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Learning Steering Kernels
for Guided Depth Completion
Lina Liu, Yiyi Liao, Yue Wang, Andreas Geiger and Yong Liu

Abstract—This paper addresses the guided depth completion
task in which the goal is to predict a dense depth map given a
guidance RGB image and sparse depth measurements. Recent
advances on this problem nurture hopes that one day we can
acquire accurate and dense depth at a very low cost. A major
challenge of guided depth completion is to effectively make use
of extremely sparse measurements, e.g., measurements covering
less than 1% of the image pixels. In this paper, we propose
a fully differentiable model that avoids convolving on sparse
tensors by jointly learning depth interpolation and refinement.
More specifically, we propose a differentiable kernel regression
layer that interpolates the sparse depth measurements via learned
kernels. We further refine the interpolated depth map using
a residual depth refinement layer which leads to improved
performance compared to learning absolute depth prediction
using a vanilla network. We provide experimental evidence that
our differentiable kernel regression layer not only enables end-
to-end training from very sparse measurements using standard
convolutional network architectures, but also leads to better
depth interpolation results compared to existing heuristically
motivated methods. We demonstrate that our method outper-
forms many state-of-the-art guided depth completion techniques
on both NYUv2 and KITTI. We further show the generalization
ability of our method with respect to the density and spatial
statistics of the sparse depth measurements.

Index Terms—Depth completion, depth interpolation, kernel
regression, steering kernels

I. INTRODUCTION

DEPTH perception plays an important role for humans,
and is also a valuable cue in computer vision and robotics

[4]–[6]. Acquiring dense and accurate depth at a low cost
is particularly important for applications such as autonomous
driving and virtual reality. While existing depth sensors have
contributed significantly to these applications, the goal of
obtaining accurate and dense depth at low cost is still not
fulfilled. For example, 3D LiDAR provides accurate but sparse
measurements and existing scanners are typically expensive.
Though structured light sensors are more affordable, they often
have a smaller field of view and are constrained to indoor
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(a) Depth prediction from sparse measurements (e.g., [1])
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(b) Depth prediction from interpolated measurements (e.g., [2], [3])
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(c) End-to-end depth interpolation and refinement (ours)

Figure 1: Illustration comparing different guided depth com-
pletion approaches. The task is to predict a dense depth map
given a guidance RGB image and sparse depth measurements.
Learned components are highlighted in yellow.

environment. More recently, learning-based monocular depth
estimation methods have attracted attention due to their low
cost, as only a monocular RGB image is required to estimate
the depth. However, estimating depth from monocular images
is a highly ill-posed problem.

To acquire dense and accurate depth using affordable sen-
sors, we aim for a learning-based solution of guided depth
completion. More specifically, we predict the full resolution
depth map based on a guidance RGB image and a set of very
sparse depth measurements (e.g., less than 1% of the image
pixels), which can be obtained from a low-cost LiDAR with a
small number of laser beams or visual SLAM [7]. Compared
to predicting depth from a monocular RGB image alone, our
method is able to resolve spatial ambiguities using metric cues
from the sparse depth measurements.

However, estimating dense depth maps from sparse mea-
surements is not trivial. Focusing on this problem, there are
two dominant lines of research as illustrated in Fig. 1. In
the first class (Fig. 1a), the sparse depth measurements are
represented as a sparse depth map. The pixels without valid
depth are set to a constant number, e.g., 0 [1]. The resulting
sparse depth map is concatenated with the guidance image
and fed into a neural network to predict the dense depth map.
The advantage of this method is that the model can be trained
in an end-to-end manner. However, in this case the network
needs to resolve the ambiguity between valid and invalid depth
measurements and vanilla convolutional networks with small
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convolution kernels are not suited for very sparse inputs as
considered in this work [8]. Another line of works avoids this
problem by addressing the guided depth completion task in
two stages (Fig. 1b). The sparse depth measurements are first
interpolated into an intermediate dense depth map, which is
then utilized for depth refinement in a second stage [2], [3].
Though each pixel in the interpolated depth image is valid in
this case, existing techniques for constructing the interpolated
depth map are hand-crafted and thus cannot be trained from
data.

In this paper, we propose a solution to guided depth com-
pletion by combining advantages of intermediate dense depth
representations and end-to-end training as illustrated in Fig. 1c.
Our key idea is to replace the hand-crafted interpolation with
a differentiable kernel regression layer. Our learned kernel
regression layer transforms the sparse measurements into a
dense representation which is suitable for depth refinement
using a standard convolutional network. More specifically, we
first estimate the interpolated depth map using kernel regres-
sion, where the kernel shapes are learned via a neural network
conditioning on the guidance image. Next, we transform the
absolute depth estimation task into residual depth estimation
by refining the interpolated depth map using a refinement
network. Our contributions are summarized as follows:
• We propose a differentiable kernel regression layer which

learns the kernel shapes conditioned on the guidance
RGB image. We show that our learned kernels reduce
the estimation bias comparing to heuristically designed
kernels.

• We integrate our differentiable kernel regression layer
into guided depth completion that enables end-to-end
depth estimation while avoiding convolving directly on
the sparse measurements. With the dense interpolated
map obtained from our kernel regression layer, we are
able to redefine the task of estimating the absolute depth
map as estimating the residual between the real and the
interpolated depth map.

