
Supplementary Material for
Taking a Deeper Look at the Inverse Compositional Algorithm

Zhaoyang Lv1,2 Frank Dellaert1 James M. Rehg1 Andreas Geiger2
1Georgia Institute of Technology, Atlanta, United States

2Autonomous Vision Group, MPI-IS and University of Tübingen, Germany
{zhaoyang.lv, rehg}@gatech.edu frank.dellaert@cc.gatech.edu andreas.geiger@tue.mpg.de

In this supplementary document, we first provide details re-
garding the network architectures used in our model. Next,
we show additional experiments on the 2D affine transfor-
mation estimation task. Then we provide details on the Ja-
cobian implementation for the rigid motion estimation. We
also present more details on our TUM RGB-D experiments
as well as the generation of the MovingObjects3D dataset.
Finally, we provide additional qualitative experiments for
our method on the MovingObjects3D dataset.

1. Network Architectures

In the following, we describe the network architectures
used in our model.

(A) Two-view Feature Encoder: Fig. 1 shows the archi-
tecture of our two-view feature encoder for estimating both
Tθ and Iθ. The network takes two concatenated RGB-D
views as input. For the depth channel, we use the inverse
depth d clamped to [0, 10]. For the 2D affine experiments
we use only the RGB channels.

The feature pyramid comprises one (A) Two-view Fea-
ture Encoder at each of the four pyramid levels. Each fea-
ture encoder uses three dilated convolutional layers. We use
a Spatial Average Pooling layer to downsample the output
features from the fine scale as input to the next coarser scale.

(B) Convolutional M-Estimator: Fig. 2 shows the opera-
tions and parameters of the Convolutional M-Estimator we
use in this paper. In the coarse-to-fine inverse compositional
refinement, we add one more input to the network which is
the predicted weight from the coarser level pyramid. At
each image pyramid, we bilinear upsample the weight ma-
trix predicted from the coarse scale Win, and concatenate
it with Tθ, Iθ and r0, which we use as input to the Convo-
lutional M-estimator. The network predicts W at the cur-
rent scale. Different from traditional M-estimators which
evaluate W at every step when rk is updated, we only com-
pute W once for all following K iterations. This way, we
approximate the classical M-estimator and significantly re-

duce computation. The network is composed of four con-
volutional layers, with dilation [1,2,4,1], followed by a sig-
moid layer which normalizes the output to the range [0,1].
Note that despite the small size of our network, the dilation
layers and the coarse-to-fine process ensure a sufficiently
large receptive field.

(C) Trust Region Network: Fig. 3 shows the opera-
tions and parameters of our Trust Region Network. Given
the N residual maps rk(i), i ∈ {1...N}, we first calculate

the right-hand-side (RHS) vector JTWr
(i)
k ∈ R1×6 corre-

sponding to each residual map r
(i)
k . Next, we flatten the

N RHS vectors jointly with the approximate Hessian ma-
trix JTWJ ∈ R6×6 into a single vector, which is the input
to our Trust Region Network. This network is composed of
three fully connected layers and outputs the damping vector.
At the last layer, a ReLU ensures non-negative elements.

2. 2D Affine Motion Estimation
The proposed framework is general and can be applied

to a wide range of motion models apart from the 3D rigid
motion estimation tasks presented in the main paper, see,
e.g., [5]. To demonstrate its generality, this section provides
results on 2D affine motion estimation. While 2D affine
motion estimation is in general easier than 3D rigid motion
estimation, occlusions cannot be treated explicitly as depth
is unknown. Thus, any successful method must implicitly
identify occlusions as outliers during estimation.

