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Applications of Image Registration

Feature Tracking and Optical Flow SLAM

Panoramic Image Stitching

Lucas and Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981. 8



Lucas-Kanade Algorithm

Objective: Minimize photometric error between template T and image I

min
ξ
‖I(ξ)−T(0)‖22

I I(ξ): image I transformed by warp parameters ξ

I T(0): template
I Note: This is a non-linear objective

Lucas and Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981. 9



Lucas-Kanade Algorithm

I Iteratively solve the task
ξk+1 = ξk ◦∆ξ

I The warp increment ∆ξ is obtained by linearizing the objective

min
∆ξ
‖I(ξk + ∆ξ)−T(0)‖22

using first-order Taylor expansion:

min
∆ξ

∥∥∥∥∥I(ξk) +
∂I(ξk)

∂ξ
∆ξ −T(0)

∥∥∥∥∥
2

2

I ∂I(ξk)/∂ξ must be recomputed at every iteration k

Lucas and Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981. 10
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Inverse Compositional Algorithm

I Iteratively solve the task
ξk+1 = ξk ◦ (∆ξ)−1

I The warp increment ∆ξ is obtained by linearizing the objective

min
∆ξ
‖I(ξk)−T(∆ξ)‖22

using first-order Taylor expansion:

min
∆ξ

∥∥∥∥∥I(ξk)−T(0)− ∂T(0)

∂ξ
∆ξ

∥∥∥∥∥
2

2

I ∂T(0)/∂ξ does not depend on ξk and can thus be pre-computed

Baker and Matthews: Lucas-Kanade 20 Years On: A Unifying Framework: Part 1. Technical Report, Carnegie Mellon University, 2003. 11
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Comparison

Lucas-Kanade Algorithm

ξk+1 = ξk ◦∆ξ

min
∆ξ
‖I(ξk + ∆ξ)−T(0)‖22

min
∆ξ

∥∥∥∥∥I(ξk) +
∂I(ξk)

∂ξ
∆ξ −T(0)

∥∥∥∥∥
2

2

Inverse Compositional Algorithm

ξk+1 = ξk ◦ (∆ξ)−1

min
∆ξ
‖I(ξk)−T(∆ξ)‖22

min
∆ξ

∥∥∥∥∥I(ξk)−T(0)− ∂T(0)

∂ξ
∆ξ

∥∥∥∥∥
2

2

I The Inverse Compositional Algorithm is more computationally efficient!

Baker and Matthews: Lucas-Kanade 20 Years On: A Unifying Framework: Part 1. Technical Report, Carnegie Mellon University, 2003. 12



Robust M-Estimation

I To handle outliers, robust estimation can be used:

min
∆ξ

rk(∆ξ)T Wrk(∆ξ)

rk(∆ξ) = I(ξk)−T(∆ξ)

I The diagonal weight matrix W is determined by the implicit robust loss ρ(·)

Baker, Gross, Matthews and Ishikawa: Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report, Carnegie Mellon University, 2003. 13



Optimization

I The minimizer of rk(∆ξ)T Wrk(∆ξ) leads to the Gauss-Newton update:

∆ξ = (JTWJ)
−1

JTWrk(0)

with Jacobian J = ∂T(0)/∂ξ

I As the approximate Hessian JTWJ easily becomes ill-conditioned,
a damping term is added in practice, resulting in a trust-region update:

∆ξ = (JTWJ + λ diag(JTWJ))
−1

JTWrk(0)

I For different λ, the update varies between the Gauss-Newton direction and
steepest descent. In practice, λ is chosen based on simple heuristics.

Baker, Gross, Matthews and Ishikawa: Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report, Carnegie Mellon University, 2003. 14
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Robust Inverse Compositional Algorithm

Baker, Gross, Matthews and Ishikawa: Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report, Carnegie Mellon University, 2003. 15



What is the problem?

Limitations:
I Easily gets trapped in local minima as residuals often highly non-linear

I Choosing a robust loss function ρ is difficult as residual distribution unknown
I The objective does not capture high-order statistics of the inputs (W is diagonal)
I Damping heuristics are suboptimal and do not depend on the input

Our Approach
I Unroll the algorithm into a parameterized feed-forward network
I Relax assumptions above but preserves advantages of robust estimation
I Trained end-to-end from data

Baker, Gross, Matthews and Ishikawa: Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report, Carnegie Mellon University, 2003. 16
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Approach



Robust Inverse Compositional Algorithm
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Robust Inverse Compositional Algorithm

I Two-view feature encoder Convolutional m-estimator Trust-region network
18



Two-View Feature Encoder

I ConvNet φθ for extracting:
I Image features Iθ = φθ([I,T])

I Template features Tθ = φθ([T, I])

I Both views passed as input
I Features capture high-order spatial and temporal information

19
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Convolutional M-Estimator

I Robust weight function parameterized by ConvNet ψθ
I Input: feature maps I,T and residual r
I Output: diagonal weight matrix Wθ = ψθ(I,T, r)

I Robust function is learned end-to-end from data
I Robust function conditioned on input image/template and pixel context

20
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Trust Region Network

I Compute hypothetical updates for a set of damping proposals:

∆ξi = (JTWJ + λi diag(JTWJ))
−1

JTWrk(0)

I Pass resulting residuals to a neural net which predicts damping parameters:

λθ = νθ

(
JTWJ,

[
JTWr

(1)
k+1, . . . ,J

TWr
(N)
k+1

])
I Our experiments show that residual maps indeed contain valuable information

21
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Overview
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Overview
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Experimental Evaluation



RGB-D Image Alignment

The rigid body transformation Tξ warps pixel x as

Wξ(x) = KTξD(x)K−1 x

with
I K: camera intrinsics D(x): depth at pixel x
I Iθ(ξ) is obtained via bilinear sampling with z-buffering

24



Training Objective

3D End-Point-Error Loss:

L =
1

|P|
∑
l∈L

∑
p∈P
‖Tgt p−T(ξl)p‖

2
2

with
I p = D(x)K−1x: 3D point corresponding to pixel x in I

I L: set of coarse-to-fine pyramid levels

The EPE loss balances the influences of translation and rotation.

