Occupancy Networks: Learning 3D Reconstruction in Function Space

Andreas Geiger

Autonomous Vision Group University of Tübingen / MPI for Intelligent Systems

University of Tübingen MPI for Intelligent Systems

Autonomous Vision Group

Occupancy Networks: Learning 3D Reconstruction in Function Space

[Mescheder, Oechsle, Niemeyer, Nowozing & Geiger, CVPR 2019]

What is a good **output** representation?

Voxels:

- ► Discretization of 3D space into grid
- ► Easy to process with neural networks
- Cubic memory $O(n^3) \Rightarrow$ limited resolution
- Manhattan world bias

[Maturana et al., IROS 2015]

Points:

- ► Discretization of surface into 3D points
- Does not model connectivity / topology
- ► Limited number of points
- ► Global shape description

[Fan et al., CVPR 2017]

Meshes:

- ► Discretization into vertices and faces
- ► Limited number of vertices / granularity
- ▶ Requires class-specific template or –
- ► Leads to self-intersections

[Groueix et al., CVPR 2018]

This work:

- ► Implicit representation ⇒ No discretization
- Arbitrary topology & resolution
- ► Low memory footprint
- ► Not restricted to specific class

Occupancy Networks

Key Idea:

- ► Do not represent 3D shape explicitly
- Instead, consider surface implicitly as decision boundary of a non-linear classifier:

Concurrent work:

- ▶ DeepSDF [Park et al., CVPR 2019]
- ▶ IM-NET [Chen et al., CVPR 2019]

Training Objective

Occupancy Network:Variational Occupancy Encoder:

$$\mathcal{L}(\theta, \psi) = \sum_{j=1}^{K} \mathsf{BCE}(f_{\theta}(p_{ij}, z_i), o_{ij}) + KL\left[q_{\psi}(z | (p_{ij}, o_{ij})_{j=1:K}) \| p_0(z)\right]$$

- K: Randomly sampled 3D points (K = 2048)
- ► BCE: Cross-entropy loss
- ► q_{ψ} : Encoder

Results

Can we also learn about object appearance?

Representation Power

Ground truth vs. Texture Field vs. Voxelization

Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019.

Results

What about object motion?

Occupancy Flow

- Extending Occupancy Networks to 4D is hard (curse of dimensionality)
- Represent shape at t = 0 using a 3D Occupancy Network
- ► Represent motion by temporally and spatially continuous vector field
- ► Relationship between 3D trajectory s and velocity v given by (differentiable) ODE:

$$\frac{\partial \mathbf{s}(t)}{\partial t} = \mathbf{v}(\mathbf{s}(t), t)$$

Occupancy Flow

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019.

Results

• No correspondences needed \Rightarrow implicitly established by our model!

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019.

Summary

Thank you!

http://autonomousvision.github.io