• Our experiments demonstrate that the proposed method
achieves superior performance compared to existing
guided depth completion techniques. We further show
that our model generalizes well wrt. varying number of
points and different depth observations patterns.

The remainder of the paper is organized as follows: Sec-
tion II gives a review of related work. We introduce our
method in Section III and present the experimental results in
Section IV. Finally, we conclude the paper in Section V.

II. RELATED WORK

Monocular Depth Estimation: Many works have consid-
ered the task of estimating a depth map from a monocular
image. Conventional methods tackle the problem based on
hand-crafted features and graphical models [9], [10]. More
recently, supervised learning methods achieve state-of-the-
art performance on monocular depth estimation [11]–[18].
Unsupervised methods also demonstrate promising results on
this task [19], [20].

Despite recent advances on monocular depth estimation, the
task is inherently ill-posed, e.g., the global scale of the depth
map is ambiguous [11]. In this work, we consider the task of
guided depth completion in which scale ambiguities can be
resolved using a set of sparse measurements.

Depth Upsampling: Depth upsampling methods aim at
increasing the spatial resolution of a given depth map. While
a few works directly upsample the depth map without any
guidance information [21], [22], several approaches demon-
strate that it is beneficial to exploit a color or intensity
image at the target resolution as guidance [23]–[32]. Most
approaches falling into this category either use a guided
bilateral filter [23]–[26] or global energy minimization [27]–
[32] for this purpose. More recently, deep learning methods
became popular, demonstrating state-of-the-art performance on
the depth upsampling task [33]–[35].

In contrast to depth upsampling methods that take a low-
dimensional depth map defined on a regular pixel grid as input,
we consider the depth completion task in which the depth
observations are incomplete, sparse and irregularly distributed.

Depth Completion: Various methods have been proposed
to fill holes in depth images [4], [36]–[41]. These methods
typically assume that the depth is densely observed for most
image areas but incomplete at specific regions, e.g., at object
boundaries and in reflective areas where depth sensors struggle
to reconstruct depth. Therefore, they are not directly applicable
to sparse input observations which we consider in this paper.

Many works have attempted to estimate dense depth maps
given only very sparse and irregular depth measurements. Non-
guided methods [8], [42] provide compelling results given
observations at a moderate sparsity level, e.g., 10% of pixels
carry depth information [8]. However, their performance is
limited when only very few depth measurements are available,
e.g., less than 1% of the pixels being observed. Incorporating
a guidance image can substantially boost depth completion
performance in both moderate [41]–[45] and extremely sparse
settings [1]–[3], [42], [46]–[48]. In this paper, we focus on the
second, more challenging setting.

In this setting, a major challenge is to effectively incorporate
the extremely sparse measurements into a deep neural network.
A straightforward option is to represent the measurements as a
sparse depth map where the depth value in unknown regions
is set to 0, and then feed it into the deep networks along
with the RGB image [1], [46], [47] or an inferred normal map
[44]. However, as pointed out in [8], standard convolutional
neural networks degenerate when applied directly on sparse
inputs given a limited kernel size. Though this problem can
be resolved by specifically designing the network architecture
for sparse inputs [8], [42], [49], we seek an alternative by
differentiably transforming the sparse input into a dense rep-
resentation that can be fed into standard convolutional neural
networks. Following this idea, our earlier work [2] extrapolates
a horizontal 2D laser scanline in gravity direction and takes
this extrapolated depth map as input to a deep neural network.
Similarly, Chen et al. [3] and Shivakumar et al. [48] interpolate
the sparse depth map into a dense depth map as input to the
convolutional neural network. All these methods pre-process
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the sparse depth measurements heuristically and are not trained
end-to-end.

Instead of constructing a dense depth map using hand-
crafted interpolation techniques, in this paper, we propose a
differentiable kernel regression layer which allows us to ex-
ploit the image distribution for depth interpolation. Moreover,
our model learns to predict the optimal kernel parameters
conditioned on the input image end-to-end from data.

Kernel Regression: Kernel regression is a well-established
regression method [50], [51]. Conventionally, the same kernel
is applied over the entire image, i.e., the kernel is data
and location independent. Takeda et al. [52] propose a data-
adaptive kernel regression method that steers the kernel based
on an extra input, e.g., an RGB image. While in [52] the
kernel shapes are heuristically designed, we learn the image-
conditional kernel shape end-to-end from data. We experimen-
tally demonstrate that our learned kernels are able to reduce
the estimation bias compared to heuristically designed ones.

A few metric learning methods also learn kernel shapes
from data for kernel regression [53], [54]. Weinberger &
Tesauro [53] optimize the kernel shape by minimizing a
regression loss. Noh et al. [54] derive an analytical solution
for estimating kernel shapes from Gaussian-distributed data.
Note that none of these approaches uses a deep neural network
as encoder for estimating the kernel shapes. In contrast, we
exploit a deep neural network to directly infer the kernel shape
at each pixel from our guidance image, effectively amortizing
the inference process [55].

