
1

KITTI-360: A Novel Dataset and Benchmarks
for Urban Scene Understanding in 2D and 3D

Yiyi Liao Jun Xie Andreas Geiger

Abstract—For the last few decades, several major subfields of artificial intelligence including computer vision, graphics, and robotics
have progressed largely independently from each other. Recently, however, the community has realized that progress towards robust
intelligent systems such as self-driving cars requires a concerted effort across the different fields. This motivated us to develop
KITTI-360, successor of the popular KITTI dataset. KITTI-360 is a suburban driving dataset which comprises richer input modalities,
comprehensive semantic instance annotations and accurate localization to facilitate research at the intersection of vision, graphics and
robotics. For efficient annotation, we created a tool to label 3D scenes with bounding primitives and developed a model that transfers
this information into the 2D image domain, resulting in over 150k images and 1B 3D points with coherent semantic instance annotations
across 2D and 3D. Moreover, we established benchmarks and baselines for several tasks relevant to mobile perception, encompassing
problems from computer vision, graphics, and robotics on the same dataset, e.g., semantic scene understanding, novel view synthesis
and semantic SLAM. KITTI-360 will enable progress at the intersection of these research areas and thus contribute towards solving
one of today’s grand challenges: the development of fully autonomous self-driving systems.

Index Terms—Point Cloud Labeling, Semantic Label Transfer, Scene Understanding, Self-Driving, Datasets, Performance Evaluation

F

1 INTRODUCTION

ONE of the pioneering works in computer vision can be
traced back to Larry Roberts’ “Blocks World” in the

1960s [85], which aimed at identifying individual objects
and inferring the 3D structure of simple shapes from 2D
images. With the goal of understanding a scene from visual
cues, computer vision was viewed as a comparably easy first
step towards solving higher-level reasoning tasks in robotics
at that time (e.g., the MIT copy demo [104]). Albeit being
seemingly easy for humans, robustly perceiving geometry
and semantics from images proved hard for machines due
to the high complexity of real-world environments. Thus, in
the 1980s, computer vision and robotics evolved into their
own, largely independent research fields. Only recently, the
communities have realized that it is impossible to solve one
without the other, e.g., in the context of self-driving [47].
Similarly, computer vision’s interaction with computer graph-
ics emerged in the 1990s [92] and has gained traction over
the last decade, in particular in areas such as neural and
image-based rendering [64]. These advances can in turn
benefit robotics as simulation will be crucial for training and
validating the next generation of robotic systems.

The converging trend of vision, graphics, and robotics
motivates us to create a new dataset, KITTI-360, that ad-
dresses tasks at the intersection of these fields with a focus
on autonomous driving. While the KITTI dataset [34] has
pushed the state-of-the-art in computer vision algorithms
forward, it does not contain dense and complete semantic
labels. Thus, many interesting interdisciplinary tasks, e.g.,

• Y. Liao is with the Autonomous Vision Group, University of Tübingen
and Max Planck Institute for Intelligent Systems, Tübingen, Germany,
and Zhejiang University. J. Xie is with Google Research. A. Geiger is
with the Autonomous Vision Group, University of Tübingen and Max
Planck Institute for Intelligent Systems, Tübingen, Germany. E-mails:
yiyi.liao@tue.mpg.de, junx@google.com, a.geiger@uni-tuebingen.de.

synthesizing novel view images jointly with semantics or
reconstructing large-scale semantic maps, cannot be eval-
uated on KITTI. Moreover, the captured perspective front
images provide only a partial view of the scene and the
3D information provided by the LiDAR sensor is very
sparse. The GPS localization of KITTI is reliable but does not
reach sub-pixel accuracy when fusing multiple frames. With
KITTI-360 we address these shortcomings by providing a
new dataset with more comprehensive semantic/instance
labels in 2D and 3D, richer 360◦ sensory information (fisheye
images and pushbroom laser scans), very accurate and geo-
localized vehicle and camera poses, and a series of new
challenging benchmarks, see Fig. 1 for an overview.

A key challenge towards building such a dataset is to ob-
tain coherent dense and comprehensive semantics in 2D and
3D. Many existing datasets are annotated in the 2D image
domain where pixel-wise labeling requires up to 60 minutes
per image for a human annotator [6]. Other datasets [8], [96],
[119] are annotated in 3D space while ignoring information
in the 2D image domain. A few datasets [18] offer labels
in both 2D and 3D. However, annotation is conducted
independently, thus duplicating the labeling effort.

In this paper, we propose an alternative approach that
leverages coarse 3D annotations to significantly simplify the
dense annotation task and establish coherent labels in both
2D and 3D space. Moreover, this yields a unique instance
index for each object in the scene across all 2D video frames.
Specifically, we build a WebGL-based annotation tool that
allows for annotating both static and dynamic scene elements
directly in 3D using simple primitives. This approach has
several advantages over labeling in 2D: First, objects often
project into several video frames, thus lowering annotation
efforts considerably. Further, the obtained 2D instance an-
notations are temporally coherent as they are associated
with a single physical 3D object. Finally, our 3D annotations

2

Semantic Instance Bounding Box Confidence & RGB
Fig. 1: KITTI-360. Our dataset contains rich sensor modalities, including a perspective stereo camera, a pair of fisheye
cameras, a Velodyne and a SICK laser scanning unit which together enable 360◦ scene perception. We release comprehensive
annotations including consistent semantic and instance labels for every 2D image pixel and 3D point.

covering the full 3D scene are useful on their own, e.g., for
reasoning in 3D [35], [114] or to enrich 2D annotations with
approximate 3D geometry.

However, obtaining dense and accurate pixel-wise 2D
labels and point-wise 3D labels from sparse, noisy point
clouds and coarse 3D annotations is a challenging task. To-
wards solving this problem, we propose a non-local multi-
field CRF model which reasons jointly about semantic and
instance labels of all 3D points and 2D pixels. Our approach
also leverages learning-based methods to provide dense
semantic and instance priors in the 2D image domain. As ev-
idenced by our experiments, our method outperforms label
propagation methods operating purely in 2D as well as pure
learning-based approaches. Furthermore, the probabilistic
nature of our model allows for estimating label uncertainties
which can be used to increase label accuracy when only a
subset of the pixels require a label.

From the annotated dataset, we derive several bench-
marks and baselines with novel and challenging tasks at
the intersection of vision, graphics and robotics which we
believe are crucial for making progress towards the grand
challenge of fully autonomous driving. Our semantic scene
understanding benchmark includes tasks for 2D/3D recog-
nition and semantic scene completion. The former requires
predicting a semantic/instance label for the visible part of
the scene, while the latter aims for joint geometric com-
pletion and semantic perception that can benefit higher-
level reasoning, e.g., control and planning. In our novel view
synthesis benchmark, we establish a challenging task that
requires synthesis of both RGB appearance and semantic
labels at a given novel viewpoint, aiming to foster research
on building fully labeled simulation environments from
real-world images. Lastly, our semantic SLAM benchmark
evaluates vehicle localization as well as geometric and se-
mantic 3D reconstruction over long sequences.

We summarize the contributions of this paper as follows:
• We present a novel georegistered dataset of suburban

scenes recorded by a moving platform. The dataset

comprises over 300k images and 80k laser scans.
• We create and release a WebGL-based annotation tool

that allows for labeling street scenes in 3D space.
Exploiting our annotation tool, we obtain 3D annota-
tions for all static and dynamic scene elements.

• We propose a method which transfers these labels
from 3D into 2D, yielding pixel-wise semantic in-
stance annotations. We validate our approach in
ablation studies and demonstrate its potential with
respect to several 2D and 3D baselines.

