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Abstract

We present a new notion of probabilistic duality for random vari-
ables involving mixture distributions. Using this notion, we show how
to implement a highly-parallelizable Gibbs sampler for weakly coupled
discrete pairwise graphical models with strictly positive factors that
requires almost no preprocessing and is easy to implement. Moreover,
we show how our method can be combined with blocking to improve
mixing. Even though our method leads to inferior mixing times com-
pared to a sequential Gibbs sampler, we argue that our method is still
very useful for large dynamic networks, where factors are added and
removed on a continuous basis, as it is hard to maintain a graph color-
ing in this setup. Similarly, our method is useful for parallelizing Gibbs
sampling in graphical models that do not allow for graph colorings with
a small number of colors such as densely connected graphs.

1 Introduction

Inference in general discrete graphical models is hard. Besides variational
methods, the main approach for inference in such models is through running
a Markov chain that in the limit draws samples from the true posterior
distribution.

One such Markov-Chain is given by the so-called Gibbs-sampler that
was first introduced introduced by Geman and Geman [4]. In each step,
one random variable is resampled given all the others, using the conditional
probability distributions in the graphical model. Under mild hypotheses, the
Gibbs sampler produces an ergodic Markov chain that converges to the target
distribution. The main appeal of the Gibbs sampler lies in its simplicity and
ease of implementation. Unfortunately, for highly coupled random variables,
mixing of this Markov chain can be prohibitively slow. Moreover, in order
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to achieve ergodicity, we have to sample one variable after another, yielding
an inherently sequential algorithm. However, with the advent of affordable
parallel computing hardware in the form of GPUs, it is desirable to have
a parallel sampling algorithm. Early attempts tried running all the update
steps in parallel [4], however this update schedule usually does not converge
to the target distribution [8].

Another common approach to parallel Gibbs-sampling is to compute a
graph coloring of the underlying graph and then perform Gibbs-sampling
blockwise [5]. However, it is not always straightforward to find an appro-
priate graph coloring and it is hard to maintain such a graph coloring in a
dynamic setup, i.e. when factors are added and removed on a continuous
basis.

In this paper, we show a simple method of parallelizing a Gibbs-sampler
that does not require a graph coloring. This is particularly useful for sit-
uations in which a graph coloring is hard to obtain or the graph topology
changes frequently, which requires to maintain or to recompute the graph
coloring.

2 Related Work

An early attempt at parallelization for Ising models was described by Swend-
sen and Wang [12]. Their method was generalized to arbitrary probabilis-
tic graphical models in [1]. However, while the Swendsen Wang-algorithm
mixes fast for the Ising model with no unary potentials, this needs not be the
case for general probabilistic graphical models [6, 7]. Higdon [6] presents a
method for performing partial Swendsen Wang-updates. However, sampling
using Higdon’s method requires sampling from a coarser graphical model
as a subproblem, which Higdon tackles using conventional sampling meth-
ods. Our dualization strategy allows to circumvent this step, so that only
standard clusterwise sampling as in [12] is required.

[5] describes two ways of parallelizing Gibbs sampling in discrete Markov
random fields. The first method relies on computing graph colorings, the
second on decomposing the graph into blocks (called splashes) consisting
of subgraphs with limited tree width. Both methods are complimentary in
that graph colorings work well for loosely-coupled graphical models whereas
splash sampling works well in the strongly coupled case. However, comput-
ing a minimal graph coloring is a NP-hard problem [3] and the number of
colorings necessary depends on the graph. Moreover, it is hard to maintain
a graph coloring in a dynamic setting in which the graph topology is not
constant anymore. Our approach does not suffer from these issues and re-
quires almost no preprocessing. Moreover, our approach can be combined
with splash sampling. Whereas the approach in [5] requires the splashes to
be induced subgraphs of the graphical model, our approach allows to select
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arbitrary subgraphs of the graphical model as splashes, making it possible
to use splashes containing many variables.

