Discrete Optimization for Optical Flow

Moritz Menze¹ Christian Heipke¹ Andreas Geiger²

¹Institute of Photogrammetry and GeoInformation Leibniz Universität Hannover

²Max Planck Institute for Intelligent Systems Tübingen

7. October, 2015

Where is Sintel going?

Where is Sintel going?

Related Work - Variational Methods

[Brox et al., ECCV 2004], [Sun et al., IJCV 2013]

Related Work - Sparse Features

[Brox et al., PAMI 2011]

[Revaud et al., CVPR 2015]

Related Work - Stereo Matching

KITTI Stereo Leaderboard

	Method	Setting	Code	OLC-No:	OLC-AII	Avg-Noc	Avg-MI	Decsity	Funtime	Environment	Compare
1	MC-CNH2			2.43 N	3.63 N	0.7 pc	0.9 pc	100.00 X	120 s	Neidla GTX Titan (CUDA, Lua/Torch7)	10
. 25	onter and Y. LeCan										
2	Displets		code	2.47%	3.27 %	0.7 px	0.9 px	100.00 %	265.5	+8 cores @ 3.0 GHz (NatJab + C/C++)	8
r. 0.	may and J. Garger:	Digiels Fer	abirg 2a	eres Andrigut	les using Ob	pert Knowled	ge Confere	nie an Comp.	See Vision and P	failers Recognition (CVPR) 1218.	
3	RC-DH			2,61%	3.84%	0.5 px	1.0 pc	100.00 X	100 s	Neidla GTX Titan (CUDA, Lua/Torch7)	10
1. 25	onter and Y. LeCan	Conquire	the Stene	o Metching Co	of with a Co	molational h	ioural Nativa	ek. Conferen	e an Computer	Vision and Pattern Recognition (CVIR) 2815.	
4	PRSM	3.00	code	2,75%	3.00 N	0.7 ps	0.7 pc	100.00 %	300 1	1 core (i) 2.5 Ghz (C/C++)	
. 10	ogel, K. Schindler an	d S. RMN 2	Scene P	an transm		orvise Fight	care Model	13CH 2015			
5	SPS-5671	1111		2.43 %	3.64%	0.8 px	0.9 pc	100.00 %	35.5	1 core @ 3.5 Ghg (C/C++)	
< 7e	mapleM, D. Holdle	ster and S. L	riener E	Thirest Jains	Segmentatio	n, Oscholen	Labeling, St	eres and they	datimetes to	CV 2814.	
6	VC-SF	20		3.05%	3.31 %	0.8 px	0.8 pc	100.00 %	300 5	1 core @ 2.5 Chc (C/C++)	8
. 10	opel, S. Roth and K.	Schindler, M	en-Core	point 30 Scient	e Row Cash	at lot pret in	uit ble fram	es. Proceedin	gt of European	Conference on Computer Vision, Lecture Hotes In, Co	mputer Science 3
7	Deep Enbed			3,10.%	4.24%	0.9 px	1.1 04	100.00 %	35	1 core @ 2.5 GRc (C/C++)	0
r. 0	vers, 2. Surs, Y. Tu, 5	Mang and i	hang	A Deep Tree	Correspon	dence United	ang Hodel 1	or Steres Mat	thing Cashs ICC	V 2018.	
8	1505M			3.15%	2.94%	0.8 pc	0.9 pc	100.00 %	105 s.	8 cores @ 2.5 Ghz (C/C++)	
-	ymous sabretizien										
2	057	191	code	3.28%	4.07 %	0.8 pc	0.9 pc	99.96 X	50 min	1 core (0 3.0 Ghz (Matlab + C/C++)	
A. 16	ence and 2. Cetyer	Object Scen	e flee fa	r D.Astronom	ownates C	onference ar	Computer 1	blon and Pat	ien feugritie	CVPR) 2818.	
10	CoR		code	3,30%	4.10 %	0.0 px	0.9 pc	100.00 X	65	6 cores (0.3.3 Ghz (Matlab + C/C++)	0
in	second a line	5 feetlars	od Y. Dol	Mar Low-Jan	d Mining her	anners a la	Counted Inte	canthy of \$44			

- Naïve discretization of 2D flow space intractable
- 3 strategies enable discrete optimization for optical flow

Related Work - Discrete Optimization

[Lempitzky et al., CVPR 2008]

[Mozerov, TIP 2013]