• Enabled by our dense and coherent semantic in-
stance annotations in both 2D and 3D as well as
accurate vehicle and camera poses, we establish an
online benchmark with novel and challenging tasks
at the intersection of computer vision, graphics and
robotics. We believe that our dataset and benchmarks
will complement existing datasets and foster novel
research towards solving the grand goal of full au-
tonomy.

This journal paper is an extension of a conference paper
published at CVPR 2016 [107]. In comparison to [107], we
1) extend our annotation tool and update our inference
algorithm to support the annotation of dynamic objects; 2)
provide a detailed description of the annotation tool and
process; 3) establish new online benchmarks with held-
out test data on a set of challenging tasks; 4) propose and
evaluate several baselines to bootstrap the leaderboards and
assess the difficulties of the tasks. We make our dataset1,
utility scripts2 and annotation tool3 publicly available.

2 RELATED WORK

In this section, we first discuss existing datasets in the con-
text of autonomous driving, followed by a review of current
methods for efficient (semi-automatic) label annotation.

1. http://www.cvlibs.net/datasets/kitti-360
2. https://github.com/autonomousvision/kitti360scripts
3. https://github.com/autonomousvision/kitti360labeltool

http://www.cvlibs.net/datasets/kitti-360
https://github.com/autonomousvision/kitti360scripts
https://github.com/autonomousvision/kitti360labeltool

3

Dataset 2D Annotations 3D Annotations Coherency Test
#Smt. Img. #Ins. Img. Dense #Smt. Pts. #Ins. Pts. FoV Azm. FoV Plr. #3D Bbox Temporal 3D-2D Server

CamVid [13] 631 – 3 – – – – – 3 – –
DUS [1] 1k – 3 – – – – – 3 – –
CityScape (fine) [25] 5k 5k 3 – – – – – – – 3
CityScape (coarse) [25] 20k 20k – – – – – – – – 3
Mapillary Vistas [70] 25k 25k 3 – – – – – – – –
CityScape-VPS [52] 3k 3k 3 – – – – – 3 – –
KITTI-STEP [103] 19k 19k 3 – – – – – 3 – 3
WoodScape [111] 10k 10k 3 – – – – – 3 – –
Toronto-3D [96] – – – 78.3M – 360◦ 40◦ – – – –
Paris-Lille-3D [88] – – – 143.1M – 360◦ 40◦ – – – 3
DublinCity [119] – – – 260M – - - – – – –
Semantic3D.net [39] – – – 4.0B – 360◦ 180◦ – – – 3
SemanticKITTI [8] – – – 4.5B – 360◦ 26.8◦ – – – 3
Argoverse [21] – – – – – – – 993k – – –
Lyft [50] – – – – – – – 1.3M – – –
Waymo [94] – – – – – – – 12M – – 3
A*3D [75] – – – – – – – 230k – – –
KITTI [34] 200 200 3 – – – – 200k – – 3
ApolloScape [45] 144k 90k 3 – – – – 70k – – 3
nuScenes [18] 93k 93k – 1.2B 78.9M 360◦ 40◦ 1.2M – – 3
A2D2 [36] 41k 41k 3 387.1M 23.8M 60◦ 30◦ 43k – 3 –
SemKITTI-DVPS [80] 23k 23k – 4.5B 400M 360◦ 26.8◦ – 3 3 3
KITTI-360 (Ours) 2× 78k 2× 78k 3 1.0B 172.4M 360◦ 120◦ 68k 3 3 3

TABLE 1: Overview of Publicly Available Datasets. For pixel-level 2D annotations, we compare the number of semantic
maps (#Smt. Img.), the number of instance maps (#Ins. Img.) and the density of the 2D semantic maps (Density). Note that
the proposed KITTI-360 dataset includes images from both left and right view of the stereo camera. For 3D annotation, we
show the number of semantically labeled points (#Smt. Pts.), the number of points with instance labels (#Ins. Pts.), the field
of view with 3D semantic annotations at both azimuthal and polar directions (FoV Azm. and FoV Plr.), and the number of
3D bounding boxes (#3D Bbox). We further compare temporal consistency and 3D-to-2D consistency of the instance labels.
The last row indicates whether the dataset hosts an online evaluation benchmark with held-out ground truth.

2.1 Datasets

Indoor Video Datasets: Several datasets provide annota-
tions for video sequences captured in indoor scenes [20],
[26], [93], [105]. The SUN RGB-D dataset [93] provides
labeled 2D polygons as well as 3D cuboids for 10k indoor
RGB-D images. In a closely related work, ScanNet [26] is
annotated in 3D with its 2D labels directly obtained from
3D-to-2D projection based on the dense depth from RGB-
D sensors. In this work, we focus on outdoor street scenes
where 3D observations are much more sparse, posing a
challenging task for 3D-to-2D label transfer.

Outdoor Datasets: A number of outdoor datasets of driving
scenes have been released in the literature [8], [9], [13], [18],
[25], [34], [36], [45], [52], [56], [62], [65], [70], [80], [84], [96],
[99], [103], [111], [119]. We summarize the most related ones
in Table 1, categorized by whether they offer labels in the
2D image domain or in 3D space.

For datasets focusing on 2D labels, CamVid [13] is the
first dataset for semantic segmentation in the context of
self-driving. However, CamVid does not provide instance
labels and only a very limited number of frames. Both
Cityscapes [25] and Mapillary Vistas [70] release thousands
of manually annotated 2D images. However, they do not
offer temporally coherent semantic instance annotations.
Recently, Cityscape-VPS [52] extends Cityscapes by pro-
viding semantic instance labels for every 5 frames. Fur-
thermore, KITTI-STEP [103] offers spatially and temporally
dense semantic instance annotations for the KITTI tracking
dataset [34]. While aforementioned works focus on perspec-
tive images, WoodScape [111] releases semantic instance
annotations of fisheye images. Our dataset differs from the

above in that we provide not only temporally coherent se-
mantic instance annotations for perspective images, but also
omnidirectional imagery, 3D laser scans, and 3D annotations
which are useful for 3D reasoning. While [25] focuses on
inner-city scenes, our dataset comprises mainly suburban
areas, thus both datasets complement each other (we use
the same label definition to facilitate research).

Another line of works provides labels in 3D space.
Toronto-3D [96], Paris-Lille-3D [88] and DublinCity [119]
offer annotated point clouds collected from urban environ-
ments. Semantic3D.net [39] presents a large-scale dataset
with 4 billion points, labeled with 8 semantic categories.
SemanticKITTI [8] provides semantic labels for raw laser
scans in KITTI, resulting in 4.5 billion labeled 3D points
in 28 classes. Instead of focusing on point cloud semantic
classification, Argoverse [21], Lyft [50], Waymo [94], and
A*3D [75] offer 2D/3D bounding boxes and establish bench-
marks for 2D/3D detection and tracking4. In contrast to
KITTI-360, the aforementioned datasets either lack dense
annotations in images or they do not have per-point 3D
annotations of stuff classes.