III. METHOD

Our goal is to estimate a dense depth map given sparse
depth measurements and a guidance RGB image as input.
Existing works for guided depth completion either directly
infer a dense depth map from sparse measurements or base
their predictions on intermediate dense depth maps that are
obtained using hand-crafted interpolation techniques (e.g.,
nearest neighbor). In this work, we instead propose to split
the guided depth completion problem into two differentiable
end-to-end trainable stages as illustrated in Fig. 2: We first
predict a dense interpolated depth map D̃ from sparse depth
measurements D using kernel regression where the kernel pa-
rameters Φ = {Γ,Θ,Σ} are estimated based on the guidance
image I. Here, D = {(x1, d1), · · · , (xP , dP )} denotes the set
of sparse depth measurements where xi ∈ R2 is the pixel
location and di ∈ R+ the depth value. In a second step, we
refine D̃ into the final depth map D̂ using a deep residual
network. Our method avoids applying convolutions directly
on extremely sparse inputs while being end-to-end trainable.

In this section, we first give a formal introduction to kernel
regression and demonstrate that existing works for hand-
crafted depth interpolation [2], [3] are special cases of this
kernel regression framework. Next, we present our differen-
tiable kernel regression module which uses a neural network
for predicting the kernel parameters from the guidance image
instead of heuristically designing the kernels. Finally, we
introduce our residual estimation network, as well as the loss
functions and training details.

A. Kernel Regression

Kernel regression is a non-parametric regression technique
which uses a kernel as weighting function. In the context of
depth completion, we aim at developing a regression model
D̃(x) that estimates a depth value at an arbitrary pixel x ∈ R2

from a set of sparse measurements D. Following [52], the
kernel regression model at a given pixel x can be formulated
as

D̃(x) =

∑
i=1...P KH(xi − x)di∑
i=1...P KH(xi − x)

(1)

which represents the predicted depth at x as a linear com-
bination of known measurements di weighted by the kernel
function KH(xi − x). The kernel shape is crucial for the
performance of the regression model. In practice, they are
often heuristically designed and can be categorized into data-
independent and data-dependent kernels.

Data-independent Kernel: A data-independent kernel deter-
mines the weight between xi and x by the relative distance
xi − x independent of a guidance image I. In this case, the
kernel shape at any pixel is constant across the image domain.
A common kernel choice is the Gaussian kernel:

KH(xi − x) =
1

2π
√

det (H2)

exp

{
− (xi − x)TH−2(xi − x)

2

} (2)

Here, H ∈ R2×2 is a constant smoothing matrix which does
not depend on the guidance image I.

We remark that some of existing hand-crafted intermediate
depth maps [2], [3] can be view as interpolated using kernel
regression with data-independent kernels. In our previous
work [2], we expand a single horizontal laser scanline in verti-
cal direction to generate a dense depth map. We can achieve a
similar effect using kernel regression by constructing a Gaus-
sian kernel that is extremely elongated in vertical direction.
In [3], an intermediate dense depth map is constructed using
nearest neighbor interpolation. This operation is equivalent to
applying a hard assignment in Eq. (1), which considers only
the depth value di with the largest KH(xi−x) for estimating
D̃(x). The interpolated depth map of both techniques [2], [3]
is constructed without considering a guidance image I.

Data-dependent Kernel: Takeda et al. [52] propose a non-
constant steering kernel which depends on a guidance image I.
More specifically, they use the image gradient∇I to adaptively
“steer” the kernel, resulting in elongated kernels spread along
the image edges

KHi(xi − x) =
1

2π
√

det (H2
i )

exp

{
− (xi − x)TH−2i (xi − x)

2

} (3)

where Hi denotes the smoothing matrix which depends on the
local content of guidance image I at pixel xi.

While Hi is constructed adaptively with respect to image
features in [52], it is still heuristically designed and may not be
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Figure 2: Method Overview. Our differentiable kernel regression module (orange) predicts a dense interpolated depth map D̃
from the guidance image I and the sparse measurements D (visually enhanced). The kernel parameters Φ = {Γ,Θ,Σ} are
learned from I, and the interpolated depth map D̃ is estimated using kernel regression given Φ and D. Given the interpolated
depth map D̃, our residual network (blue) predicts the final depth map D̂ conditioned on the guidance image I. Instead of
directly predicting D̂ using a deep neural network, we learn the residual depth D̂ − D̃ by adding a global skip connection.
Our model avoids directly applying convolutions on the sparse measurements D while being end-to-end trainable.

optimal to reduce the estimation bias between the interpolated
depth map D̃ and the ground truth D.

B. Differentiable Kernel Regression
To overcome the limitation of heuristic steering kernels, we

propose a differentiable kernel regression layer that allows
for learning the smoothing matrix Hi fully driven by the
raw data. In contrast to the hand-crafted depth interpolation
based on data-independent kernels, our learned steering ker-
nels allow for adaptively integrating additional information
of the guidance image I. More importantly, we integrate the
differentiable kernel regression layer into the guided depth
completion framework, allowing for jointly optimizing depth
interpolation and depth refinement end-to-end.

