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Abstract

image registration finds a variety of app/lcatrans in
vision. Unft iti image regi:

techniques tend to be costly. We present a new image
registration technique that makes use of the spatial intensity
gradient of the images to find a good match using a type of
Newton-Raphson iteration. Our technique is faster because
it examines far fewer paremlaf matches between the ;mages
than existing ,  this
technique can be y&nemﬂzed to handle rotation, scaling and
shearing. We show show our technigue can be adapted for
use in a stereo vision system.

1. Introduction

Image registration finds a variety of applications in
computer vision, such as image matching for stereo vision,
pattern recognition, and motion analysis. Untortunately,
existing techniques for image registration tend to be costly.

2. The registration problem

The translational image registration problem can be
characterized as follows: We are given functions FA(x) and
G(x) which give the respective pixel values at each location
X in two images, where x is a vector. We wish to find the
disparity vector h which minimizes some measure of the
difference between F(x + h) and G(x), for x in some region of
interest R. (See figure 1).

Figure 1: The image registration problem

Lucas and Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981.



Applications of Image Registration

eature Tracking and Optical Flow

Lucas and Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981.




Lucas-Kanade Algorithm

Objective: Minimize photometric error between template T and image I

min [1(€) ~ T(0)

» I(&): image I transformed by warp parameters &
» T(0): template

» Note: This is a non-linear objective

Lucas and Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981.



Lucas-Kanade Algorithm

> Iteratively solve the task
€1 = &p 0 AL

Lucas and Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981.
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Lucas-Kanade Algorithm

> Iteratively solve the task
€1 = &p 0 AL

» The warp increment A€ is obtained by linearizing the objective
min [1(€ + A&) = T(0)]l3
using first-order Taylor expansion:

o1(&y,)
o€

min

AL

(&) + Ag —T(0)

2
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Lucas-Kanade Algorithm

> Iteratively solve the task
€1 = &p 0 AL

» The warp increment A€ is obtained by linearizing the objective
min [1(€ + A&) = T(0)]l3

using first-order Taylor expansion:

min

AL

2
160 + T ag - 1(0)
2

» 0I(&;,)/0€ must be recomputed at every iteration k

Lucas and Kanade: An Iterative Image Registration Technique with an Application to Stereo Vision. IJCAI, 1981. 10



Inverse Compositional Algorithm

> Iteratively solve the task

Eppr =& o (AL
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Inverse Compositional Algorithm

> Iteratively solve the task

Ep1 = Epo (AE)
» The warp increment A€ is obtained by linearizing the objective
. B 2
min [1(&,) — T(A8)]
using first-order Taylor expansion:

dT(0)
o€

» 0T (0)/0€ does not depend on &, and can thus be pre-computed

min
A€

I(§y) — T(0) — AL

2

Baker and Matthews: Lucas-Kanade 20 Years On: A Unifying Framework: Part 1. Technical Report, Carnegie Mellon University, 2003.



Comparison

Lucas-Kanade Algorithm Inverse Compositional Algorithm
Erp1 =& o AL i1 = Epo (A6
min [1(¢, + A&) = T(0)[3 min [1(&,) — T(A8)]3
2
. o1& : oT(0)
min L(&x) + ¢ Ag —T(0) 2 min I(¢;) — T(0) — TSAE 2

» The Inverse Compositional Algorithm is more computationally efficient!

Baker and Matthews: Lucas-Kanade 20 Years On: A Unifying Framework: Part 1. Technical Report, Carnegie Mellon University, 2003.



Robust M-Estimation

» To handle outliers, robust estimation can be used:

n&iﬁn ri(AE)T Wry(A€)

ri(A) = I(§;) — T(AE)

» The diagonal weight matrix W is determined by the implicit robust loss p(-)

Baker, Gross, Matthews and Ishikawa: Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report, Carnegie Mellon University, 2003. 13



Optimization

» The minimizer of ri(A&)T W ri(A€) leads to the Gauss-Newton update:
A€ = (JTWI) ' ITW r,(0)

with Jacobian J = 9T(0)/0¢

Baker, Gross, Matthews and Ishikawa: Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report, Carnegie Mellon University, 2003.