Our dataset provides labels for both 2D images and
corresponding 3D points. Within this category, KITTI [34]
provides dense semantic information on 200 images and
200k 3D bounding boxes. However, KITTI does not provide
dense (per-point) 3D labels on the point cloud. Closely
related to our work, ApolloScape [45] annotates static scene
elements in the 3D space5 and projects them to the 2D image
space, followed by manual annotation of dynamic objects in

4. We refer to 2D annotations as pixel-level annotations in Table 1. 2D
bounding boxes are not included.

5. The 3D annotation has not been released yet.

http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
http://www.6d-vision.com/scene-labeling
http://www.cityscapes-dataset.net/
http://www.cityscapes-dataset.net/
https://www.mapillary.com/dataset/vistas
https://github.com/mcahny/vps
http://www.cvlibs.net/datasets/kitti//eval_step.php
https://woodscape.valeo.com/dataset
https://github.com/WeikaiTan/Toronto-3D
https://npm3d.fr/paris-lille-3d
https://v-sense.scss.tcd.ie/dublincity/
http://www.semantic3d.net/
http://www.semantic-kitti.org/
https://www.argoverse.org/data.html
https://level-5.global/data/
https://waymo.com/open/
https://github.com/I2RDL2/ASTAR-3D#Dataset
http://www.cvlibs.net/datasets/kitti/
http://apolloscape.auto/
https://www.nuscenes.org/
https://www.a2d2.audi/a2d2/en/dataset.html
https://github.com/joe-siyuan-qiao/ViP-DeepLab
http://www.cvlibs.net/datasets/kitti-360/

4

images. In this work, we annotate both static and dynamic
objects in 3D, providing coherent annotations for dynamic
objects both in 2D and 3D. More recently, nuScenes [18] and
A2D2 [36] released labels in both 2D and 3D. However,
the labels of nuScenes are manually and independently
annotated in 2D and 3D, and not every pixel is labeled in 2D.
In contrast, we propose to leverage labels in the 3D space
to infer dense labels in the image domain, thus providing
consistent labels across 2D and 3D space. A2D2 [36] labels
2D images and maps 2D labels to 3D to obtain per-point
3D labels. Thus, the 3D labels are limited to a small FoV
of the cameras in the azimuthal direction. While A2D2 also
provides 3D bounding boxes, all of them are within the FoV
of the forward-facing camera. We instead offer per-point
3D labels and 3D bounding boxes within an azimuthal FoV
of 360◦. A concurrent work, SemKITTI-DVPS [80] provides
labels in both 2D and 3D by projecting the 3D labels of
SemanticKITTI to images. Compared to the projected sparse
2D labels of SemKITTI-DVPS, KITTI-360 offers dense pixel-
wise labels and additionally provides 3D bounding boxes.

There also exist several synthetic urban datasets [17],
[32], [82], [86]. However, there still exists a significant per-
ceptual gap between the virtual and real domains [43], [97],
making synthetic-to-real generalization difficult.

Benchmarks: Recently, evaluation benchmarks have been
widely recognized by the community. Some of the previ-
ously mentioned datasets also provide online evaluation
benchmarks and held-out test data for different tasks. For
instance, Cityscapes [25] offers a benchmark suite for pixel
and instance-level semantic segmentation as well as 3D
vehicle detection. SemanticKITTI [4], [8] hosts lidar segmen-
tation challenges to predict the category of every point. For
datasets including both 2D and 3D annotations, KITTI [33],
nuScenes [18], and ApolloScape [45] provide benchmarks on
a set of vision tasks including detection, stereo, localization,
multi-object tracking, and segmentation in both 2D and
3D, etc. Moving beyond the established tasks, KITTI-360
provides novel benchmarks and will hold new challenges,
e.g., on novel view semantic synthesis and semantic SLAM,
to foster new progress towards full autonomy.

2.2 Methods

Efficient Annotation: Many works have attempted to re-
duce the per pixel annotation time of individual images,
including classical methods [38], [60] and learning based
methods [2], [3], [19], [59]. While all of these methods focus
on annotating images individually, we are interested in
annotating 2D video sequences as well as 3D scenes. There
is also a growing interest in autolabeling 3D shapes or 3D
bounding boxes [79], [112]. These methods are only appli-
cable to a specific class, e.g., vehicles. We instead annotate
the full 3D scene and aim to obtain coherent per-pixel 2D
annotations and per-point 3D annotations.

2D Label Propagation: Compared to annotating individual
images, video sequences offer the advantage of temporal
coherence between adjacent frames. Label propagation tech-
niques exploit this fact by transferring labels from a sparse
set of annotated keyframes to all unlabeled frames based
on color and motion information. While in some works a

single foreground object is assumed [46], here we focus on
methods that can handle multiple object categories. Towards
this goal, [6] and [15] propose a coupled Bayesian network
based on video epitomes and semantic regions to propa-
gate label information between two annotated keyframes.
[118] proposes a joint propagation strategy with synthesized
training samples. To better account for errors in label prop-
agation, [68] proposes a hierarchy of local classifiers for this
task and [5] leverages a mixture-of-tree model for temporal
association. The work of [16] leverages label propagation
as a data augmentation scheme and demonstrate improved
performance on semantic segmentation. Optical flow is also
commonly used for semantic video label transfer. [31] uses
optical flow of adjacent frames to warp network representa-
tions across time and thus propagates labels from previous
frames to the current one. [117] proposes to run a convolu-
tional sub-network only on sparse keyframes and propagate
the deep feature maps to other frames via flow fields. In
the indoor scenario where dense geometry is available, [81]
proposes a method on RGB-D video propagating labels on
super-pixel.

In contrast to the aforementioned methods which prop-
agate labels in 2D, in this paper we propose to annotate
both semantic and instance labels directly in 3D and then
project these annotations into the 2D domain. While this
approach requires a source of 3D information (e.g., SfM,
stereo, laser), it is able to produce more accurate semantic
and temporally consistent instance annotations for tracking
purposes. Further, our experiments indicate that annotation
in 3D is more time-efficient than labeling in 2D as scene
elements can be separated more easily and often project into
many images of the input video sequence while being only
annotated once.

3D-to-2D Label Propagation: There are a few existing
works on 3D-to-2D label transfer. Chen et al. [22] leverage
annotations from KITTI [33] as well as 3D car models to infer
separate figure-ground segmentation for all vehicles in the
image. In comparison, our approach reasons jointly about all
objects in the scene and also handles categories for which
CAD models or 3D point measurements are unavailable
(e.g., “Tree”, “Sky”). Huang et al. [45] also applies 3D to 2D
label transfer for generating the ApolloScape dataset. In this
work, labels are transferred from 3D point clouds to images
with simple splatting and projection. However, 3D points
are too sparse compared with image pixels, thus, setting
the splatting range is not trivial. Similarly, in [26], semantic
labels annotated in the reconstructed scene are projected
into each frame but not all 2D pixels are covered due
to missing geometry. In addition, the two aforementioned
works are limited to static scenes.

In the context of street view image segmentation, [14],
[63], [65], [67], [69], [106] exploit the interaction between
image pixels and 3D points to improve classification per-
formance or efficiency. In comparison, our goal is to transfer
ambiguous 3D primitive labels to every pixel in the image.

3 ANNOTATION

In this section, we describe our data collection efforts, data
preprocessing, the annotation tool, and annotation details.

5

Fig. 2: Georegistered poses overlaid on OpenStreetMap.

3.1 Data Collection
For data collection, we equipped a station wagon with one
180◦ fisheye camera to each side and a 90◦ perspective
stereo camera (baseline 60 cm) to the front. Furthermore,
we mounted a Velodyne HDL-64E and a SICK LMS 200
laser scanning unit in pushbroom configuration on top of
the roof. This setup is similar to the one used in KITTI [33],
[34], except that we gain a wider field of view with the
additional fisheye cameras and the pushbroom laser scanner
while KITTI only provides perspective images and Velodyne
laser scans with a 26.8◦ vertical field of view. Compared
to omnidirectional camera systems [90], [91], our setup
benefits from increased resolution of the 3D reconstruction.
Localization is provided by IMU and GPS which we fuse
with visual features. Fig. 1 (top left) illustrates our setup.