Schmidt et al. show in [10] how a Gaussian scale mixtures (GSMs) can
be used for efficiently sampling from fields of experts [9]. Our approach is
very similar to theirs, but deals with discrete graphical models. Moreover,
whereas Schmidt et al. started with a model in a primal-dual formulation
and trained it on data, we focus on decomposing existing graphical models
and mainly use duality for inference. In fact, both techniques can be sub-
sumed in the framework of exponential family harmoniums [13], which makes
it possible to deal with models consisting of both discrete and continuous
random variables.

Martens et al. [7] show how to sample from a discrete graphical model
using auxiliary variables. Their approach is similar to ours, but relies on
computing the (sparse) Cholesky decomposition of a large matrix before-
hand. Our approach does not have this issue.

A variant of our algorithm that computes expectations instead of per-
forming sampling corresponds to the mean-field-algorithm for junction tree-
approximations in [14]. We can show that our algorithm minimizes an upper
bound to the true mean-field objective. However, whereas the mean-field
algorithm in [14] has to recalibrate the tree for each update of a potential,
our algorithm updates all the potentials at once with only one run of the
junction-tree-algorithm.

Schwing et al. [11] designed a system that performs belief propagation
in a distributed way. Our approach has a similar goal but follows a different
strategy: while Schwing et al. achieve parallelism through a convex formula-
tion, we augment the probabilistic model with additional random variables.

3 Probabilistic duality

We first define the notion of duality of random variables. Note that this
definition is very similar to the Lagrange functional of a convex optimization
problem in convex analysis.

Definition 1. Let x ∈ Ωx and θ ∈ Ωθ denote random variables. We call
functions s : Ωx → V and r : Ωθ → V to a common vector space with some
bilinear form link functions. We say x and θ are dual to each other via (s, r)
if the joint distributions can be written as

p(x, θ) = h(x)g(θ)e〈s(x),r(θ)〉

with positive functions h : Ωx → R and g : Ωθ → R.

In the language of [13], a dual pair of random-variables is simply an
exponential family harmonium. For a pair of link functions (s, r) and h :
Ωx → R, g : Ωθ → R some real valued functions we now define the concept
of an (s, r)-transform.
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Definition 2. The (s, r)-transforms of h : Ωx → R, g : Ωθ → R is defined
as

H(θ) :=
∑
x

h(x)e〈s(x),r(θ)〉

G(x) :=
∑
θ

g(θ)e〈s(x),r(θ)〉.

Note the resemblance to the notion convex conjugacy. The following
simple lemma is central to the rest of the theory:

Lemma 1. Let be x and θ two dually related random variables with joint
probability density as above. Then

p(x) = h(x)G(x)

p(θ) = H(θ)g(θ)

p(x | θ) =
h(x)

H(θ)
e〈s(x),r(θ)〉

p(θ | x) =
g(θ)

G(x)
e〈s(x),r(θ)〉.

Formally, this is similar to the notion of duality in convex optimization,
we call the problem of sampling from p(x) the primal and the corresponding
problem of sampling from p(θ) the dual sampling problem. The primal and
dual problems are linked to each other via the conditional densities p(x | θ)
and p(θ | x). Note that both p(x | θ) and p(θ | x) are in the exponential
family.

Another view is that we represent p(x) as a mixture of probability distri-
butions p(x | θ) from a specified exponential family determined by s(x) and
h(x). The density of the mixture parameters is then given by p(θ).

To obtain a dual formulation of a sampling problem, we have to decom-
pose p(x) as

p(x) = h(x)G(x) = h(x)
∑
θ

g(θ)e〈s(x),r(θ)〉

with some functions g(θ) and h(x). p(x) is then the marginal of

p(x, θ) = h(x)g(θ)e〈s(x),r(θ)〉.

We show how this can be done for the discrete case in Section 4.1.
Further evidence can be incorporated by replacing s(x) and h(x) with

s̃(x) = s(x, xe) and h̃(x, xe) = h(x, xe).