Specifically, we learn the kernel shapes from I to directly
minimize the estimation bias between the interpolated depth
map D̃ and the ground truth D. Note that our kernel shapes
are learned without direct supervision, guided only by the
estimation bias, i.e., we do not require ground truth for the
kernel shapes. More formally, we follow the parametrization
of [52] and represent Hi as

Hi = hµiC
− 1

2
i (4)

where h is the global smoothing parameter and µi is a scalar
that captures the local density of the depth samples. Ci is
a covariance matrix that is specified using three parameters
(i.e., γi, θi and σi) which control the scaling, rotation and
elongation of Ci respectively:

Ci = γiUθiΛiU
T
θi

Uθi =

[
cos θi sin θi
− sin θi cos θi

]
Λi =

[
σi 0
0 σ−1i

] (5)

Intuitively, a circular kernel with isometric weighting is firstly
elongated by the elongation matrix Λi whose axes lengths are

scaled by σi. Next, the elongated kernel is rotated by the 2D
rotation matrix Uθi . Finally, the kernel is scaled by γi.

In our differentiable kernel regression layer, we propose
to predict the kernel parameters Φ = {Γ,Θ,Σ} from the
guidance image I using a kernel parameter network, where
γi = Γ(xi), θi = Θ(xi) and σi = Σ(xi). This is illustrated
in the orange block of Fig. 2. In contrast to [52], we fix h and
µi in our formulation as these parameters are redundant wrt.
γi and thus mainly affect the initialization. We set h = 5.0
and µi = 1.0 empirically where a relatively large h is used to
compensate for the sparse observations. Note that each param-
eter map (Γ,Θ,Σ) has the size of the guidance image I and
a data-dependent covariance matrix Ci is specified at every
pixel location xi, determining the steering kernel KHi

(xi−x)
in Eq. (3). Given the kernels centered at all sparse depth
measurements D, we then estimate the dense interpolated
depth map D̃ using kernel regression in Eq. (1). The kernel
parameter network and the kernel regression operation are both
differentiable and thus allow for end-to-end training.

We use a shallow version of [56] as our backbone for learn-
ing the kernel parameters. Note that we only use the guidance
image I as input to the kernel parameter network, thus avoiding
convolutions directly on the sparse depth measurements D.
Moreover, our kernel parameter network is independent of the
sparse depth measurements. As evidenced by our experiments,
this leads to high generalization performance wrt. the number
of depth measurements as well as the (sparse) observation
pattern. While only pixels with valid depth measurements
provide gradients to update the kernel parameter network, our
approach is able to learn smooth kernel parameter maps as
illustrated in Fig. 2 and Fig. 6.

We will refer to the entire kernel regression network (illus-
trated in orange in Fig. 2) as KernelNet in the following.

C. Residual Network
As illustrated in the blue block in Fig. 2, we refine the

interpolated depth to obtain the final depth prediction. The
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dense interpolated depth map allows us to use standard con-
volutional networks to estimate the final depth map. We use a
standard U-Net [56] which aggregates local and global feature
information as our backbone.

As the output of the KernelNet is a dense depth map, the
refinement step can be effectively implemented by estimating
the residual depth D̂− D̃ between the final depth map D̂ and
the interpolated depth map D̃. The residual depth estimation is
implemented by introducing a global skip connection as illus-
trated in Fig. 2. Note that learning the residual mapping [57]
via the global skip connection ensures a performance lower
bound on the final depth, i.e., the final depth should perform
equal or better than the interpolated depth. Another intuition of
the residual formulation is normalization: while the absolute
depth may differ in range across images, the residual depth
is expected to follow a zero-mean distribution which helps
during training [58].

We will refer to the entire residual network (illustrated in
blue in Fig. 2) as ResNet in the following.

D. Loss Function

We define our loss function jointly on the interpolated depth
map D̃ and the final depth map D̂. For the interpolated
depth map, the depth at each pixel is estimated using kernel
regression as defined in Eq. (1). For the final depth map,
we adopt a probabilistic estimation method by representing
the depth value as the expectation over a predicted depth
distribution at each pixel. Specifically, we estimate a discrete
random variable at every pixel location x, represented as a set
of possible values d̄1, d̄2, . . . , d̄M occurring with probabilities
P (x) = {p1(x), p2(x), . . . , pM (x)} at pixel x, where M is
the number of the discrete bins. The predicted depth at pixel
location x is calculated as the expected depth value wrt. P (x):

D̂(x) =

M∑
k=1

d̄k pk(x) (6)

In our implementation, d̄1, d̄2, . . . , d̄M are fixed and obtained
by uniformly sampling on a provided range interval, while
P (x) is estimated using a softmax layer.

Given the data representation, we formulate our loss for
training the full model as follows

L =
∑
x

w1Linter + w2Ldirac + w3Lmean + w4Lgrad (7)

with constant hyperparameters w1, . . . , w4. The sum notation
denotes the aggregation of the loss over all pixels. Note that
we have dropped the dependency of the loss functions on the
pixel location x for clarity. We now explain each term in detail.

Loss on Interpolated Depth: We minimize the `1 distance
between the interpolated depth and the ground truth depth:

Linter(x) = |D(x)− D̃(x)| (8)

This loss enables learning the kernel shape directly from data
to reduce the estimation bias.