Using this setup, we recorded several suburbs of a mid-
size city corresponding to over 300k images and 80k laser
scans, covering a driving distance of 73.7km. We estimate
all vehicle and camera poses using structure-from-motion
[41]. More specifically, we minimize 3D reprojection errors
based on all feature matches while regularizing against the
GPS location. We further add loop-closures detected from
LiDAR scans as regularization to complement image feature
matching (which might fail on opposite-facing frames). This
results in accurate georegistered camera poses. Fig. 2 illus-
trates the camera poses overlaid on OpenStreetMap6. We
also plot the camera poses of the KITTI dataset [33], [34] for
reference. KITTI-360 follows KITTI’s forward facing camera
configuration, but has minimal overlap with KITTI in terms
of trajectories. This allows us to split training and test data
without conflicting with the KITTI dataset, e.g., avoiding

6. http://www.openstreetmap.org/

the situation where a region is used for training in KITTI
but testing in KITTI-360. Following KITTI, we use Mercator
projection [73] to convert geographic coordinates to a local
Euclidean coordinate frame in order to facilitate usage of the
dataset. The origin of the coordinate frame is chosen as the
center of the map as illustrated in Fig. 2.

3.2 Annotation Interface

To facilitate 3D annotation, we developed an online an-
notation tool based on WebGL. We release our annotation
tool (see Fig. 3) as part of this project. It consists of three
main components: a scene viewer (including 2D images and
3D scene), a semantic label selection panel, and controllers.
Annotators are asked to insert 3D primitives with adjustable
shapes and semantic labels into the 3D scene.

3.2.1 Scene
To annotate the data while limiting transfer bandwidth,
we split the collected data into batches according to the
accumulated driving distances. Specifically, a single batch
contains observations within a driving distance of about 200
meters (240 frames on average) and there is an overlap of 10
meters between two consecutive batches. Within one batch,
we accumulate 3D points observed from the Velodyne and
SICK laser scanning unit as well as the stereo camera.

During annotation, the accumulated point clouds are
downsampled to reduce data loading traffic and mem-
ory. However, downsampling makes it hard to precisely
perceive dynamic objects whose 3D observations are dis-
tributed along a moving trajectory. To allow for accurate
labeling of dynamic objects, we apply a simple heuristic to
detect dynamic objects, see Appendix A.2. We then load all
detected dynamic points at each frame into the annotation
tool without down-sampling. To help the annotators effi-
ciently identifying dynamic objects, we highlight dynamic
objects using white color as illustrated in Fig. 3.

As auxiliary visualization to the 3D point clouds, we pro-
vide fisheye and perspective images (see “Side View” and
“Front View” in Fig. 3) in order to allow annotators to select
and perceive the scene from different camera views. We also
visualize the pose of each camera, enabling annotators to
quickly select informative viewpoints.

3.2.2 Semantic Label Panel and Controllers
We show semantic labels with different colors in the label
panel for users to choose from. To better assist annotators in
placing the primitives accurately, we also offer easy-to-use
controllers to interact with the 3D scene, including zoom,
pan, rotation of the point cloud, switching data sources or
camera views, and toggling annotations. We provide more
details about the annotation interface in Appendix B.

3.3 Annotation Details

We ask the annotators to annotate the 3D point clouds in
the form of bounding primitives, i.e., place cuboids and
ellipsoids to enclose objects in 3D and assign a semantic
label to each of them. The 3D scene is annotated with 37
label classes, including 24 “instance” classes and 13 “stuff”
classes. Labels are defined in accordance with the Cityscapes

http://www.openstreetmap.org/

6

Fig. 3: Annotation Interface. Our interface consists of three
main components: scene view (perspective views and 3D
view), semantic label panel, and controllers.

dataset [25] label definition. More details about the label
definition can be found in Appendix C. The annotations
are categorized into static and dynamic objects, which are
treated differently by our annotation tool.

3.3.1 Static Objects Annotation
Static labels can be further classified into two categories:
“stuff” and “instance”. For instance classes, each object is
constrained to be associated with only one cuboid primitive,
representing both semantic and instance labels of this object.
We ask the annotators to tightly enclose the point clouds
with the bounding primitives. For stuff classes, which usu-
ally have irregular shapes, annotators are allowed to use
multiple cuboids or ellipsoids to roughly enclose the 3D
points of the target objects.

We also provide a “planar” annotation option for stuff
categories on the ground such as “Road” and “Sidewalk”.
Using this option, we allow annotators to draw a 2D poly-
gon representing the ground object’s boundary in bird’s eye
view. The interface then automatically estimates the height
of the polygon based on the surrounding 3D geometry and
extrudes the 2D polygon into 3D along the vertical direction
to enclose corresponding 3D ground points. We provide
more details in Appendix B.3.

3.3.2 Dynamic Objects Annotation
Dynamic objects mainly comprise moving vehicle and
pedestrian instances. In contrast to ApolloScape [45] which
annotates static objects in 3D and dynamic objects in 2D
respectively, we annotate both static and dynamic objects in
3D space. However, compared to static objects, annotating
dynamic objects in 3D outdoor scenes is more challenging
as individual dynamic objects in the 3D reconstruction are
hard to perceive and distinguish. Moreover, we need to label
not only where the moving instance is, but also “when”
the instance appears, requiring the annotation of moving

3D bounding boxes over time. A naı̈ve solution is to place
a 3D bounding box in every frame where the dynamic
object is present. However, such an annotation process
would be intractably slow. Thus, we instead implement
a semi-automatic annotation scheme to reduce label time.
Specifically, we minimize the effort required by annotators
by making two assumptions: the size of the dynamic object
is fixed over time and its trajectory is smooth. Under these
assumptions, the required annotation is reduced to the size
of a single 3D primitive and the pose of this primitive at
several keyframes. Our annotation tool then automatically
places the remaining primitives along the trajectory, see
Appendix B.4 for more details.

3.4 Annotation Procedure

We annotated 379 batches in total, assigning one batch to
one annotator. To control the annotation quality, we train
and evaluate the annotators based on multiple pilot tasks
until they have proven qualified for the full task. We also
regularly verify their annotation quality and ask them for
correction if necessary. We further identify a few annotators
who consistently produced high-quality labels and ask them
to cross-check other annotators’ quality. Our annotation
interface simplifies the detection and correction of annota-
tion errors compared to annotating image sequences, which
requires corrections across multiple frames. Fig. 3 shows
parts of an annotated batch via our web interface.

3.5 Annotation Time

On average, annotating one full batch (∼ 240 frames) in 3D
required about 3 hours. Thus, our annotators spend only 3
× 60 / 240 = 0.75 minutes for “annotating” one image. In
comparison, 7 minutes are required for coarse annotation of
semantic instance labels in the image domain, and 1.5 hours
for pixel-accurate annotations as discussed by the creators
of the Cityscapes dataset [25].

4 LABEL TRANSFER METHOD

In this section, we first provide an overview of our method
for transferring the 3D annotation to semantic instance
annotations in 2D. Next, we formally introduce the model
and discuss parameter learning and inference.

4.1 Overview

Given 3D annotations, we are interested in generating dense
semantic instance annotations for all images and all 3D
points. To incorporate inductive biases about image for-
mation and label smoothness, we explore a Conditional
Random Field (CRF) model which reasons jointly about the
labels of the 3D points and all pixels in the image. In practice,
we apply the CRF at every timestamp independently to
keep inference tractable. Despite independent inference, we
are able to obtain consistent results over multiple frames
thanks to the shared 3D annotations. We also experimented
with inference over multiple adjacent frames but did not
observe measurable improvements.