The lemma already shows a possible strategy how to sample from p(x)
using a simple Gibbs sampler: first sample from p(x | θ), then from p(θ | x)
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and so on. As both x and θ are generally high-dimensional, sampling from
p(x | θ) and from p(θ | x) could potentially cause problems. However, we
show that p(x | θ) and p(θ | x) both factorize in Markov random fields for
appropriate choices s and r which yields algorithms that are very easy to
parallelize.

4 Duality in MRFs

We now take a closer look at sampling in Markov random fields. The
Hammersley-Clifford theorem states that the joint probability density of
nodes in the MRF can be decomposed as

p(x) =
1

Z

N∏
i=1

pi(x)

with some probability measures pi and normalization constant Z. In
general the pi only depend on a small subset of the components of x (e.g.
the cliques in the MRF). Assume that for every pi we have a random variable
θi, so that x and θi are dual to each other via (s, ri) with respect to pi. We
can then write

pi(x, θi) = hi(x)gi(θi)e
〈s(x),ri(θi)〉.

Theorem 1. Let θ := (θ1, . . . , θN ) and r(θ) :=
∑

i ri(θi), h(x) :=
∏
i hi(x)

and g(θ) :=
∏
i gi(θi).

Then p(x) is the marginal of

p(x, θ) ∝ h(x)g(θ)e〈s(x),r(θ)〉.

Thus if p(x, θ) ∝ h(x)g(θ)e〈s(x),r(θ)〉, x and θ are dual to each other. The
marginal distribution of θ is given by

p(θ) ∝ H(θ)
∏
i

gi(θ).

Proof. We have

p(x) ∝
∏
i

hi(x)Gi(x) =
∏
i

hi(x)
∑
θi

gi(θi)e
〈s(x),ri(θi)〉


=
∑
θ1

· · ·
∑
θN

[∏
i

hi(x)

][∏
i

gi(θi)

]
e〈s(x),

∑
i ri(θi)〉

=
∑
θ

h(x)g(θ)e〈s(x),r(θ)〉.
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Corollary 1. p(x | θ) and p(θ | x) are given by

p(x | θ) ∝
∏
i

hi(x)e〈s(x),
∑

i ri(θi)〉

p(θ | x) ∝
∏
i

gi(θi)e
〈s(x),

∑
i ri(θi)〉.

In particular, p(θ | x) factorizes and if hi ≡ 1 and every component of
s(x) only depends on one component of x, p(x | θ) factorizes as well. In
particular, this is true for the standard choice s(x) = x.

4.1 Binary pairwise MRFs

We now want to turn to the special case of a pairwise binary MRF. It turns
out that finding a dual representation is equivalent to finding an appropriate
factorization of the probability table.

Theorem 2. Let P be proportional to the probability table of two binary
random variables x1 and x2. Assume we are given a factorization P = BCᵀ

with B,C ∈ R2×2, where both B and C have strictly positive entries. Let

α1 = log
B2,1

B1,1

α2 = log
C2,1

C1,1

q = log
B1,2C1,2

B1,1C1,1

β1 = log
B2,2B1,1

B1,2B2,1

β2 = log
C2,2C1,1

C1,2C2,1
.

Then
p(x1, x2) ∝

∑
θ∈{0,1}

h(x)g(θ)e〈x,r(θ)〉

with

r(θ) = θ

(
β1
β2

)
.

h(x) = eα1x1eα2x2

g(θ)= eqθ.

Proof. This follows from

P =
∑
i=1,2

(
B1,i

B2,i

)(
C1,i C2,i

)
after a simple calculation.
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We will now show how to find such a factorization:

Lemma 2. If P is symmetric and detP ≥ 0, P can be factored in the form
P = BBᵀ, where

B =

( √
p11 cos(ϕ)

√
p11 sin(ϕ)√

p22 sin(ϕ)
√
p22 cos(ϕ)

)
with ϕ =

π

4
− 1

2
arccos

(
p12√
p11p22

)
.