Optimization

» The minimizer of ri(A&)T W ri(A€) leads to the Gauss-Newton update:
A€ = (JTWI) ' ITW r,(0)

with Jacobian J = 9T(0)/0¢

» As the approximate Hessian JTWJ easily becomes ill-conditioned,
a damping term is added in practice, resulting in a trust-region update:

A€ = (ITWJI + \diag(I7WJ)) " ITW r,,(0)
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Optimization

» The minimizer of ri(A&)T W ri(A€) leads to the Gauss-Newton update:
A€ = (JTWI) ' ITW r,(0)

with Jacobian J = 9T(0)/0¢

» As the approximate Hessian JTWJ easily becomes ill-conditioned,
a damping term is added in practice, resulting in a trust-region update:

A€ = (ITWJI + \diag(I7WJ)) " ITW r,,(0)

» For different ), the update varies between the Gauss-Newton direction and
steepest descent. In practice, ) is chosen based on simple heuristics.

Baker, Gross, Matthews and Ishikawa: Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report, Carnegie Mellon University, 2003.



Robust Inverse Compositional Algorithm

r;(0) = I(§;) — T(0)

A€ = (JTWJ + Adiag(JTWJI)) " JTW r,(0)

Erp1 = &0 (AE)7]

Baker, Gross, Matthews and Ishikawa: Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report, Carnegie Mellon University, 2003.



What is the problem?

Limitations:

» Easily gets trapped in local minima as residuals often highly non-linear
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Our Approach
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What is the problem?

Limitations:
» Easily gets trapped in local minima as residuals often highly non-linear
» Choosing a robust loss function p is difficult as residual distribution unknown
» The objective does not capture high-order statistics of the inputs (W is diagonal)

» Damping heuristics are suboptimal and do not depend on the input

Our Approach
» Unroll the algorithm into a parameterized feed-forward network
» Relax assumptions above but preserves advantages of robust estimation

» Trained end-to-end from data

Baker, Gross, Matthews and Ishikawa: Lucas-Kanade 20 Years On: A Unifying Framework: Part 2. Technical Report, Carnegie Mellon University, 2003. 16



Approach




Robust Inverse Compositional Algorithm

r;(0) = I(§;) — T(0)

A€ = (JTWJ + Adiag(JTWJI)) " JTW r,(0)

Erp1 = &0 (AE)7]



Robust Inverse Compositional

— 1 ='1H(&;)

AE = (JT.*W
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» Two-view feature encoder Con

volutional m-estimator ~ Trust-region network



Two-View Feature Encoder

[:> (A) Two-View
Feature Encoder

» ConvNet ¢, for extracting:

» Image features Iy = ¢y ([I, T])
» Template features Ty = ¢ ([T, I])
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Two-View Feature Encoder

¢> (A) Two-View ﬁ)Te N/
Feature Encoder

» ConvNet ¢, for extracting:

» Image features Iy = ¢y ([I, T])
» Template features Ty = ¢ ([T, I])

» Both views passed as input

» Features capture high-order spatial and temporal information



Convolutional M-Estimator

M-estimator

; ;/ /‘/ Ii) (B) Convolutional ¢> W, "}})
| |

» Robust weight function parameterized by ConvNet v

» Input: feature maps I, T and residual r
» Output: diagonal weight matrix Wy = ¢y(I, T, r)



Convolutional M-Estimator

A4 |i> (B) Convolutional ﬁ) W, }})

: R M-estimator

y

» Robust weight function parameterized by ConvNet v

» Input: feature maps I, T and residual r
» Output: diagonal weight matrix Wy = ¢y(I, T, r)

» Robust function is learned end-to-end from data

» Robust function conditioned on input image/template and pixel context

20



Trust Region Network

(C) Trust Region
E> Network If’> Ag

» Compute hypothetical updates for a set of damping proposals:

AE;, = (ITWI + A, diag(ITWJ)) ' ITW 1;,(0)