Discrete Optical Flow

Optical flow as labeling task

$$E(\mathbf{I}) = \sum_{\mathbf{p} \in \mathcal{P}} \underbrace{\varphi_{\mathbf{p}}(l_{\mathbf{p}})}_{\text{data}} + \sum_{\mathbf{p} \sim \mathbf{q}} \underbrace{\psi_{\mathbf{p},\mathbf{q}}(l_{\mathbf{p}},l_{\mathbf{q}})}_{\text{smoothness}}$$

- ▶ p,q: pixels
- I: discrete flow label

Discrete Optical Flow

Robust data term based on DAISY descriptors d

$$\varphi_{\mathbf{p}}(l_{\mathbf{p}}) = \min\left(\left\|\mathbf{d}_{\mathbf{p}} - \mathbf{d}'_{\mathbf{p}}(l_{\mathbf{p}})\right\|_{1}, \tau_{\varphi}\right)$$

Similar flow vectors f are encouraged by

$$\psi_{\mathbf{p},\mathbf{q}}(I_{\mathbf{p}},I_{\mathbf{q}}) = w_{\mathbf{p},\mathbf{q}} \cdot \min\left(\left\|\mathbf{f}_{\mathbf{p}}(I_{\mathbf{p}}) - \mathbf{f}_{\mathbf{q}}(I_{\mathbf{q}})\right\|_{1},\tau_{\psi}\right)$$

weighted by the edge strength [Dollár et al., ICCV 2013]:

$$w_{\mathbf{p},\mathbf{q}} = \exp\left(-\alpha \kappa_{\mathbf{p},\mathbf{q}}^2\right)$$

Strategies

Three strategies for efficient inference:

1. Diverse Flow Proposals

- Efficient search structure
- 300 nearest neighbors
- 200 proposals from neighboring pixels

Reduction of proposals form 250.000 to 500 per pixel

- 2. Block Coordinate Descent
 - Inference via Block Coordinate Descent (BCD)¹

- Alternating optimization of image rows and columns
- Sub-problems solved optimally via dynamic programming

¹Chen and Koltun, CVPR 2014

Evaluation of only a few combinations

$$\mathbf{C}(x,l) = \varphi_{(x,y)}(l)$$

•			
•			
۲			

$$\begin{aligned} \mathbf{C}(x,l) &= \varphi_{(x,y)}(l) \\ &+ \psi_{(x,y),(x,y-1)}(l,l_{x,y-1}^{*}) \\ &+ \psi_{(x,y),(x,y+1)}(l,l_{x,y+1}^{*}) \end{aligned}$$

	•			
•	•			
	۲			

$$C(x, l) = \varphi_{(x,y)}(l) + \psi_{(x,y),(x,y-1)}(l, l_{x,y-1}^{*}) + \psi_{(x,y),(x,y+1)}(l, l_{x,y+1}^{*}) + \min_{0 \le k < L} (\psi_{(x,y),(x-1,y)}(l, k) + C(x-1, k))$$

$$C(x, l) = \varphi_{(x,y)}(l) + \psi_{(x,y),(x,y-1)}(l, l_{x,y-1}^{*}) + \psi_{(x,y),(x,y+1)}(l, l_{x,y+1}^{*}) + \min_{0 \le k < L} (\psi_{(x,y),(x-1,y)}(l, k) + C(x-1, k))$$

Efficient Dynamic Programming:

$$\begin{aligned} \mathbf{C}(x,l) &= \varphi_{(x,y)}(l) \\ &+ \psi_{(x,y),(x,y-1)}(l,l_{x,y-1}^{*}) \\ &+ \psi_{(x,y),(x,y+1)}(l,l_{x,y+1}^{*}) \end{aligned}$$

Efficient Dynamic Programming:

$$\begin{aligned} \mathbf{C}(x,l) &= \varphi_{(x,y)}(l) \\ &+ \psi_{(x,y),(x,y-1)}(l,l_{x,y-1}^{*}) \\ &+ \psi_{(x,y),(x,y+1)}(l,l_{x,y+1}^{*}) \end{aligned}$$

+ min $\left(\min_{k \in \mathcal{K}_{(x,y),(x-1,y),l}} (\psi_{(x,y),(x-1,y)}(l,k) + \mathbf{C}(x-1,k)), c\right)$