Loss on Final Depth Distribution: For the discrete random
variable at every pixel location x, we do not have access to the

ground truth probability distribution. A reasonable assumption
is a Dirac delta distribution based on which bin the ground
truth depth falls into after discretization. Thus, a standard
cross-entropy loss can be applied

Ldirac(x) =

M∑
k=1

δ([D(x)]− k) log(pk) (9)

where [D(x)] returns the index of the bin D(x) belongs to.
Note that existing works point out that the cross-entropy loss
defined on discrete depth values outperforms naïve depth value
regression [16].

Loss on Final Depth Mean: With only the assumption of
the Dirac delta distribution, the estimated accuracy can be
limited by the discretization. Therefore we also minimize the
`1 distance between the expectation value in Eq. (6) and the
ground truth depth:

Lmean(x) = |D(x)− D̂(x)| (10)

In our experiments, we demonstrate that this additional con-
straint on the expected depth values boosts prediction accuracy.

Loss on Final Depth Gradient: To eliminate depth distortion
and blurry predictions at object boundaries, we follow [59] and
apply a constraint to the depth gradient. This loss penalizes
the disagreement of depth edges between D and D̂, in both
vertical and horizontal direction

Lgrad(x) = F (|∇(D− D̂)(x)|) (11)

where ∇(D−D̂)(x) is a 2D vector comprising the horizontal
and vertical depth gradients at pixel location x. F (ξ) is a
robust activation function formulated as

F (ξ) =
∑
i

log(ξi + 1) (12)

where ξ is a vector with each entry denoted by ξi.

E. Training
We train the network in three steps. At the first step, we

train the differentiable kernel regression module using only
Linter, with a learning rate of 0.01 for 10 epochs, resulting in
a first approximation of the interpolated depth. Next, we train
the residual depth network to further refine the interpolated
depth using Ldirac, Lmean and Lgrad. Finally, we train the
full model in an end-to-end manner with all loss functions.

IV. EXPERIMENTS

In this section, we first introduce the experimental setup
and compare with state-of-the-art methods for guided depth
completion. Next, we analyze the benefits of our differentiable
kernel regression network and conduct ablation studies wrt.
our architecture design and loss functions. Finally, we explore
the generalization ability of our method in terms of the number
of points and different depth observation patterns.

A. Experimental Setup

Datasets: We evaluate the proposed method on NYUv2 [4]
and KITTI [60]. For the indoor dataset NYUv2, we follow
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Dataset Method Error (↓) Accuracy (↑)
rms rel δ1.02 δ1.05 δ1.10 δ1.25 δ1.252 δ1.253

NYUv2

Sparse-to-Dense [1] 0.230 0.044 52.3 82.3 92.6 97.1 99.4 99.8
Sparse-to-Dense (SS) [47] 0.132 0.027 64.3 87.4 95.0 99.0 99.9 100.0
CSPN [46] 0.117 0.016 83.2 93.4 97.1 99.2 99.9 100.0
Nconv-CNN [49] 0.125 0.017 82.2 92.9 96.7 99.1 99.8 100.0
DeepLiDAR [44] 0.115 0.022 - - - 99.3 99.9 100.0
D3-Random [3] 0.157 0.025 69.3 88.6 95.3 99.0 99.8 99.9
Ours 0.111 0.015 84.8 94.1 97.4 99.3 99.9 100.0

KITTI

Sparse-to-Dense [1] 3.378 0.073 30.0 65.8 85.2 93.5 97.6 98.9
Sparse-to-Dense (SS) [47] 2.245 0.050 52.4 81.5 91.2 96.1 98.6 99.3
CSPN [46] 2.977 0.044 70.2 85.7 91.4 95.7 98.0 99.1
Nconv-CNN [49] 2.739 0.063 50.4 74.2 86.4 94.8 98.2 99.3
DeepLiDAR [44] 2.126 0.044 54.1 82.3 92.0 96.2 98.7 99.4
D3-Random [3] 3.124 0.060 46.4 73.1 85.1 94.1 98.2 99.3
Ours 2.708 0.037 76.4 88.0 92.7 96.3 98.3 99.2

Table I: Guided Depth Completion on NYUv2 and KITTI. All methods take 500 sampled points as depth measurements.

the official split with 249 scenes for training and 215 scenes
for testing. In particular, the test dataset with 654 images is
used for evaluation, and 46k images are sampled from the
raw training data for training, where missing depth values are
inpainted with a cross-bilateral filter provided in the official
toolbox. The original image of resolution 640 × 480 pixels
is downsampled and cropped to 304 × 228 pixels as input
following [1], [3], [46].

The outdoor dataset KITTI includes RGB images and depth
images collected by Velodyne HDL64. Following [1], we use
46k images from the training sequences for training, and a
random subset of 3200 images from the test sequences for
evaluation. For fair comparison, we also use the bottom crop
(912× 228) and evaluate on valid pixels as in [1].1

Sparse Measurements: Following [1], [3], [46], we use
500 sparse random depth samples per image (less than 1%
of all pixels) on both NYUv2 and KITTI. Note that this
setting is more challenging than the setting of the KITTI
depth completion benchmark [8] which uses an input density
of roughly 10%. We further validate the generalization ability
of our method wrt. different sparse input modalities in the
ablation study. To this end, we simulate laser scanners with
different number of beams on KITTI, by sampling 1/4/8 beams
from the original 64 beams.