Proof. B is well defined because 0 ≤ detP = p11p22 − p212 and positive
because ϕ ∈

(
0, π4

)
. Now let

B =

(
b̃ᵀ1
b̃ᵀ2

)
.

We have

BBᵀ =

(
‖b̃1‖2 〈b̃1, b̃2〉
〈b̃1, b̃2〉 ‖b̃2‖2

)
.

Due to trigonometric considerations

BBᵀ =

(
p11 c

√
p11p22

c
√
p11p22 p22

)
with c = cos

(π
2
− 2ϕ

)
.

This shows BBᵀ = P as required.

Remark 1. For ϕ = π
4 −

1
2 arccos(a), we have

cos(ϕ) =
1

2
(
√

1 + a+
√

1− a)

sin(ϕ) =
1

2
(
√

1 + a−
√

1− a).

Lemma 3. For any P , then (
p−112 0

0 p−121

)
P

is symmetric.

Lemma 4. If detPi < 0 , then(
0 1
1 0

)
P

has positive determinant.

In summary, we have found a strictly positive factorization of any strictly
positive 2× 2 matrix. Together with Theorem 1 this yields a dual represen-
tation for every binary pairwise MRF.
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4.2 General discrete MRFs

When the variables are allowed to have multiple states, we can convert any
discrete pairwise MRF into a binary MRF using 0−1-encoding and additional
hard-constraints that ensure that exactly one binary variable belonging to a
random variable in the original MRF has value 1. All inference algorithms
in this paper therefore generalize to this situation.

Dualizing a n × m factor in this way introduces nm auxiliary binary
random variables to the model. Note however, that no new random vari-
ables need to be introduced for 1-entries in the factor. For example, for a
Potts-factor of order n, only n auxiliary binary random variables have to be
introduced per factor.

Arbitrary discrete MRFs with higher-order factors work as well, as long
as we can find an appropriate positive tensor factorization of the probability
table. Moreover, it is also possible to perform inference approximately by
fitting a mixture of Bernoulli / mixture of Dirichlet distributions to the
factors using expectation maximization.

4.3 Swendsen-Wang and local constraints

As it turns out, the Swendsen-Wang algorithm can be seen as a degenerate
special case of our formalism for a particular choice of s(x). Moreover,
more general local constraint models can potentially be derived from this
formalism.

More explicitly, for the Ising model let

s(x) := (−I(xe1 = xe2))e∈E

where E denotes the set of edges and

I(xe1 = xe2) =

{
0 if xe1 = xe2
∞ else

.

The Ising factor of the form

Pi ∝
(

1 e−wi

e−wi 1

)
=

(
e−wi e−wi

e−wi e−wi

)
+

(
1− e−wi 0

0 1− e−wi

)
can then be decomposed as

Pi(xe1 , xe2) =
∑

θi∈{0,1}

g(θi)e
−θiI(xe1=xe2 ).

where

g(0) = e−wi

g(1) = 1− e−wi .
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The primal dual sampling algorithm then proceeds as follows:

p(θi | x) ∝ g(θi)e
−θiI(xe1=xe2 )

p(x | θi) ∝ e−
∑

i θiI(xe1=xe2 ),

which are just the update rules for the Swendsen-Wang algorithm.
The partial Swendsen-Wang method by Higdon [6] can be regarded as a

decomposition of the form

Pi ∝
(

1− α e−wi

e−wi 1− α

)
+

(
α 0
0 α

)
.

This leads to the method described by Higdon, where we are left with sam-
pling from coarser Ising-model. By applying a factorization as in Section
4.1 to the first term enables us to circumvent this step, so that all clusters
can be sampled independently (the latent variables θ then have 3 different
states).

