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Which Training Methods for GANs do 
actually Converge?
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Introduction

Generative neural networks:

Key challenge:
have to learn high dimensional probability distribution

noise
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Introduction

Generative Adversarial networks (GANs):

real or fake?Generator

Discriminator
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Generative Adversarial Networks

Alternating gradient descent
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Generative Adversarial Networks

Simultaneous gradient descent
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Generative Adversarial Networks

● Does a (pure) Nash-equilibrium exist?
– Yes, if there is      with                     (Goodfellow et al., 2014) 

● Does it solve the min-max problem?
– Yes, if                      (Goodfellow et al., 2014)

● Do simultaneous and / or alternating gradient descent converge 
to the Nash-equilbrium? 
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Ist GAN training locally asymptotically stable?

Mescheder et al. (2017): No, if Jacobian of gradient
vector field has purely imaginary eigenvalues

Is GAN training locally asymptotically stable in the 
general case?

Nagarajan and Kolter (2017): Yes, if generator
and data distributions locally have the same support

Heusel et al. (2017): Yes, if optimal discriminator
parameters are continuous function of generator parameters
and two-timescale annealing scheme is adopted
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Our Contributions

● Dirac-GAN:
– Unregularized GAN-training is not always stable

when distributions do not have the same support
● Analysis of common regularizers:

– WGAN and WGAN-GP not always stable
– Instance noise & zero-centered gradient penalties are stable

● Simplified gradient penalties
– Convergence proof for realizable case

● Empirical results:
– High resolution (1024x1024) generative models

without progressively growing architectures
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Convergence theory

“Simple experiments, simple theorems are the building 
blocks that help us understand more complicated systems.”

Ali Rahimi – Test of Time Award speech, NIPS 2017
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Convergence theory

The Dirac-GAN:
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Convergence theory

Unregularized GAN training:
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Convergence theory

Understanding the gradient vector field:

Local convergence of simultaneous and alternating gradient 
descent determined by eigenvalues of Jacobian
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Convergence theory

Continuous system:
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Convergence theory

Continuous system:
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Convergence theory

Discretized system:
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Convergence theory

Discretized system:
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Which training methods converge?

Unregularized GAN training:

Eigenvalues:
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Which training methods converge?

Eigenvalues:

Wasserstein-GAN1 training:

1Arjovsky et al. - Wasserstein GAN (2017)
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Which training methods converge?

Eigenvalues:

Wasserstein-GAN1 training
(5 discriminator updates / generator update):

1Arjovsky et al. - Wasserstein GAN (2017)
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Which training methods converge?

Zero-centered Gradient Penalties

Eigenvalues:
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Which training methods converge?

Zero-centered Gradient Penalties (critical)

Eigenvalues:
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Which training methods converge?

Zero-centered Gradient Penalties

no convergence

slow convergence

fast convergence
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General convergence results

● Regularizers for discriminator

● Regularized gradient vector field
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Assumption IV: the generator and data distribution
have locally the same support (Nagarajan & Kolter)

General convergence results

Assumption I: the generator can represent the 
true data distribution

Assumption II:                 and  

Assumption III: the discriminator can detect when 
the generator deviates from equilibrium 
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Assumption IV: the generator and data distribution
have locally the same support (Nagarajan & Kolter)

General convergence results

Assumption I: the generator can represent the 
true data distribution

Assumption II:                 and  

Assumption III: the discriminator can detect when 
the generator deviates from equilibrium 

For the Dirac-GAN:
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Assumption IV: the generator and data distribution
have locally the same support (Nagarajan & Kolter)

General convergence results

Assumption I: the generator can represent the 
true data distribution

Assumption II:                 and  

Assumption III: the discriminator can detect when 
the generator deviates from equilibrium 

For GANs in the wild:
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General convergence results

Theorem: under Assumption I, II, III and some mild 
technical assumptions the GAN training dynamics 
for the regularized training objective are locally 
asymptotically stable near the equilibrium point
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General convergence results

Proof (idea):

1Nagarajan & Kolter - Gradient descent GAN optimization is locally stable (2017)

(Extends prior work by Nagarajan & Kolter1)

Negative definiteFull column rank

(orthogonal to                        )  

All eigenvalues of                     have negative real part
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Experiments

Imagenet (128 x 128, 1k classes)
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Experiments

LSUN bedrooms (256 x 256)
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Experiments

LSUN churches (256 x 256)
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Experiments

LSUN towers (256 x 256)



 33

Experiments

celebA-HQ (1024 x 1024)
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● use alternating instead of simultaneous gradient descent
● don’t use momentum
● use regularization to stabilize the training
● simple zero-centered gradient penalties for the discriminator 

yield excellent results 
● progressively growing architectures might be not all that 

important when using a good regularizer

Practical recommendations
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