Evaluation Metrics: We adopt the standard evaluation met-
rics. Let di = D(xi) denote the ground truth depth at a pixel
location xi and d̂i = D̂(xi) denote the estimated depth. The
evaluation metrics are specified as follows:

• Root Mean Squared Error (rms):
√

1
N

∑
i(d̂i − di)2

• Mean Absolute Relative Error (rel): 1
N

∑
i
|d̂i−di|
di

• Threshold δ: percentage of d̂i, s.t. max( d̂idi ,
di
d̂i

) < δ, δ ∈
{1.02, 1.05, 1.10, 1.25, 1.252, 1.253}, see [46].

Here, N denotes the total number of pixels.

1Note that Lgrad is not applicable to KITTI due to the discontinuity of
the ground truth depth D, therefore we only apply Lgrad on NYUv2.

Implementation Details: We adopt the original U-Net [56]
as the backbone of our ResNet. Specifically, it contains 4
downsampling steps and 4 upsampling steps, each with a
stride of 2. For KernelNet, we use a shallow version of U-
Net by reducing both downsampling and upsampling steps to
1. We set the number of the discrete bins M = 401 for all
experiments.

B. Comparison to the State-of-the-Art

Baselines: We compare to the following state-of-the-art
methods on the guided depth completion task.
• Sparse-to-Dense [1] takes sparse measurements as input

where non-observed regions are set to 0. The sparse depth
map and the guidance image are concatenated to estimate
the dense depth map end-to-end.

• Sparse-to-Dense (SS) [47] extends [1] by exploiting self-
supervision (SS) via a photometric loss between neigh-
boring frames.

• CSPN [46] stands for Convolutional Spatial Propagation
Network and improves Sparse-to-Dense [1] by refining
the depth estimation using a recurrent spatial propagation
model.

• Nconv-CNN [49] proposes a normalized convolutional
layer which takes as input sparse measurements and
a confidence map for unguided depth completion. The
output of the unguided network is further concatenated
with the RGB image for guided depth completion.

• DeepLiDAR [44] also takes sparse measurements as
input. It estimates surface normals as the intermediate
representation to produce dense depth and thus addition-
ally requires ground truth surface normals as supervi-
sion. While the original implementation uses a synthetic
dataset with ground truth normals for pre-training, we
omit this step for fair comparison. We compute the sur-
face normal ground truth from the depth map following
[44] where a plane fitting algorithm is first applied on
KITTI to obtain a dense depth map [4].
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• D3-Random is an adapted version of Deep Depth Densi-
fication (D3) [3] which constructs an intermediate dense
depth map from the sparse measurements using nearest
neighbor interpolation as input to a depth completion
network. In the original implementation, more than 500
points are sampled on a regular grid as sparse measure-
ments. This sampling approach can provide richer infor-
mation due to the even distribution and the larger amount
of measurements. For a fair comparison, we retrain and
re-evaluate D3 using the same sparse measurement pat-
tern as ours, which we denote as D3-Random.

We follow the official implementations of all baselines except
for D3-Random as no official implementation is released2.

NYUv2 dataset: Table I (top) compares the performance of
different methods on NYUv2. As can be seen, our method
achieves superior performance quantitatively. Fig. 3 shows a
qualitative comparison between D3-Random, our interpolated
depth map and our final depth map. Note that our differentiable
kernel regression layer provides an interpolated depth map that
captures the coarse structure of the scene while the residual
network is able to further refine details.

KITTI dataset: Table I (bottom) and Fig. 4 show our compar-
ison on KITTI. Our method achieves comparable performance
with DeepLiDAR which requires additional supervision and
outperforms the other baselines. As illustrated in Fig. 4,
compared to the baseline, our method provides more reliable
depth estimates for reflective surfaces and thin structures
where fewer and more noisy depth inputs are available.

C. Analysis of Kernel Regression Network

Learned Steering Kernels: We validate the advantages of
our learned steering kernels compared to hand-crafted kernels
in Table II. As we focus on analyzing the advantage of the
learned kernel shapes, for this experiment we directly report
the performance on the interpolated depth map rather than the
final depth map. Specifically, we compare to two baselines for
determining the kernel parameters. The first baseline adopts
data-independent kernels, i.e., the same scaling, rotation and
elongation parameters are applied at all pixel locations. We
perform grid search to determine these parameters. For the
second baseline, we consider the original steering kernel
regression method which heuristically constructs the steering
kernels based on image gradients [52].

Our results suggest that the steering kernel [52] outperforms
the data-independent kernel, while our learned steering kernel
further improves performance compared to both heuristically
designed kernels, demonstrating that our estimated kernel
parameters conditioned on the guidance image are able to
effectively reduce the estimation bias.