Post-Processing

Inference yields integral flow

Post-Processing

- Inference yields integral flow
- Forward-backward consistency check

Post-Processing

- Inference yields integral flow
- Forward-backward consistency check
- Interpolation & subpixel refinement
 - ▶ Epicflow [Revaud, CVPR 2015]

Quantitative Evaluation - MPI Sintel

	EPE (px)		
	All	Noc	Осс
Flow Fields [Bailer et al., ICCV 2015]	5.810	2.621	31.799
Ours+EpicFlow	6.077	2.937	31.685
DM+EpicFlow [Revaud et al., CVPR 2015]	6.285	3.060	32.564
TF+OFM [Kennedy et al., EMMCVPR 2015]	6.727	3.388	33.929
Deep+R [Drayer et al., BMVC 2015]	6.769	2.996	37.494

MPI Sintel final (48 methods listed online)

Quantitative Evaluation - MPI Sintel

	EPE (px)		
	All	Occ	
Ours+EpicFlow	3.567	1.108	23.626
FlowFields [Bailer et al., ICCV 2015]	3.748	1.056	25.700
DM+EpicFlow [Revaud et al., CVPR 2015]	4.115	1.360	26.595
PH-Flow [Yang et al., CVPR 2015]	4.388	1.714	26.202
AggregFlow [Fortun et al., ARXIV 2014]	4.754	1.694	29.685

MPI Sintel clean (48 methods listed online)

Qualitative Results - MPI Sintel

Qualitative Results - MPI Sintel

Qualitative Results - MPI Sintel

Quantitative Evaluation - KITTI

	Outliers (%)		EPE	(px)
	Noc	All	Noc	All
PH-Flow [Yang et al., CVPR 2015]	5.76	10.57	1.3	2.9
FlowFields [Bailer et al., ICCV 2015]	5.77	14.01	1.4	3.5
NLTGV-SC [Ranftl et al., ECCV 2014]	5.93	11.96	1.6	3.8
DDS-DF [Wei et al., 3DV 2014]	6.03	13.08	1.6	4.2
TGV2ADCSIFT [Braux-Zin et al., ICCV 2013]	6.20	15.15	1.5	4.5
Ours+EpicFlow	6.23	16.63	1.3	3.6
AnyFlow [Submitted to PAMI]	6.37	15.80	1.5	4.3
BTF-ILLUM [Demetz et al., ECCV 2014]	6.52	11.03	1.5	2.8
CRT-TGV [Submitted to IJCV]	6.71	12.09	2.0	3.9
	:	÷	÷	:
DM+EpicFlow [Revaud et al., CVPR 2015]	7.88	17.08	1.5	3.8

KITTI 3 px (69 methods listed online)

Quantitative Evaluation - KITTI

	Outliers (%)		EPE	(px)
	Noc	All	Noc	All
Ours+EpicFlow	3.89	12.46	1.3	3.6
PH-Flow [Yang et al., CVPR 2015]	3.93	7.72	1.3	2.9
FlowFields [Bailer et al., ICCV 2015]	3.95	10.21	1.4	3.5
DDS-DF [Wei et al., 3DV 2014]	4.41	10.41	1.6	4.2
NLTGV-SC [Ranftl et al., ECCV 2014]	4.50	9.42	1.6	3.8
AnyFlow [Submitted to PAMI]	4.51	12.55	1.5	4.3
TGV2ADCSIFT [Braux-Zin et al., ICCV 2013]	4.60	12.17	1.5	4.5
BTF-ILLUM [Demetz et al., ECCV 2014]	4.64	8.11	1.5	2.8
CRT-TGV [Submitted to IJCV]	5.01	8.97	2.0	3.9
: :	:		:	:
DM+EpicFlow [Revaud et al., CVPR 2015]	5.36	12.86	1.5	3.8

KITTI 5 px (69 methods listed online)

Conclusions

- Three strategies to reduce computational complexity
- Enable discrete optimization for optical flow
- State-of-the-art performance with sub-pixel refinement

Outlook

- Integrate multiple frames
- Reason about multiple scales
- Include semantic knowledge

Discrete Optimization for Optical Flow

Thank you!

Project page: www.cvlibs.net/projects/discrete_flow

Runtimes

(remaining 25% for descriptor extraction and post-processing)

▶ Total runtime ~3 minutes

Qualitative Results - KITTI

Qualitative Results - KITTI

Qualitative Results - KITTI