Implementation: Given pixel x = (x, y)T ∈ R2, we de-
fine the warping function Wξ using the following parame-
terization (see also [1])[

1 + ξ1 ξ3 ξ5
ξ2 1 + ξ4 ξ6

]
(1)

where ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)T . The analytic form of the
Jacobian in (1) is [

x 0 y 0 1 0
0 x 0 y 0 1

]
(2)

1



[K:3, D:1, In: 8, Out: 16]

[K:3, D:2, In: 16, Out: 32]

[K:3, D:2, In: 32, Out: 32]

[K:3, D:1, In: 32, Out: 32]

[K:3, D:2, In: 32, Out: 64]

[K:3, D:2, In: 64, Out: 64]

Spatial-Average-Pooling Spatial-Average-Pooling

[K:3, D:1, In: 64, Out: 64]

[K:3, D:2, In: 64, Out: 96]

[K:3, D:2, In: 96, Out: 96]

Spatial-Average-Pooling

[K:3, D:1, In: 96, Out: 96]

[K:3, D:2, In: 128, Out: 128]

[K:3, D:2, In: 128, Out: 128]

Channel-wise Sum Channel-wise Sum Channel-wise Sum Channel-wise Sum
Input Dim:
Bx8xHxW

Pyramid 1
Output Dim:
Bx1xHxW

Pyramid 2
Output Dim:
Bx1xH/2xW/2

Pyramid 3
Output Dim:
Bx1xH/4xW/4

Pyramid 4
Output Dim:
Bx1xH/8xW/8

Figure 1: (A) Two-view Feature Encoder. We use [K, D, In, Out] as abbreviation for [Kernel size, Dilation, Input channel
size, Output channel size]. All convolutional layers are followed by a BatchNorm layer and a ReLU layer. We use [B,H,W]
as abbreviation for the feature size [Batch size, Height of feature, Width of feature]. We use spatial average pooling of size 2
to downsample features between two feature pyramids. We channel-wise sum the output features of the encoder at each scale
to obtain the resulting feature maps.

Bilinear Up-sample

[K:3, D:1, In: 4, Out: 16]

[K:3, D:2, In: 16, Out: 32]

[K:3, D:4, In: 32, Out: 64]

[K:3, D:1, In: 64, Out: 1]

Sigmoid

𝐓" 𝐈"
𝐖

𝐖%&

𝐫(

Figure 2: (B) Convolutional M-Estimator. We use [K, D, In, Out] as abbreviation for [Kernel size, Dilation, Input channel
size, Output channel size]. All convolutional layers are followed by a BatchNorm layer and a ReLU layer. In our default
weight-sharing setting, all weights are shared across networks in different pyramids. At the coarsest image level which does
not require the up-sampled W as input, we set Win to 1.

Flattened and
Concatenate

𝜆

⋯

Dim: Bx6x6 Dim: Bx6xN

Dim: Bx(6x6+ 6xN)

Linear + ReLU [Out: 128]

Linear + ReLU [Out: 256]

Linear + ReLU [Out: 6] Dim: Bx6

Figure 3: (C) Trust Region Network. We use B as abbreviation for Batch size. N indicates the number of damping
proposals. In the weight-sharing setting, all weights are shared across networks at different pyramid levels. We use ’Linear’
to represent a fully connected layer. The last ReLU layer ensures that the output λ is non-negative.

2



The composition of ξ ◦∆ξ is given by
ξ1 + ∆ξ1 + ξ1∆ξ1 + ξ3∆ξ2
ξ2 + ∆ξ2 + ξ2∆ξ1 + ξ4∆ξ2
ξ3 + ∆ξ3 + ξ1∆ξ3 + ξ3∆ξ4
ξ4 + ∆ξ4 + ξ2∆ξ3 + ξ4∆ξ4
ξ5 + ∆ξ5 + ξ1∆ξ5 + ξ3∆ξ6
ξ6 + ∆ξ6 + ξ2∆ξ5 + ξ4∆ξ6

 (3)

The parameters of the inverse affine ξ−1 in (1) are

1

(1 + ξ1)(1 + ξ4)− ξ2ξ3


−ξ1 − ξ1ξ4 + ξ2ξ3

−ξ2
−ξ3

−ξ4 − ξ1ξ4 + ξ2ξ3
−ξ5 − ξ4ξ5 + ξ3ξ6
−ξ6 − ξ1ξ6 + ξ2ξ5

 (4)

Datasets: We download 1800 natural images from flickr
and use them to generate a 2D dataset for training affine 2D
transformation estimation. We use the downloaded flickr
images as T. Given a random affine transform which in-
duces a 2D warping field, we synthesize the template I by
applying the warping field to T using bilinear interpolation.
To remove the boundary effects caused by zero padding in
the warping process, we crop a region of size 240x320 from
the central region of both I and T. According to the actual
raw image size and the coordinates of the cropped region,
we adjust the warping field to ensure the cropped region has
the correct affine transform. Fig. 4 shows examples of gen-
erated pairs T and I.

