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[Mescheder, Oechsle, Niemeyer, Nowozing & Geiger, CVPR 2019]



What is a good output representation?



3D Representations

Voxels:
I Discretization of 3D space into grid
I Easy to process with neural networks
I Cubic memory O(n3)⇒ limited resolution
I Manhattan world bias

[Maturana et al., IROS 2015]
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3D Representations

Points:
I Discretization of surface into 3D points
I Does not model connectivity / topology
I Limited number of points
I Global shape description

[Fan et al., CVPR 2017]
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3D Representations

Meshes:
I Discretization into vertices and faces
I Limited number of vertices / granularity
I Requires class-specific template – or –
I Leads to self-intersections

[Groueix et al., CVPR 2018]
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3D Representations

This work:
I Implicit representation ⇒ No discretization
I Arbitrary topology & resolution
I Low memory footprint
I Not restricted to specific class
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Occupancy Networks
Key Idea:
I Do not represent 3D shape explicitly
I Instead, consider surface implicitly

as decision boundary of a non-linear classifier:

3D
Location

Occupancy
Probability

Condition
(eg, Image)

Concurrent work:
I DeepSDF [Park et al., CVPR 2019]
I IM-NET [Chen et al., CVPR 2019]

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 5



Training Objective

Occupancy Network:Variational Occupancy Encoder:

L(θ, ψ) =
K∑
j=1

BCE(fθ(pij , zi), oij) +KL [qψ(z|(pij , oij)j=1:K) ‖ p0(z)]

I K : Randomly sampled 3D points (K = 2048)
I BCE: Cross-entropy loss
I qψ : Encoder

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 6



Results

Mescheder, Oechsle, Niemeyer, Nowozin and Geiger: Occupancy Networks: Learning 3D Reconstruction in Function Space. CVPR, 2019. 7



Can we also learn about object appearance?



Texture Fields
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Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 9
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Representation Power

I Ground truth vs. Texture Field vs. Voxelization

Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 11



Results

Oechsle, Mescheder, Niemeyer, Strauss and Geiger: Texture Fields: Learning Texture Representations in Function Space. ICCV, 2019. 12



What about object motion?



Occupancy Flow

I Extending Occupancy Networks to 4D is hard (curse of dimensionality)
I Represent shape at t = 0 using a 3D Occupancy Network
I Represent motion by temporally and spatially continuous vector field
I Relationship between 3D trajectory s and velocity v given by (differentiable) ODE:

∂s(t)

∂t
= v(s(t), t)

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 14



Occupancy Flow

Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 15



Results

I No correspondences needed ⇒ implicitly established by our model!
Niemeyer, Mescheder, Oechsle and Geiger: Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics. ICCV, 2019. 16



Summary
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Thank you!
http://autonomousvision.github.io

http://autonomousvision.github.io