21



Trust Region Network

(C) Trust Region
Network LJ’> Ao

» Compute hypothetical updates for a set of damping proposals:
AE, = (JTWI + ) diag(3TWI)) " ITW r,,(0)
» Pass resulting residuals to a neural net which predicts damping parameters:

Ao = vp (JTWJ, [JTWr,(jjl, . ,JTWr,(CﬂD

21



Trust Region Network

(C) Trust Region
Network f’> Ao

» Compute hypothetical updates for a set of damping proposals:
AE, = (JTWI + ) diag(3TWI)) " ITW r,,(0)
» Pass resulting residuals to a neural net which predicts damping parameters:
Ao = vp (JTWJ, [JTWr,(jjl, . ,JTWr,(CﬂD

» Our experiments show that residual maps indeed contain valuable information
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Overview
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Overview

Pre-computation

9T, (0)

Inverse-composition

at kth iteration Residual maps from damping proposals:

{ A0 5 AF® S rlg?l, ie{l.. N}]

(B) Convolutional
M-estimator

(C) Trust Region

(
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Experimental Evaluation




RGB-D Image Alignment

The rigid body transformation T¢ warps pixel x as

We(x) = KTe D(x)K ' x

with
» K: camera intrinsics D(x): depth at pixel x

» Iy(&) is obtained via bilinear sampling with z-buffering

24



Training Objective

3D End-Point-Error Loss:
1
L= Pl Z Z ITgep — T(&) pll3
leL peP
with
» p = D(x)K~!'x: 3D point corresponding to pixel x in I

» L: set of coarse-to-fine pyramid levels

The EPE loss balances the influences of translation and rotation.

25



Datasets

Object Motion:
» MovingObjects3D (ShapeNet objects moving in static 3D room)
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Datasets

Object Motion:
» MovingObjects3D (ShapeNet objects moving in static 3D room)

Camera Motion:
» BundleFusion [Dai et al., 2017]
» DynamicBundleFusion [Lv et al., 2018]
» TUM RGB-D SLAM [Sturm et al,, 2012]

We subsample frames to increase the motion/difficulty.
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Datasets

Train objects

Test objects
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Baselines
Classical Methods:
» |ICP implementation of Open3D [Zhou et al., 2018]
» RGB-D Visual Odometry [Steinbriicker et al., 2011]
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Baselines
Classical Methods:
» |ICP implementation of Open3D [Zhou et al., 2018]
» RGB-D Visual Odometry [Steinbriicker et al., 2011]

Direct Pose Regression:
» Pose Regression with a FlowNetSimple backbone [Dosovitskiy et al., 2015]
» Cascaded Pose Regression

» Pose Regression with IC Refinement [Li et al., 2018]

Learning-based Optimization:
» | S-Net [Clark et al., 2018]
» DeeplLK [Wang et al.,, 2018]
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Results on MovingObjects3D

3D End Point Error |
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Results on MovingObjects3D




Results on TUM RGB-D

mRPE: translation (cm) | mRPE: rotation (deg)
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Ablation Study on DynamicBundleFusion

Method 3D EPE (cm)
No learning 8.58
Ours (A) 7.11
Ours (B) 6.88

(A)+
Ours (A)+(B)+(C) 4.64
Ours (A)+(B)+(C) (no WS) 3.82




Model Parameters and Inference Time

Model parameters (M) Inference time (ms)
19 14.2

7.24

0.6

Pose-CNN Ours Pose-CNN (3 Ours (12 iterations)
iterations)
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Summary

» Generalization of Lucas-Kanade algorithm lifting several assumptions
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Summary

» Generalization of Lucas-Kanade algorithm lifting several assumptions
» 3 modules:

» Two-view Feature Encoder
» Convolutional M-Estimator
» Trust Region Network

End-to-end trainable
Evaluated on object motion and camera motion estimation tasks
Better generalization than image-to-pose regression models

Higher accuracy compared to classical (non-learned) models

Conclusion: Combining classical and deep methods increases robustness
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