Let Bt = {{bn}, {bmt }} denote all 3D annotations avail-
able at timestamp t. Here, bn and bmt correspond to 3D

7

bounding primitives of static and dynamic objects respec-
tively, with n and m indexing each primitive. Note that
a static primitive bn is used at all timestamps (if visible)
whereas a dynamic primitive bmt is only included in Bt when
it is labeled to appear at timestamp t. Fig. 4a illustrates
static and dynamic bounding primitives as well as their
projection into the 2D image domain. With this design, our
framework allows for annotating the same object using a
unique instance ID across the entire sequence as well as
across 2D and 3D.

Let Pt denote the set of image pixels at timestamp t and
Lt denote the visible 3D points at the same timestamp. The
CRF model is defined over all elements in Pt and Lt. To ob-
tain more complete 3D information,Lt fuses stereo and laser
scans over multiple frames. We first fuse points covering
static parts of the scene, and then accumulate points of each
dynamic object according to its bounding primitives and
insert them into the static scene depending on the location
of bmt . We provide more details regarding the accumulation
of static and dynamic 3D points in Appendix D.1.

4.2 Model

We now formalize the CRF model applied at every frame
as illustrated in Fig. 4b. Note that our 3D annotations are
sparse and noisy, i.e., 3D points can carry none, one or
multiple labels due to overlapping bounding primitives in
3D. The algorithm described in this section is designed to
resolve these situations and infers marginal estimates for all
3D points and pixels in the image.

As the CRF model is applied at every frame indepen-
dently, we drop the dependency on timestamp t of B,L
and P for simplicity. For each pixel i ∈ P and each
3D point l ∈ L, we specify random variables si and sl
taking values from the set of semantic (or instance) labels
{1, . . . , S}, where S denotes the number of classes. For
instance inference, we assign a unique ID to each object
which projects into the image. Thus, semantic and instance
inference can be treated equally under our model and we
will refer to both as “semantic labels” in the following. Note
that there is no need to distinguish static or dynamic objects
in the single frame-based CRF model. Still, we are able to
retrieve whether a pixel or a 3D point belongs to a dynamic
object or not according to its instance ID.

Let s = {si|i ∈ P} ∪ {sl|l ∈ L} denote the set of
semantic labels. Dropping all dependencies on the image
and point cloud for clarity we specify our CRF in terms of
the following Gibbs energy function:

E(s) =
∑
i∈P

ϕPi (si) +
∑
l∈L

ϕLl (sl) +
∑
i,j∈P

ψP,Pij (si, sj)

+
∑
l,k∈L

ψL,Llk (sl, sk) +
∑

i∈P,l∈L
ψP,Lil (si, sl) (1)

with unary potentials ϕ(·) and pairwise potentials ψ(·). For
notational clarity, we omit all conditional dependencies on
the input images, 3D points and 3D annotations.
Pixel Unary Potentials: The pixel unary potentials ϕPi (si)
encode the likelihood of pixel i taking label si

ϕPi (si) = wP1 (si) ξ
P
i (si)− wP2 (si) log pPi (si) (2)

where wP1 and wP2 denote learned feature weights. Our first
constraint ξPi (si) determines the set of admissible labels
and is obtained by projecting all 3D bounding primitives
B (which are an upper bound on the objects’ extent) into
the image. We formulate the constraint via a binary feature
ξPi (si) ∈ {0, 1} which takes 0 for pixel i if its ray passes
through a primitive of class si, and 1 otherwise.

In addition, we exploit a data-driven approach in order
to obtain a per-pixel probability distribution over semantic
labels pPi (si). Specifically, we project all non-occluded and
uniquely labeled sparse 3D points into the image plane,
and use these sparse projections as supervision to train a
semantic segmentation network (PSPNet [116]) on the entire
dataset. The output of the network’s last layer is taken as
the probability distribution. We also augment the training
dataset using Cityscape images and labels [25] to enable the
model to learn accurate object boundaries which is difficult
to learn based on the projection of sparse and noisy LiDAR
point clouds. As the semantic segmentation model does
not distinguish instances, we further adopt a state-of-the-
art instance segmentation method [108] to obtain instance
hypotheses for “car”, “truck”, and “pedestrian”. Thus, we
effectively exploit the inductive biases of modern neural
network architectures and co-training on related labeled
datasets. As demonstrated in Appendix D.4, this leads to
a significant improvement at object boundaries.
3D Point Unary Potentials: The 3D point unary potentials
ϕLl (sl) encode the likelihood of 3D point l taking label sl:

ϕLl (sl) = −wL(sl) ξ
L
l (sl) (3)

where ξLl (sl) denotes a feature which takes 0 if the 3D point
l lies within a 3D primitive of class sl within B, and 1 other-
wise. As the “sky” class can’t be modeled with primitives,
we set ξLl (sl) to 0 if sl takes the label “sky”. Additionally,
we create “virtual sky points” at infinity for all pixels whose
ray doesn’t intersect any 3D primitive. Note that these pixels
must correspond to sky regions as we assume that the scene
is densely annotated, hence each object is contained in one
or several bounding 3D primitive(s).
Pixel Pairwise Potentials: Our dense pairwise term encour-
ages semantic label coherence and connects all pixels in the
image via Gaussian edge kernels following [55]

ψP,Pij (si, sj) = wP,P1 (si, sj) exp

{
−‖pi − pj‖2

2 θP,P1

}

+wP,P2 (si, sj) exp

{
−‖pi − pj‖2

2 θP,P2

− ‖ci − cj‖2

2 θP,P3

}
(4)

where pi is the 2D location of pixel i and ci denotes its color
value. Further, wP,P1 and wP,P2 are learned pairwise feature
weights and θP,P parameterizes the kernel width.
3D Pairwise Potentials: Similarly, we apply a Gaussian edge
kernel to encourage label consistency between 3D points
based on their 3D location and surface normals

ψL,Llk (sl, sk) = wL,L(sl, sk) (5)

× exp

{
−‖p

3d
l − p3d

k ‖2

2 θL,L1

− (nl − nk)
2

2 θL,L2

}
where p3d

l is the 3D location of point l and nl denotes
the vertical (up) component of its normal. We use the

8

(a) Projection of 3D Annotations at Multiple Timestamps

(b) Graphical Model at Timestamp t

(c) Inference Result at Timestamp t

Fig. 4: 3D-to-2D Label Transfer. (a) We illustrate the 3D-to-2D projection of static and dynamic object annotations. A static
3D primitive is projected to multiple frames while a dynamic 3D object is projected only into the corresponding frame. (b)
Factor graph representation of our model. Note that the CRF model is defined over all pixels and visible 3D points at a
single timestamp. (c) We show the semantic inference result at timestamp t.

normal’s z-component as it is the most discriminative cue
for label changes between horizontal (e.g., road, sidewalk)
and vertical (e.g., side of car, wall) surfaces. We estimate the
respective normals using principal component analysis in a
local neighborhood around each 3D point.
2D/3D Pairwise Potentials: Finally, we encourage coherence
between all 3D points and the image pixels

ψP,Lil (si, sl) = wP,L(si, sl) exp

{
−‖pi − πl‖2

2 θP,L

}
(6)

where πl denotes the projection of the 3D laser or stereo
point l onto the image plane. Importantly, we project only
points into the image which are likely to be visible. We
determine these points by meshing the 3D point cloud
using the ball-pivoting method of Bernardini et al. [10], and
considering only 3D points in front of the mesh. We also
experimented with multi-view reconstruction approaches
[48] for mesh generation, but obtained better results using
this simpler approach. As applying the meshing algorithm
independently for every frame is time-consuming, we gen-
erate meshes on entire batches, processing the static part
and dynamic objects independently. This allows us to reuse
the mesh of the static part for all frames of a batch.