Similarly, the generalization of the Swendson-Wang algorithm in [1] can
be regarded as a multiplicative decomposition of the form

Pi ∝
(

ewi 1
1 ewi

)
? P̃i,

where we used the ?-operator to indicate componentwise multiplication. Ap-
plying the decomposition above to the first factor, yields (a variant of) the
method in [1]. We can use our method to further decompose P̃i, allowing to
update all clusters in parallel.

5 Inference

5.1 Sampling

Having a primal-dual representation of p(x) of the form

p(x, θ) ∝ h(x)g(θ)e〈s(x),r(θ)〉

we can sample from p(x, θ) (and thereby from p(x)) by blockwise Gibbs-
sampling, i.e.

x(t+1) ∼ p(x | θ(t)) ∝ h(x)e〈s(x),r(θ
(t))〉

θ(t+1) ∼ p(θ | x(t+1)) ∝ g(θ)e〈s(x
(t+1)),r(θ)〉.

For discrete pairwise MRFs with the dual representations as described above,
both distributions factor, so that sampling can be done in parallel, e.g. on
the GPU. Effectively, we have converted our model to a restricted Boltzmann
machine.
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5.2 Estimation of the log-partition-function

The logarithm normalization constant of an unnormalized probability distri-
bution, the so-called log-partition-function, is important for model-selection
and related tasks. In this section, we provide a simple estimator for this
quantity that can be used for any dual pair of random variables.

The following defines an unbiased estimator for the partition function Z:

V (x, θ) =
p̃(x)p̃(θ)

p̃(x, θ)
= Z

p(x)p(θ)

p(x, θ)
,

where p̃(x) and p̃(θ) are the unnormalized probability distributions. Indeed,
we have

E [V (x, θ)] = Z

∫
p(x)p(θ)

p(x, θ)
p(x, θ)dxdθ = Z.

Written in terms of G and H, V (x, θ) can be written as

V (x, θ) = G(x)H(θ)e−〈s(x),r(θ)〉.

Note that
E [− log V (x, θ)]− [− log E [V (x, θ)]] = I(x, θ),

where I(x, θ) is the mutual information between x and θ. This is a measure
for the uncertainty of V (x, θ), as it can be interpeted as a generalized variance
for the convex function x 7→ − log(x).

This also implies that the expectation of

log V (x, θ)

yields a lower bound to the log-partition function. In practice, V (x, θ) has
too much variance to be useful. Therefore, we estimate the expectation of
log V (x, θ), which yields a lower bound to the log-partition function.

Example 1. For the Swendsen-Wang-duality for the Ising-model, we have
h(x) = 1, G(x) =

∏
e Pe(xe1 , xe2) and therefore

H(θ) =
∑
x

∏
e

e−θeI(xe1=xe2 ) = 2C(θ),

where C(θ) is the number of clusters defined by θ. Therefore

log V (x, θ) = log 2 · C(θ) + log p̃(x),

where p̃(x) is the unnormalized distribution of the Ising-model.

A natural question to ask is how this estimator relates to the estimate
obtained by running naive mean-field on the primal distribution p(x) only.
The following negative result shows that in most cases the estimate obtained
by mean-field approximations is preferable:
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Lemma 5. We have

I(x, θ) = Eθ KL(p(x | θ), p(x)) ≥ min
ξ

KL(p(x | ξ), p(x)), (1)

where we define p(x | ξ) ∝ h(x) exp(〈s(x), ξ〉).

Proof. The equality in (1) can be obtained by a straightforward calculation.
The inequality is a simple application of the fact that the expectation over
θ is always bigger than the minimum over θ.

Note, however, that it is not always straightforward to find ξ that min-
imizes KL(p(x | ξ), p(x)). This is for example the case for the Swendsen-
Wang-representation from Example 1.

5.3 MAP- and mean-field inference

The concept of probabilistic duality that we introduced in Section 3 is also
useful to derive parallel MAP- and mean-field inference algorithms.