For each template image, we randomly generate six dif-
ferent affine transforms, and synthesize six different images
I using the warping field induced from each affine trans-
form. The generated affine transforms are used as ground
truth for training and evaluation. We use five out of the six
generated affine transforms and their corresponding image
pairs as the training set, and use the rest for testing.

Baselines: We follow the experiment settings in the main
paper. We use (A), (B), (C) to refer to our contributions in

T

I

Figure 4: Examples of T and I used for our 2D affine trans-
formation estimation experiments.

L1 error

No Learning 0.219
DeepLK, adapted from [6] 0.158
Ours: (A) 0.151
Ours: (A)+(B) 0.132
Ours: (A)+(B)+(C) 0.071

Table 1: Quantitative evaluation on the test set using L1
error wrt. the estimated 2D affine transform.

Sec.1. We set W to the identity matrix when the Convolu-
tional M-Estimator (B) is not used and use Gauss-Newton
optimization in the absence of the Trust Region Network
(C). We consider the following configurations:

• Ours (A)+(B)+(C): Our proposed method with shared
weights. We perform coarse-to-fine iterations on three
pyramid levels with three IC iterations at each level. We
use shared weights for all iterations in (B) and (C).

• DeepLK-6DoF We implemented a variant of DeepLK
[6] which predicts the affine transform instead of trans-
lation and scale as in the original 2D task. We use Gauss-
Newton as the default optimization for this approach and
no Convolutional M-Estimator. Comparing this approach
with our method when using only the two-view feature
network (A) demonstrates the utility of our two-view fea-
ture encoder.

Training: During training, we minimizes the L1 norm of
the distance from our estimated affine transform ξ? to the
ground truth affine transform ξGT. We train our method and
all baselines using a learning rate of 0.005.

Results: Table 1 shows a quantitative evaluation of our
2D affine motion estimation experiments. We evaluate the
error in L1 norm by comparing the estimated results to the
ground truth. Compared to all baseline methods, our model
((A)+(B)+(C)) yields the most accurate solution.

Note that different from the 3D motion estimation ex-
periments in the main paper, there exists no motion ambi-
guity in the datasets used for 2D affine transform, render-
ing this setting simpler. We observe small improvements
when using our two-view feature encoder (A) compared to
using only a single view [6]. Using (B) Convolutional M-
estimator gives better performance which may potentially
address outliers induced by occlusions. Using (C) Trust
Region Network further helps the network to boost perfor-
mance. Similarly to our results in the main paper, we ob-
serve that we obtain the most accurate results when com-
bining all components ((A)+(B)+(C)) of our model.

3



3. Implementation Details of Jacobian
Given pixel x ∈ R2, camera intrinsic K and depthD(x),

we define the corresponding 3D point p = (px, py, pz) as
p = D(x)K−1x. At each iteration, we apply an exponen-
tial map to the output of the network ξ ∈ se(3) to obtain
the transformation matrix Tξ = exp([ξ]×). Suppose K
is the intrinsic matrix for a pin-hole camera without dis-
tortion, which can be parameterized as [fx, fy, cx, cy] with
fx, fy as its focal length and cx, cy as its offset along the two
axes. The Jacobian J of template image T(0) with respect
to warp parameter ξ is given by

J = ∇T∂W
∂ξ

(5)

∇T =
[
∂T(0)
∂u

∂T(0)
∂v

]
(6)

∂W

∂ξ
=

[
fx
fy

]
·

 −pxpyp2z
1 +

p2x
p2y
−pypz

1
pz

0 −pxp2z
−1− p2y

p2z
−pxpyp2z

px
pz

0 1
pz
−pyp2z


(7)

where · is the element-wise product along each row. ∇T
is the image gradient of template T(0). In the proposed
model, we compute the Jacobian of Tθ from the output of
network (A) by substituting T with Tθ in (5).