4.3 Learning and Inference
This section describes inference and parameter estimation
in our label transfer model.
Inference: At test time, we are interested in estimating the
marginal distribution of each semantic or instance label
in s under our model, specified by the Gibbs distribution
defined in Eq. 1. A likely configuration can then be esti-
mated by variable-wise maximization of these marginals.
As our graphical model is loopy, exact inference in poly-
nomial time is intractable. We thus resort to variational
inference and approximate the probability distribution on

s by replacing it with a factorized mean field distribution
Q(s) =

∏
i∈P∪LQi(si). This mean field approximation can

be computed efficiently using bilateral filtering [55]. As our
model comprises three sets of densely connected variables
(namely P , L and P ↔ L), we exploit the algorithm of
[51], [101] which generalizes [55] to multiple fields. Fig. 4c
illustrates the inference result for a single frame, overlaid
on the corresponding input image. Moreover, we obtain an
uncertainty estimate for each pixel/3D point by computing
the entropy over the respective marginal distribution. We
will use this estimate in Section 6 to weigh the evaluation
metrics according to the confidence of our label estimates.
Learning: We employ empirical risk minimization in or-
der to learn the parameters in our model, considering the
univariate logistic loss, defined as ∆(s) = − log (P (s))
where P (·) denotes the marginal distribution at the re-
spective site. Let us subsume all model parameters into
Θ = {wP1 , wP2 , wL, w

P,P
1 , wP,P2 , wP,L, wL,L}. We define our

minimization objective f(Θ) as the regularized univariate
logistic loss:

f(Θ) =
N∑

n=1

∑
i∈P
− log

(
Qn,i(s

∗
n,i)
)

+ λC(Θ) (7)

Here, N is the number of training images, s∗n,i denotes the
ground truth semantic label and Qn,i(·) the approximate
marginal at pixel i in image n, calculated via mean field
approximation. C(Θ) is a quadratic regularizer on the pa-
rameter vector Θ. We whiten all features and use a single
value λ which we select via cross-validation on the training
set. For learning the instance segmentation parameters we
exploit the same loss f(Θ) as for semantic segmentation, but
assign unique labels to each individual object, e.g., different
cars will be assigned different labels even if they occlude
each other. In order to associate 2D ground truth instances
with 3D instances we project all visible 3D points into the

9

image and find a consensus via the majority vote which
gave good results in practice. As the number of instances
per semantic class varies between images, we learn intra-
and inter-class pairwise potentials using parameter tying.
We optimize the objective function f(Θ) using stochastic
gradient descent and obtain ∂Q/∂Θ using auto differentia-
tion. We make use of the ADADELTA algorithm [113] with
decay parameter 0.95 and ε = 10−8, and randomly sample
a batch of 16 training images at each iteration for which all
gradients can be computed in parallel.

5 LABEL TRANSFER EVALUATION

In this section, we first introduce the datasets we use for
training and evaluating our label transfer method. Next,
we evaluate our method in ablation studies and compare
it against several label transfer baselines. Finally, we also
show qualitative results of our method.

5.1 Training and Evaluation Data
We manually annotate a set of images with pixel-wise
ground truth to train and evaluate our label transfer
method. The training set contains 125 images selected from
diverse scenarios such that a substantial amount of pixels
are labeled within each class. These training images are
different from those used in our conference version [107].
We create this new training set following the label definition
of CityScapes [25] as [107] considers fewer classes. To enable
comparison to 2D label transfer methods which require
images with large overlapping regions, we additionally
annotate 240 adjacent frames from 13 different suburbs in
equidistant steps of 5 frames in the 2D image domain for
evaluation. The evaluation set has no spatial overlapping
with the training set, allowing us to assess the generaliza-
tion ability of our method. We evaluate our label transfer
method on static and dynamic objects separately. Following
[107], the performance of static objects is evaluated on 120
densely labeled frames from 5 suburbs containing the most
frequently occurring 14 classes. The remaining 120 frames
are sampled from 8 different suburbs which contain dy-
namic objects. For these frames we label the dynamic objects
while leaving the static region unannotated. We consider 7
common dynamic objects, see Appendix E.1 for details.

5.2 Quantitative Evaluation
This section presents our quantitative evaluation on seman-
tic and instance segmentation. We compare our method with
several label transfer baselines and conduct ablation studies.

5.2.1 Semantic Segmentation Transfer
For evaluating semantic segmentation transfer performance,
we measure overall performance by the mean intersection
over union (mIoU) and the average pixel accuracy (Acc).
While [107] evaluates the weighted mean IoU which is biased
by object occurrences, we follow Cityscapes [25] and mea-
sure the mean IoU without weighting. For all experiments,
we provide results for individual classes in Appendix E.1.

Baselines: We compare our method to several 2D to 2D
label transfer methods on both static and dynamic objects

Method Label Static Dynamic
source mIoU Acc mIoU Acc

Label Prop. [100] 2D 49.0 81.0 37.2 59.1
Sparse Track. + GC [95] 2D 51.2 79.1 8.2 12.5
3D Prop. + GC 2D 72.1 87.4 14.5 21.7
Fully Conn. CRF [55] 2D 63.6 88.7 – –
PSPNet [116] CS + 3D 67.2 90.4 – –
3D Primitives + GC 3D 49.4 73.4 – –
3D Mesh + GC 3D 66.8 85.7 – –
3D Points + GC 3D 72.6 87.8 – –
Proposed Method 3D 81.2 93.1 63.5 94.1

TABLE 2: Comparison to Label Transfer Baselines on
Semantic Segmentation Transfer. We compare our method
to 2D label transfer baselines (top) and to 3D to 2D label
transfer baselines (bottom). Label source: “2D”: Labeled
neighboring image frames, “CS”: Cityscapes training im-
ages, “3D”: 3D bounding primitives.

in Table 2. Here, the task is to predict the center frame
from two annotated images (±5 frames corresponding to
0.5 seconds of driving or ∼ 5 meters travel distance). Our
first baseline (“Label Prop.”) is the label transfer approach
presented in [100]. To ensure that all baselines have access
to the same information, we do not select frames actively
but use equidistantly spaced frames for all methods. We
construct a second baseline (“Sparse Track. + GC”) using
the feature tracking approach of [95] to propagate semantic
labels from the two closest labeled frames to the target
frame. To densify the label map, we apply graph cuts (GC)
with contrast sensitive edge potentials [11]. In order to
evaluate the value of 3D information, we implemented a
third baseline (“3D Prop. + GC”) which works similar to
the previous one, but replaces the sparse tracking part with
correspondences obtained by transferring pixels of the two
closest labeled frames to the target image via the visible
vertices of our 3D mesh followed by graph cuts propagation.

While all aforementioned baselines require labeled adja-
cent frames as input at inference time, we consider two more
methods that generalize to arbitrary frames. First, we train
the segmentation model of Krähenbühl et al. [55] (“Fully
Conn. CRF”) which was also used in [107] and which uses a
similar inference algorithm as our label transfer method on
all annotated adjacent frames of the test sequence. Finally,
we evaluate the deep semantic segmentation network [116]
(“PSPNet”) that also provides dense unary information for
our method. As discussed in Section 4.2, this model is
trained on non-occluded sparse 3D projections combined
with the CityScapes training set [25]. Note that neither
PSPNet nor our method has access to adjacent annotated
frames for training or inference.

We further consider several 3D to 2D label transfer
baselines that exploit our 3D annotations without requiring
equidistantly labeled 2D annotations. Specifically, we project
3D primitives, meshes or visible 3D points into the 2D image
domain, followed by graph cut inference (“3D Primitives +
GC”; “3D Mesh + GC”; “3D Points + GC”).