By applying EM to p(x, θ) we can also compute local MAP-assignments
to p(x) in parallel. The updates read

x(t+1) = argmaxx h(x)e〈s(x),ξ
(t)〉

ξ(t+1) = E
(
r(θ) | x(t+1)

)
.

Similar, we can compute mean-field assignments to p(x, θ) using the up-
dates

η(t+1) = E
(
s(x) | ξ(t)

)
ξ(t+1) = E

(
r(θ) | η(t+1)

)
,

where the expectations are taken over the distributions

p(x | ξ) ∝ h(x)e〈s(x),ξ〉

p(θ | η) ∝ g(θ)e〈η,r(θ)〉.

Note that these updates have the advantage over ICM and standard naive
mean field that they can again run in parallel and still have convergence
guarantees.

Using this algorithm, we can show that we minimize an upper bound to
the true mean-field objective KL(p(x | ξ), p(x)):

Lemma 6. We have

min
η

KL (p(x | ξ)p(θ, η), p(x, θ)) ≥ KL(p(x | ξ), p(x)). (2)
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x1

x2

x3

x4

x5

x6

x7

θ4,7

θ1,7

θ1,6

Figure 1: Example of blocking using a tree as a subgraph. Only the dual
variables on the dashed edges are used. Sampling then alternatingly sam-
ples all θe variables and all the x variables on the tree. Similarly, the EM
algorithm alternatingly maximizes all x over the tree using max-product-
belief-propagation and takes conditional expectations over the θe variables
to update the unary potentials. Our tree-mean-field algorithm does the same,
except that it uses sum-product belief propagation.

Proof. We have

KL(p(x | ξ)p(θ, η), p(x, θ)) = Ex|ξ Eθ|η

(
− log

p(x, θ)

p(x | ξ)p(θ | η)

)
≥ Ex|ξ

(
− log Eθ|η

p(x, θ)

p(x | ξ)p(θ | η)

)
= Ex|ξ

(
− log

p(x)

p(x | ξ)

)
= KL(p(x | ξ), p(x)).

Lemma 6 implies that traditional mean-field updates are still preferable
to the ones from our method. Indeed, in practice we found that our method
can lead to poor approximations in presence of many factors. However, it is
still possible to first run our fast parallel algorithm and then fine-tune the
result using traditional mean-field updates.

5.4 Blocking

Gibbs sampling as described in Section 5.1 can still be prohibitively slow in
presence of strongly correlated random variables. Similarly, EM and mean-
field updates tend to get stuck in local optima in this situation. This problem
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also occurs for standard Gibbs sampling, ICM and naive mean-field updates.
A common way out is to introduce blocking, e.g. as in [5] for Gibbs sampling.

Unfortunately, blocking is only possible with respect to induced sub-
graphs for traditional algorithms. As it turns out, our primal-dual decompo-
sition allows to perform blocking with respect to arbitrary subgraphs. This
is illustrated in Figure 1. The idea is to decompose the dual variables θ into
two subsets θ0 and θ1, so that p(x, θ0 | θ1) is tractable. This is the case,
when p(x | θ1) is tractable, because then

p(x, θ0 | θ1) = p(θ0 | x)p(x | θ1).

Note that p(x | θ1) is tractable, if the graph obtained by removing all
the factors belonging to θ1 has low tree-width.

For blocked Gibbs sampling, we sample in each step p(x | θ(t)1 ) and then
p(θ

(t)
1 | x(t+1)). As a variation of this process, we can vary the decomposition

of θ into θ0 and θ1 in each step.
When we perform max-product-belief propagation for x and take expec-

tations for θ(t)1 we obtain a new inference algorithm for MAP-inference. Note
that in each step, we maximize over all x variables at once. Similarly, we ob-
tain a probabilistic inference algorithm by changing the max-product-belief
propagation step for x by sum-product-belief propagation.

Note also that both the EM, as well as the mean-field algorithm are
guaranteed to increase the objective function in each step.