2Sparse-to-Dense: https://github.com/fangchangma/sparse-to-dense.pytorch,
CSPN: https://github.com/XinJCheng/CSPN/tree/master/cspn_pytorch, Nonv-
CNN: https://github.com/abdo-eldesokey/nconv-nyu and https://github.
com/abdo-eldesokey/nconv, DeepLiDAR: https://github.com/JiaxiongQ/
DeepLiDAR, D3-Random: https://github.com/Shiaoming/DensefromRGBS
(third-party implementation).

Learning Process: We further investigate the learning process
of the kernel shapes qualitatively. Fig. 5 visualizes three Gaus-
sian kernels over multiple training iterations, determined by
the learned kernel parameters (γi, θi, σi) at corresponding pixel
location xi. We also show the heuristically designed kernel
shapes of [52] for comparison. We observe that the elongated
axes converge to align with the edges of the guidance image.
In contrast, the heuristic kernel shapes [52] are less aligned
with the image edges, suggesting that it is hard to capture the
local image properties by hand.

Qualitative Analysis: We also visualize the learned kernel
maps in Fig. 6. We observe that the kernel shape is highly
correlated with local statistics of the guidance image. For
example, the scale parameter γi is larger at smooth regions
(lighter color) while smaller around edges (darker color). The
rotation parameter θi clearly distinguishes vertical vs. horizon-
tal edges. The elongation parameters σi is larger around the
edges and smaller in smooth regions.

D. Ablation Study

Architecture and Loss Function: To discover the contribu-
tion of each part of the model, we conduct ablation studies on
NYUv2 in Table III. Specifically, we first perform monocular
depth estimation, taking only the guidance image as input
(“RGB”) and predicting the depth map using our residual
network without the global skip connection (“U-Net”). Next,
we add the sparse depth map as an additional channel to
the input (“RGB+Sparse”) similar to [1], [43] in which the
pixels with unknown depth are set to 0. We further add our
differentiable kernel regression module and directly estimate
the final depth without the global skip connection (“KernelNet
+ U-Net”). Finally, we use our full model by adding the global
skip connection (“KernelNet + ResNet”).

We observe that all variants of “RGB+Sparse” outperform
“RGB”, taking advantage of the sparse measurements. More
importantly, we observe noticeable performance gains by
replacing the sparse depth map with our interpolated depth
map from the kernel regression network (KernelNet), demon-
strating that standard convolutional networks suffer in the
presence of extremely sparse inputs. The comparison between
“KernelNet + U-Net” and “KernelNet + ResNet” demonstrates
the advantage of the residual formulation with the global skip
connection.

In our ablation study on the loss functions, we compare
the performance of Ldirac with a combination of Ldirac and
Lmean. We find that adding Lmean improves the performance
in all model variants. The gradient loss Lgrad further improves
the performance on all metrics.

Generalization wrt. Number of Points: We investigate
the generalization ability of our model wrt. the number of
depth input points in Table IV (top). Specifically, we train the
network taking 500 points as sparse measurements and change
the number of observed points at inference time. Table IV
shows that the performance is correlated with the number of
observed points, indicating that the network generalizes well
wrt. different sparsity levels. Note that our method is able to

https://github.com/fangchangma/sparse-to-dense.pytorch
https://github.com/XinJCheng/CSPN/tree/master/cspn_pytorch
https://github.com/abdo-eldesokey/nconv-nyu
https://github.com/abdo-eldesokey/nconv
https://github.com/abdo-eldesokey/nconv
https://github.com/JiaxiongQ/DeepLiDAR
https://github.com/JiaxiongQ/DeepLiDAR
https://github.com/Shiaoming/DensefromRGBS
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Figure 3: Qualitative Comparison on NYUv2. From top-to-bottom: Guidance image I, depth completion results of D3-
Random [3], our interpolated depth map D̃, our final depth map D̂ and the ground truth depth map.

Kernel Regression Error (↓) Accuracy (↑)
rms rel δ1.02 δ1.05 δ1.10 δ1.25 δ1.252 δ1.253

Data-independent Kernel 0.230 0.045 54.6 75.6 87.6 96.7 99.5 99.8
Steering Kernel [52] 0.221 0.043 55.7 77.2 88.4 96.9 99.5 99.8
Learned Steering Kernel 0.198 0.034 65.5 82.9 91.6 97.7 99.8 99.9

Table II: Kernel Parameters. Comparison of the interpolated depth D̃ wrt. different kernel parameters.

achieve better performance given more sparse measurements
while it is trained on 500 measurements. This is particularly
valuable in applications where the sparse measurements are
obtained from visual SLAM, in which case the number of
points might differ at every frame. We further compare to
CSPN [46] and NConv-CNN [49] given different number of
sparse measurements at inference time. Fig. 7 shows that our
method consistently outperforms the baselines.

Generalization wrt. Observation Pattern: We further val-
idate the generalization ability of our method wrt. various

sparse measurement patterns such as laser scans with differ-
ent number of beams. Specifically, we evaluate our guided
depth completion performance given 1/4/8 beams of laser
scans and 500 random sparse measurements on KITTI in
Table IV (bottom). We retrain the network for each type of
measurements in this case due to the large variation of these
different patterns. We first compare with [2] that uses 1 beam
of laser range data as a baseline. Note that given the same
sparse observation, our method outperforms [2] exploiting the
learned interpolation kernels. Furthermore, depth completion
performance can be improved by increasing the beams of the
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Figure 4: Qualitative Comparison on KITTI. From top-to-bottom: Guidance image I, depth completion results of D3-
Random [3], our interpolated depth map D̃, our final depth map D̂ and the ground truth depth map (visually enhanced). White
circles highlight reflective surfaces and thin structures where our method provides more reliable depth estimates compared to
the baseline D3-Random [3].