Static Objects: Table 3 (left) shows the comparison on

10

Method Semantic Instance
mIoU Acc mIoU Acc

LA 67.6 88.7 72.3 86.7
LA+3D 70.4 89.7 72.9 88.7
LA+PW 66.6 87.9 72.9 85.8
LA+PW+CO 76.8 91.8 81.6 91.0
LA+PW+CO+3D 78.2 92.4 83.6 91.7
Full Model 81.2 93.1 83.7 91.8
Full Model (90%) 88.3 96.0 89.0 94.9
Full Model (80%) 92.5 97.6 91.3 96.6
Full Model (70%) 94.3 98.4 92.7 97.4

TABLE 3: Semantic Instance Segmentation Transfer Ab-
lation evaluated on static objects. The components are ab-
breviated as follows: LA = local appearance (pP), PW = 2D
pairwise constraints (ψP,P), CO = 3D primitive constraints
(ξP), 3D = 3D points (ϕL,ψP,L), Full Model = all poten-
tials including 3D pairwise constraints (ψL,L). Percentages
denote fractions of estimated pixels.

120 consecutive images of static objects.7 From the 2D
label transfer baselines shown at the top, the mesh transfer
method which uses projected 3D information performs best
in terms of mIoU. Furthermore, and maybe surprisingly,
the sequence-specific fully connected CRF model performs
on par or even better than special purpose label transfer
methods. This is caused by the fact that optical flow (as
used in [95], [100]) often fails for street scenes like ours due
to large displacements, perspective distortions, textureless
regions and challenging lighting conditions. Interestingly,
PSPNet achieves the best accuracy while performing worse
on mIoU. Despite obtaining superior results on large objects
(e.g., “Building”), it struggles with less-occurring classes
such as “Trailer” and “Gate”.

The bottom half of Table 2 (left) compares the proposed
method with respect to the 3D to 2D label transfer base-
lines. As evidenced by our results, simply projecting 3D
primitives or meshes into the image and smoothing via GC
does not perform well due to the crude approximation of
the geometry. Better results are obtained when projecting
the visible 3D points followed by spatial propagation. Fi-
nally, we observe that all baselines are outperformed by the
proposed method (last row). Note that we also map the 37
semantic labels of our 3D annotations to the most common
14 categories considered in the static evaluation images (see
Appendix C) for all 3D to 2D label transfer methods.

Dynamic Objects: We evaluate our method on dynamic
objects against 2D label transfer baselines. Here, we consider
all static regions as a single background class during evalua-
tion. Note that we neglect “Fully Conn. CRF” and “PSPNet”
as both methods address semantic segmentation and thus
cannot distinguish static and dynamic objects within the
same class. Table 2 (right) shows that our method also out-
performs all 2D label transfer baselines on dynamic objects.
While the mIoU is calculated over a different set of classes,
the average performance of our method on dynamic objects
is slightly degraded compared to our result on static objects.
Labeling of dynamic objects is more challenging in our

7. The results differ slightly from those presented in [107] as 1) we
updated the ground truth labels to be consistent with the extended label
definition and 2) we measure mIoU following Cityscapes [25] while
[107] reports weighted mIoU.

annotation pipeline for two reasons: Since we accumulate
3D points of dynamic points according to the annotated
bounding primitives over multiple frames, slight misalign-
ments of the primitives may lead to inaccurate accumulation
and thus erroneous 3D cues. Furthermore, the accumulation
of deformable objects (“Rider”, “Person”) leads to noisy 3D
point clouds. Despite these challenges, our method achieves
satisfying performance on all dynamic objects.

Annotation Time Comparison: While all 2D methods re-
quire every 10th frame to be labeled, our method (as well as
the other 3D baselines) requires 3D annotations in the form
of 3D primitives. Assuming 60 minutes annotation time per
image, this amounts to 20 hours of annotation time per
batch of 200 frames when labeling one 2D image every 10th
frame, while the respective 3D annotations for this scene can
be obtained in about 3 hours. This gain multiplies with the
frame rate and the number of cameras (our setup has four).

Ablation Study: We validate the importance of the individ-
ual components of our model on semantic segmentation in
Table 3 (upper left), evaluated on the densely labeled images
of static objects. Starting with the appearance classifier pP

trained on the projected sparse 3D points (“LA”), we incre-
mentally add the terms ϕL,ψP,L related to the 3D points
(“3D”), the semantic pairwise term ψP,P between pixels
(“PW”), the 3D primitive constraints ξP (“CO”) and finally
the 3D pairwise constraints ψL,L as specified in Eq. 1. We
note that each component is able to increase performance.
We obtain the largest improvement by reasoning about the
relationship between points in 3D and pixels in the image.

Label Uncertainty: Here, we leverage our model’s aware-
ness of label uncertainty to demonstrate that higher ac-
curacy can be achieved in confident regions. To quantify
uncertainty, we measure the entropy of the label marginal
distribution at every pixel, see Fig. 5 (last row). Sorting all
pixels according to their entropy allows us to predict the
most certain regions in the image. Table 3 (bottom) shows
our results on static objects when predicting only those parts
of the image. Note how this helps to boost our performance
to 94.3% mIoU and 98.4% accuracy when predicting at 70%
pixel density, demonstrating that our uncertainty estimates
are well calibrated. In contrast, uncertainty is not directly
accessible in most baseline models as they are deterministic
or rely on MAP estimates. In the benchmarks introduced
in Section 6 where our inferred labels are considered as
pseudo-ground truth, we adopt confidence weighted evalu-
ation metrics leveraging the uncertainty to take into account
the ambiguity in our automatically generated annotations.

5.2.2 Instance Segmentation Transfer

As time consistent 2D instance ground truth is hard to
obtain, most existing 2D label transfer methods focus on
the semantic segmentation problem. Therefore, we chose
to evaluate instance segmentation performance in an ab-
lation study. We annotated the classes “Building”, “Car”,
“Trailer”, “Caravan” and “Box” with instances in our 2D

11

Fig. 5: Qualitative Results on Semantic Instance Segmentation Transfer. Each subfigure shows from top-to-bottom: the
input image with the projected 3D points and inferred semantic segmentation boundaries, the inferred semantic instance
segmentation, as well as the confidence map of the inferred label with bright and dark colors indicating high and low
confidence, respectively. See supplementary material and text for details. The first scene (1st column) contains only static
objects while the others (2nd and 3rd columns) also contain dynamic objects.

ground truth8. For evaluation, we exploit the mIoU metric
defined on instances following [107]. Specifically, we first
match the ground truth instances to the predicted instances.
A pixel is then classified as true positive only when its
predicted instance index matches the ground truth. Table 3
(right) shows our results. Note how the instance segmen-
tation results are on par with the semantic segmentation,
demonstrating our model’s intra-class separation ability.
Moreover, we also observe higher instance segmentation
accuracy when filtering uncertain predictions.

5.3 Qualitative Evaluation
Fig. 5 illustrates our dense inference results qualitatively for
3 different scenes in terms of semantic instance segmenta-
tion on both static and dynamic objects. The first two rows
illustrate both semantic and instance labels, where semantic
information is color-coded and instances are separated by
boundaries. The last row shows the confidence maps. While
the proposed method is able to delineate most object bound-
aries satisfyingly, some challenges remain. Errors occur in
regions where 3D points are absent due to far distance
(1st & 3rd scene: far building). Another source of errors
is inherent label ambiguities that occur for porous objects
such as fences or trees (3rd scene: tree boundary) where
even 2D ground truth annotation is a hard and ambiguous
task. Finally, 3D points of dynamic objects are accumulated
over multiple frames (2nd & 3rd scene), providing dense but
less accurate 3D cues to the CRF model. However, note that
our probabilistic inference algorithm is able to successfully
identify those uncertain regions as demonstrated in the
last row, where far buildings and object boundaries are
predicted as less certain compared to other image regions.