We further simplify (7) by exploiting the inverse
depth parameterization p = (pu/pd, pv/pd, 1/pd) where
(pu, pv) ∈ R2 is the pixel coordinate and pd ∈ R1 is the
inverse depth. We obtain:

∂W

∂ξ
=

[
fx
fy

]
·
[
−pupv 1 + p2u −pv pd 0 −pdpu
−1− p2v pupv pu 0 pd −pdpv

]
(8)

For more details we refer the reader to [2].

4. Details of TUM RGB-D Experiments
Our evaluation split of the TUM RGB-D SLAM dataset

[4] consists of four trajectories of different conditions, tra-
jectory length and motion magnitudes. After synchroniza-
tion of the color image, depth and the ground truth tra-
jectory, we obtain 750 frames in ’fr1/360’, 584 frames in
’fr1/desk’, 2203 frames in ’fr2/desk’ and 830 frames in
’fr2/pioneer 360’. To better understand our method operat-
ing under different conditions, we present a detailed quan-
titative evaluation in Table 2 using the Relative Pose Error
(RPE) and the 3D End Point Error (3D EPE) metrics for
each trajectory.

Discussion: Our method with all modules (A)+(B)+(C)
outperforms the baseline RGBD visual odometry [3] across
all subsampled trajectories, except in ’fr1/desk’ of keyframe
[1,2] and ’fr2/desk’ of keyframe 2 in which the performance
is close to each other. Our method shows clear advan-
tages when the motion magnitude is large, e.g. ’fr1/360’,

(a) aeroplane (b) boat (c) bus

(d) car (e) motorbike (f) bicycle

Figure 5: Example images from the MovingObjects3D
dataset. We use ’boat’ and ’motorbike’ categories as test
set and the others as train/validation set.

’fr2/pioneer 360’. From the ablation, we also observe that
adding the trust-region module (C) helps to stabilize train-
ing and yields the most significant improvement in test ac-
curacy. One possible reason for this is that the trust-region
module can adjust the damping parameters and adapt to a
wide range of motion magnitudes in the data. At train-
ing time, adaptive damping helps to stabilize the training
loss and potentially contributes to learning better features
in modules (A) and (B). At inference time, the method can
adjust its trust-region step to adapt to different motion mag-
nitudes with a fixed number of iterations.

5. Details of MovingObjects3D

Background Set-up: We use a cubic box of size 6× 6× 6
as the background layout. We download 150 background
textures from TextureNinja1 and use them as the textures for
the inner side of the cube. We randomly locate the camera
inside the cube with zero elevation. We randomly place four
point light sources at four different directions.

Object Trajectories: For each trajectory, we randomly
generate keyframe poses (we use one keyframe every ten
frames). We calculate poses between keyframes using the
default trajectory interpolation in Blender. We randomly lo-
cate the objects within a 1.5m radius ball around the center
of the cube which ensures that the objects always move in-
side of the box. There is a significant number of views for
which only parts of the object is visible. We exclude all
frames where the entire object is outside the field of view of
the camera.

Rendered Images and Ground Truth: We render the im-
ages, depth maps and instance segmentation masks using