Image t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 [52]

Figure 5: Kernel Shape Evolution across Learning Iterations. t denotes the number of training iterations. The red dots in
the left column denote the locations of the visualized kernels. All parameters of the kernel parameter network are randomly
initialized, the kernel shapes are almost identical before training and change over iterations. We also show the heuristic kernels
proposed by Takeda et al. [52] in the right most column for comparison.

laser range scanner, validating the generalization ability of
our method wrt. different sensory information. Moreover, 500
random samples yield higher precision than 500 points located
on a 1-beam laser scanline. This suggests that the observed
points from a single beam of laser range data are correlated
and thus not as informative as uniformly sampled points.

E. Computational Cost Analysis

Lastly, we evaluate the average inference time and the
number of parameters of our proposed method in Table V. The
inference time is evaluated on a single NVIDIA 1080 Ti GPU
at an input resolution of 304×228 pixels. Table V shows that

our full model, including both KernelNet and ResNet, requires
0.114 seconds for inference. Despite having less parameters,
KernelNet is more time-consuming due to the differentiable
kernel regression operation (w/o the kernel parameter network)
which takes 0.048 seconds for one forward pass.

V. CONCLUSION

This paper proposes a novel guided depth completion
method. By integrating differentiable kernel regression into the
guided depth completion formulation, our method avoids the
application of convolutions on extremely sparse depth maps
while still being end-to-end trainable. We conduct experiments
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Image Scaling Γ Rotation Θ Elongation Σ

Figure 6: Learned Kernel Parameters on NYUv2. Brighter colors denote larger values. Each kernel is represented with 3
parameters, including scaling Γ, rotation Θ and elongation Σ. The scale parameters are larger in smooth regions and smaller
around edges. The rotation parameters clearly distinguish vertical vs. horizontal edges. The elongation parameters are larger
around the edges and smaller in smooth regions.

Input Loss Network Architecture Error (↓) Accuracy (↑)
rms rel δ1.02 δ1.05 δ1.10 δ1.25 δ1.252 δ1.253

RGB Ldirac U-Net 0.804 0.220 7.29 17.6 32.7 63.0 87.4 95.9
RGB Ldirac+Lmean U-Net 0.819 0.223 7.31 17.6 33.0 64.2 87.0 95.3
RGB Ldirac+Lmean+Lgrad U-Net 0.791 0.219 7.51 18.2 33.7 64.3 87.7 95.8
RGB+Sparse Ldirac U-Net 0.281 0.039 57.6 81.0 92.2 97.6 99.5 99.9
RGB+Sparse Ldirac+Lmean U-Net 0.198 0.027 69.9 87.9 94.4 98.1 99.6 99.9
RGB+Sparse Ldirac+Lmean+Lgrad U-Net 0.189 0.024 71.6 90.4 96.1 98.9 99.6 99.8
RGB+Sparse Ldirac KernelNet + U-Net 0.176 0.034 58.5 81.6 92.8 98.3 99.7 99.9
RGB+Sparse Ldirac+Lmean KernelNet + U-Net 0.147 0.024 71.5 90.0 95.4 98.8 99.8 99.9
RGB+Sparse Ldirac+Lmean+Lgrad KernelNet + U-Net 0.134 0.022 72.7 90.5 96.2 99.0 99.8 100.0
RGB+Sparse Ldirac KernelNet + ResNet 0.122 0.016 84.1 93.4 96.9 99.2 99.8 100.0
RGB+Sparse Ldirac+Lmean KernelNet + ResNet 0.115 0.015 84.6 94.0 97.3 99.3 99.9 100.0
RGB+Sparse Ldirac+Lmean+Lgrad KernelNet + ResNet 0.111 0.015 84.8 94.1 97.4 99.3 99.9 100.0

Table III: Ablation Study on NYUv2. We compare the results of our method with respect to different input modalities, loss
functions and network architectures. For the latter, we use the RGB image (with and without the sparse depth input) directly
for our residual network without global skip connection (“U-Net”) as well as our full model (Fig. 2) without (“KernelNet +
U-Net”) and with (“KernelNet + ResNet”) global skip connection.

on both indoor and outdoor datasets including NYUv2 and
KITTI. We experimentally show that our method is able to
achieve superior performance compared to methods which
directly learn from sparse depth maps, as well as methods
that use hand-crafted interpolated depth maps as input. Our
ablation study demonstrates the advantages of our learned
steering kernel and analyzes the effectiveness of our archi-
tecture design. We also show the generalization ability of our
method with respect to various sparse measurement patterns,
including randomly sampled sparse measurements and sparse
LiDAR measurements. In future work, we plan to investigate
if the differentiable kernel regression module can be applied
to other image processing tasks such as image denoising.
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