In this framework, the standard sequential Gibbs sampler can also be
interpreted as a blocked Gibbs sampler, where blocking is performed with
respect to one primal and all neighboring dual variables. Unfortunately,
as blocking generally improves mixing of a Gibbs chain [5], this implies that
the standard sequential Gibbs sampler has better mixing properties than the
parallel primal-dual sampling algorithm. Still, the primal dual formulation
allows for more flexible blocking schemes, potentially making it possible to
improve on the mixing properties of the standard sequential Gibbs sampler
in some situations.

6 Experimental Results

We tested our method on 3 synthetic graphical models. The first model
consists of a 50× 50-Ising grid and coupling strenghts ranging from β = 0.1
to β = 0.5. Even though the Ising grid is two-colorable and it is therefore
trivial to implement a parallel Gibbs sampler in this setting, this is no longer
possible when the Graph topology is dynamic, i.e. we remove and add factors
from time to time. Maintaining a coloring in this setting is itself a hard
problem. The second model is given by a random graph with N = 1000
variables and F = kN factors, where k ∈ {2, 4, 8, 16, 32, 64}. Both the
unitary and pairwise log-potentials were sampled from a normal distribution
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(a) For the Ising model. (b) For the fully connected Ising model.

Figure 2: Number of iterations needed to achieve a PSRF below 1.01.

with mean 0 and a standard deviation of 1. The last model consists of a fully
connected Ising model of N = 100 variables and coupling strengths ranging
from β = 0.01 to β = 0.015. Note that for such models, there is an algorithm
that computes the partition function and the marginals in polynomial time
[2]. However, this is not longer the case, when the potentials have varying
coupling strengths.

For all these models we compute the potential scale reduction factor
(PSRF) for both a sequential Gibbs sampler and our primal-dual-sampler
by running 10 Markov chains in parallel. From the PSRF we compute an
estimate of the mixing time of the Markov chain by taking the first index,
so that the PSRF remains below some specified threshhold afterwards.

The result for the Ising grid is shown in Figure 2a. For both the primal-
dual sampler and the sequential Gibbs sampler, we plotted the number of
seeps over the whole grid to achieve a PSRF below 1.01. As expected, both
the sequential Gibbs sampler and the primal-dual sampler mix slower as we
increase the coupling strength. Moreover, even though the primal-dual sam-
pler mixes slower than the sequential Gibbs sampler, in our experiments the
ratio of the mixing times was between 2 and 7 for all the coupling strength.
Therefore, even though a Gibbs sampler based on a two coloring is preferable
in the static setting, our primal-dual sampler becomes a viable alternative
in the dynamic setting.

Similar results where obtained for the random graphs. As expected,
mixing of the primal dual sampler became worse as the number of factors
per vertix increases. While our primal-dual-sampler can be an interesting
alternative when the factor-to-vertex ratio is low (e.g. k ≈ 2), we do not
recommend our method for models with many more factors than variables if
these factors are not very weak.

The result for the fully connected Ising-model is shown in Figure 2b.
As there is no coloring available for a fully connected graphical model, we
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compare the number of full sweeps of our primal-dual sampler against the
number of single-site updates of the sequential Gibbs sampler. We see that
our method leads to improved mixing in this setting.

7 Conclusion

We have introduced a new concept of duality to random variales and showed
its usefulness in performing inference in probabilistic graphical models. In
particular, we demonstrated how to obtain a highly-parallizing Gibbs sam-
pler. Even though this parallel Gibbs sampler has inferior mixing properties
compared to the sequential Gibbs sampler, we believe that it can still be
very useful in settings, where a good graph coloring is hard to obtain or
the graph topology changes frequently. Possible extensions of our approach
include good algorithms for selecting appropriate subgraphs for blocking.
Moreover, as primal-dual representations are not unique, we believe that
further progress can be made by deriving new decompositions. Another line
of research is to generalize our ideas to higher order factors, both exactly and
in approximate ways. We believe that this is possible and allows to apply
the methods in this paper to arbitrary discrete graphical models.
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