1https://texture.ninja/

4



mRPE: θ (Deg) ↓ / t (cm) ↓ 3D EPE (cm)
KF 1 KF 2 KF 4 KF 8 KF 1 KF 2 KF 4 KF 8

fr1/360

RGBD VO [3] 0.46/1.03 2.45/5.26 7.47/10.31 16.08/17.32 1.33 5.98 21.34 52.50
Ours: (A) 0.50/1.33 1.32/3.84 5.68/11.79 14.33/16.26 1.24 2.39 13.37 49.60
Ours: (A)+(B) 0.45/1.18 1.00/3.18 4.96/11.62 14.23/17.52 1.18 1.92 10.67 49.13
Ours: (A)+(B)+(C) 0.33/0.61 0.49/1.20 2.64/2.63 7.24/6.64 1.05 1.21 2.64 22.40

fr1/desk

RGBD VO [3] 0.43/0.69 0.76/1.04 3.52/5.15 10.71/19.83 0.59 0.91 5.46 18.84
Ours: (A) 0.58/1.04 1.12/2.05 2.75/4.87 7.14/11.27 0.74 1.31 3.89 12.89
Ours: (A)+(B) 0.57/1.02 1.08/2.03 2.54/4.63 6.59/10.87 0.74 1.28 3.42 11.21
Ours: (A)+(B)+(C) 0.55/0.90 0.89/1.55 1.58/2.59 4.30/7.11 0.68 0.96 1.74 6.11

fr2/desk

RGBD VO [3] 0.30/0.56 0.35/0.72 0.79/1.78 1.44/3.80 0.96 0.93 2.20 4.75
Ours: (A) 0.30/0.54 0.44/0.98 0.72/1.94 1.46/4.30 0.80 1.04 1.60 2.93
Ours: (A)+(B) 0.31/0.56 0.45/1.03 0.77/2.04 1.43/4.14 0.80 1.04 1.62 2.83
Ours: (A)+(B)+(C) 0.27/0.42 0.39/0.73 0.61/1.37 1.11/2.79 0.73 0.94 1.29 2.09

fr2/pioneer 360

RGBD VO [3] 1.02/1.82 2.00/4.19 4.20/6.51 8.54/14.36 6.39 9.22 21.16 48.46
Ours: (A) 0.76/1.77 1.04/3.66 2.34/8.16 7.60/14.83 3.55 5.67 13.78 39.41
Ours: (A)+(B) 0.72/1.80 0.95/3.52 2.15/6.96 6.91/13.31 3.57 5.42 12.77 36.80
Ours: (A)+(B)+(C) 0.65/0.85 0.74/1.07 0.98/1.79 2.38/6.85 2.76 3.15 4.46 13.52

Average over trajectories mRPE and EPE

RGBD VO [3] 0.55/1.03 1.39/2.81 3.99/5.95 9.20/13.83 2.31 4.38 12.67 31.13
Ours: (A) 0.53/1.17 0.97/2.63 2.87/6.89 7.63/12.16 1.58 2.60 8.15 26.20
Ours: (A)+(B) 0.51/1.14 0.87/2.44 2.60/6.56 7.30/11.21 1.56 2.41 7.10 24.69
Ours: (A)+(B)+(C) 0.45/0.69 0.63/1.14 1.10/2.09 3.76/5.88 1.31 1.57 2.53 11.03

Average over frames mRPE and EPE

RGBD VO [3] 0.48/0.90 1.08/2.20 2.95/4.60 6.54/10.26 1.80 3.53 9.58 23.14
Ours: (A) 0.46/0.98 0.79/2.12 2.16/5.35 5.58/9.65 1.39 2.18 6.22 19.16
Ours: (A)+(B) 0.45/0.96 0.73/2.00 1.99/5.15 5.35/9.41 1.38 2.05 5.52 18.31
Ours: (A)+(B)+(C) 0.39/0.59 0.54/0.98 0.91/1.83 2.82/4.80 1.16 1.41 2.18 8.28

Table 2: Detailed Results on TUM RGB-D Dataset [45]. This table shows the mean relative pose error (mRPE) on our test
split of the TUM RGB-D Dataset [45]. KF denotes the size of the key frame intervals.

Blender. We show examples of objects for all six categories
in Fig. 5. We use images rendered using the categories
’boat’ and ’motorbike’ as test set and images from the cate-
gories ’aeroplane’, ’bicycle’, ’bus’, ’car’ as the training set.
We will make the dataset creation tool and the dataset itself
public upon publication.

6. Qualitative Visualizations
We now demonstrate additional qualitative results on 3D

rigid transformation estimation on MovingObjects3D. Note
the difficulty of the task (truncation, independent back-
ground object) and the high quality of our alignments.

