6 16.61 0.589 0.410
8 15.01 0.544 0.459
10 / / /

Table 5: Number of Reference Views for MuRF. We evaluate MuRF using
various numbers of reference views. Note that the performance of MuRF does not
increase wrt. the number of reference views.

Fig. 7: Limitations in Drop90 Feed-Foward Inference. Our performance degen-
erates in regions with insufficient overlap between reference and target frames, e.g., the
bottom of the images.

image and reference images. In this case, 3D sample points will not query ac-
curate appearance information from nearby images, leading to blurry rendering
at the bottom of the test images, as illustrated in Fig. 7. This problem may be
mitigated in future work by improving the 3D CNN’s capacity to directly predict
high-frequency appearance instead of querying color from reference images.
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