25



Datasets

Object Motion:
I MovingObjects3D (ShapeNet objects moving in static 3D room)

Camera Motion:
I BundleFusion [Dai et al., 2017]
I DynamicBundleFusion [Lv et al., 2018]
I TUM RGB-D SLAM [Sturm et al., 2012]

We subsample frames to increase the motion/difficulty.
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Datasets
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Baselines
Classical Methods:
I ICP implementation of Open3D [Zhou et al., 2018]
I RGB-D Visual Odometry [Steinbrücker et al., 2011]

Direct Pose Regression:
I Pose Regression with a FlowNetSimple backbone [Dosovitskiy et al., 2015]
I Cascaded Pose Regression
I Pose Regression with IC Refinement [Li et al., 2018]

Learning-based Optimization:
I LS-Net [Clark et al., 2018]
I DeepLK [Wang et al., 2018]
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Results on MovingObjects3D

1
7

.6
8

1
7

.7
4

1
7

.3
4

1
5

.3
3

1
2

.9
6

Po int-Point

ICP

Pose-CNN R.  C lark  et

a l .  2018

C.  Wang et

a l .  2018

Ours

3D End Point Error ↓

29



Results on MovingObjects3D

T I I(ξGT) I(ξ∗)
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Results on TUM RGB-D
1

.0
3 2

.8
1

5
.9

5

1
3

.8
3

0
.6

9

1
.1

4 2
.0

9

5
.8

8
KEY FRAME 1 KEY FRAME 2 KEY FRAME 4 KEY FRAME 8

mRPE: translation (cm) ↓

0
.5

5 1
.3

9

3
.9

9

9
.2

0
.4

5

0
.6

3

1
.1

3
.7

6

KEY FRAME 1 KEY FRAME 2 KEY FRAME 4 KEY FRAME 8

mRPE: rotation (deg) ↓

Steinbrücker et al, 2011 Ours

31



Ablation Study on DynamicBundleFusion

Method 3D EPE (cm)

No learning 8.58
Ours (A) 7.11
Ours (A)+(B) 6.88
Ours (A)+(B)+(C) 4.64
Ours (A)+(B)+(C) (no WS) 3.82
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Model Parameters and Inference Time
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Summary

I Generalization of Lucas-Kanade algorithm lifting several assumptions

I 3 modules:
I Two-view Feature Encoder
I Convolutional M-Estimator
I Trust Region Network

I End-to-end trainable
I Evaluated on object motion and camera motion estimation tasks
I Better generalization than image-to-pose regression models
I Higher accuracy compared to classical (non-learned) models

Conclusion: Combining classical and deep methods increases robustness

34



Summary

I Generalization of Lucas-Kanade algorithm lifting several assumptions
I 3 modules:

I Two-view Feature Encoder
I Convolutional M-Estimator
I Trust Region Network

I End-to-end trainable
I Evaluated on object motion and camera motion estimation tasks
I Better generalization than image-to-pose regression models
I Higher accuracy compared to classical (non-learned) models

Conclusion: Combining classical and deep methods increases robustness

34



Summary

I Generalization of Lucas-Kanade algorithm lifting several assumptions
I 3 modules:

I Two-view Feature Encoder
I Convolutional M-Estimator
I Trust Region Network

I End-to-end trainable

I Evaluated on object motion and camera motion estimation tasks
I Better generalization than image-to-pose regression models
I Higher accuracy compared to classical (non-learned) models

Conclusion: Combining classical and deep methods increases robustness

34



Summary

I Generalization of Lucas-Kanade algorithm lifting several assumptions
I 3 modules:

I Two-view Feature Encoder
I Convolutional M-Estimator
I Trust Region Network

I End-to-end trainable
I Evaluated on object motion and camera motion estimation tasks

I Better generalization than image-to-pose regression models
I Higher accuracy compared to classical (non-learned) models

Conclusion: Combining classical and deep methods increases robustness

34



Summary

I Generalization of Lucas-Kanade algorithm lifting several assumptions
I 3 modules:

I Two-view Feature Encoder
I Convolutional M-Estimator
I Trust Region Network

I End-to-end trainable
I Evaluated on object motion and camera motion estimation tasks
I Better generalization than image-to-pose regression models

I Higher accuracy compared to classical (non-learned) models

Conclusion: Combining classical and deep methods increases robustness

34



Summary

I Generalization of Lucas-Kanade algorithm lifting several assumptions
I 3 modules:

I Two-view Feature Encoder
I Convolutional M-Estimator
I Trust Region Network

I End-to-end trainable
I Evaluated on object motion and camera motion estimation tasks
I Better generalization than image-to-pose regression models
I Higher accuracy compared to classical (non-learned) models

Conclusion: Combining classical and deep methods increases robustness

34



Summary

I Generalization of Lucas-Kanade algorithm lifting several assumptions
I 3 modules:

I Two-view Feature Encoder
I Convolutional M-Estimator
I Trust Region Network

I End-to-end trainable
I Evaluated on object motion and camera motion estimation tasks
I Better generalization than image-to-pose regression models
I Higher accuracy compared to classical (non-learned) models

Conclusion: Combining classical and deep methods increases robustness

34



Thank you!
http://autonomousvision.github.io

http://autonomousvision.github.io