Visualizations of Iterative Estimation: Fig. 6 and Fig. 7

show a qualitative visualization of our method at different
iterations. We warp the image I using the iterative estimated
poses at the four coarse-to-fine pyramid scales (I(ξ?1) →
I(ξ?2) → I(ξ?3) → I(ξ?final) ). I(ξ?final) is the final output
of our method. Our results demonstrate that the proposed
method is able to iteratively refine the estimation towards
the global optimal solution despite the challenging scenario.

Comparison to Baselines: Fig. 8 shows a comparison
of our full method to DeepLK 6DoF [6] and ablated mod-
els using only parts of the proposed modules. Our re-
sults demonstrate that the combination of all modules yields
high-quality registrations.

5



T

I

I(ξ?1)

I(ξ?2)

I(ξ?3)

I(ξ?final)

I(ξGT)

Figure 6: Qualitative Results on MovingObjects3D. Visualization of the warped image I(ξ) using the ground truth object
motion ξGT (last row) and the object motion ξ? estimated using our method at each pyramid (ξ?1, ξ?2, ξ?3, ξ?final) on the
MovingObjects3D validation and test set. In I, we plot the instance boundary in red and that of T in green as comparison.
Note the difficulty of the task (truncation, independent background object) and the high quality of our alignments. Black
regions in the warped image are due to truncation or occlusion.

6



T

I

I(ξ?1)

I(ξ?2)

I(ξ?3)

I(ξ?final)

I(ξGT)

Figure 7: Qualitative Results on MovingObjects3D. Visualization of the warped image I(ξ) using the ground truth object
motion ξGT (last row) and the object motion ξ? estimated using our method at each pyramid (ξ?1, ξ?2, ξ?3, ξ?final) on the
MovingObjects3D validation and test set. In I, we plot the instance boundary in red and that of T in green as comparison.
Note the difficulty of the task (truncation, independent background object) and the high quality of our alignments. Black
regions in the warped image are due to truncation or occlusion.

7



T

I

I(ξ?)
DeepLK
6DoF [6]

I(ξ?)
Ours: (A)

I(ξ?)
Ours:

(A)+(B)

I(ξ?)
Ours: (A)+

(B)+(C)

I(ξGT)

Figure 8: Qualitative Comparisons of Our Method to Baselines on MovingObjects3D. We compared the object motion
ξ? estimated using our proposed modules (A)+(B)+(C) ξ? (row 6) to the optimal poses output from DeepLK 6DoF (row 3),
ours (A) (row 4) and ours (A)+(B) (row 5) on the MovingObjects3D validation and test set. We visualize the warped image
I(ξ) using the ground truth object motion ξGT (last row). In I, we plot the instance boundary in red and that of T in green
for qualitative comparison of the two shapes in 2D.

8



References
[1] S. Baker and I. Matthews. Lucas-kanade 20 years on: A uni-

fying framework. Intl. J. of Computer Vision, 56(3):221–255,
Feb. 2004. 1

[2] J.-L. Blanco. A tutorial on se(3) transformation parameteriza-
tions and on-manifold optimization. Technical report, Univer-
sity of Malaga, Sept. 2010. 4

[3] F. Steinbrücker, J. Sturm, and D. Cremers. Real-time visual
odometry from dense rgb-d images. In Computer Vision Work-
shops (ICCV Workshops), 2011 IEEE International Confer-
ence on, pages 719–722. IEEE, 2011. 4, 5

[4] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of rgb-d slam systems.
In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS), Oct. 2012. 4

[5] R. Szeliski. Image alignment and stitching: A tutorial. Foun-
dations and Trends in Computer Graphics and Vision, 2(1):1–
104, 2007. 1

[6] C. Wang, H. K. Galoogahi, C.-H. Lin, and S. Lucey. Deep-lk
for efficient adaptive object tracking. In IEEE Intl. Conf. on
Robotics and Automation (ICRA), 2018. 3, 5, 8

9