6 DATASET & BENCHMARKS

We apply the proposed label transfer method to all frames
captured by perspective cameras, resulting in 2×78k 2D

8. While [107] uses two sets of parameters for semantic and instance
segmentation, we train a single model for instance segmentation and
read semantic labels directly from the instance maps. Therefore, our
predictions on classes without instance labels are the same in both
semantic and instance segmentation maps.

semantic/instance segmentation maps, 1.0B 3D semantic
points and 172.4M 3D instance points. We provide a sta-
tistical analysis of the 2D & 3D labels in Appendix F.1.
We further deploy an online evaluation server and estab-
lish benchmarks on a set of challenging tasks relevant to
autonomous driving. For all tasks, we split the data at
the batch-level into disjoint training, validation and held-
out test sets as specified in Appendix F.2. Specifically, we
leverage KITTI-360 to address tasks at the intersection of vi-
sion, graphics and robotics which are commonly viewed as
relevant towards achieving full autonomy, including tasks
within the scope of semantic scene understanding, novel
view synthesis and semantic SLAM. We now describe each
task and the corresponding evaluation protocol in detail.
Furthermore, we introduce initial baselines for each task.

6.1 Semantic Scene Understanding

In this section, we establish scene perception benchmarks
in both 2D image space and 3D domain. We first imple-
ment benchmarks for the traditional tasks of 2D semantic
segmentation and 2D instance segmentation on perspective
images, using the inferred semantic/instance segmentation
maps as pseudo ground-truth. While not the main focus
of this work, we establish these standard 2D benchmarks
to investigate whether there is a performance gap between
methods operating in 2D and 3D. Furthermore, as our label
definition is compatible with Cityscapes, this benchmark
opens up the possibility for studying domain adaption
across datasets in future work. Next, we establish bench-
marks in the 3D domain, including bounding box detection
and semantic/instance segmentation. Moreover, we con-
sider a semantic scene completion task where the goal is to
simultaneously complete the scene and infer corresponding
semantic labels given limited observations. This task allows
autonomous vehicles to hallucinate future possibilities and
thus can benefit downstream tasks, e.g., predictive control.

2D Semantic Segmentation: We train and evaluate 2D
segmentation baselines on the densely labeled images in
KITTI-360. We consider two well-known methods, Fully
Convolutional Neural Network (FCN) [61] and Pyramid

12

R
es

N
et

-5
0

R
es

N
et

-1
01

Fig. 6: Qualitative Results for 2D Instance Segmentation. The first row shows inference results of Mask-RCNN with a
ResNet-50 backbone while the second row uses a ResNet-101 backbone. The ResNet-101 backbone leads to better results,
e.g., with the ResNet-50 backbone, the car occluded by the person is split into two instances (left) and the motorcycle is not
detected (middle). Note that both variants are able to predict “Building” instances after being trained on KITTI-360.

Method mIoUclass mIoUcategory
FCN [61] 54.0 77.6
PSPNet [116] 64.9 82.2

(a) 2D Semantic Segmentation

Method Backbone AP AP50

Mask R- Res. 50 19.5 36.3
CNN [40] Res. 101 20.9 40.1

(b) 2D Instance Segmentation

Method AP50 AP25

BoxNet [76] 4.1 23.6
VoteNet [76] 3.4 30.6

(c) 3D Bounding Box Detection
Method mIoUclass mIoUcategory
PointNet [77] 13.1 30.4
PointNet++ [78] 35.7 58.3

(d) 3D Semantic Segmentation

Method AP AP50

PointNet++ [78]+ [30] 23.7 40.1
PointGroup [49] 34.8 53.6

(e) 3D Instance Segmentation

Method Acc / Cmp / F1 mIoUclass
Raw Input 98.2 / 19.1 / 32.4 –
Enc-Dec 41.4 / 41.2 / 41.3 9.1

(f) Semantic Scene Completion

TABLE 4: Quantitative Results for 2D & 3D Scene Understanding on Various Different Tasks.

Scene Parsing Network (PSPNet) [116], as a reference. Fol-
lowing Cityscapes [25], we adopt mean intersection over
union (mIoU) at two semantic granularities, i.e., classes
and categories, where 19 classes are grouped into 7 coarse-
grained categories. To account for label uncertainty, the
mIoU is weighted by the confidence of our pseudo-ground
truth labels. A formal definition of our metrics and a de-
tailed definition of the classes and categories can be found in
Appendix G.1. Table 4a shows that, unsurprisingly, PSPNet
outperforms the naı̈ve FCN on the test set.

2D Instance Segmentation: We use the established Mask
R-CNN framework [40] with different backbones as our
baselines, see Table 4b. We measure the Average Precision
(AP) weighted by the label confidence over 10 thresholds,
ranging from 0.5 to 0.95 with a step size of 0.05. The mean
AP is then calculated over 7 classes that contain instance
labels. We also compare mean AP50 given a threshold of 0.5.
Both Table 4b and Fig. 6 suggest that Mask R-CNN with a
deeper backbone leads to better performance. Note that we
provide instance segmentation labels of “Buildings” which
are not available for other outdoor datasets [18], [25], [36],
[45]. This information allows future works to explore scene
compositionality [57], [72], [74] in real-world street scenes.

3D Bounding Box Detection: In this benchmark we
measure the mean AP over two classes, “Building” and
“Car”, since it is particularly challenging for learning-based
algorithms to generalize well to other classes with fewer
training samples. Following [76], the mean AP is calculated
at a threshold of 0.25 and 0.5, respectively. We consider
VoteNet [76] and its simplified version BoxNet [76] as base-
line methods. Both methods require 3D point locations as
input and output 3D bounding boxes and their semantic
labels. Table 4c suggests that VoteNet can make reasonable
predictions for both building and cars while it fails to predict
3D bounding boxes with high IoU values, see Fig. 7f.

3D Semantic Segmentation: We establish a 3D semantic
segmentation benchmark on the accumulated point clouds,
where PointNet [77] and PointNet++ [78] are trained and
evaluated as baselines. Both methods take as input point
locations and colors to predict a semantic label for each
3D point. Following the 2D semantic segmentation task, we
measure mIoU weighted by label confidence over classes
and categories, respectively. Table 4d shows the quantita-
tive comparison and Fig. 7d illustrates the performance of
PointNet++. Interestingly, comparing Table 4a and Table 4d
shows that the 3D semantic segmentation baselines’ overall
performances are inferior compared to the 2D semantic seg-
mentation methods, suggesting that parsing the semantic
meaning of irregularly structured 3D point clouds remains
more challenging and requires further work.

3D Instance Segmentation: We evaluate 3D instance seg-
mentation results for “Building” and “Car”. Specifically, we
measure the mean AP over a set of thresholds ranging from
0.5 to 0.95 with a step size of 0.05 and AP at a threshold of
0.25 and 0.5. As a first simple baseline, we naı̈vely cluster
semantically labeled points into instances. We use Point-
Net++ [78] for semantic segmentation and DBSCAN [30] for
clustering. We further evaluate PointGroup [49] as a state-
of-the-art method for 3D instance segmentation which takes
as input point locations and colors. Table 4e demonstrates
that PointGroup outperforms the naı̈ve clustering-based
method. The qualitative result of PointGroup is shown in
Fig. 7e. While the 2D and 3D results in Table 4b and
Table 4e are defined over different sets of classes, we provide
detailed results on each class in Appendix G.5. Interest-
ingly, 3D instance segmentation methods achieve better
performance on “Car” than 2D methods while performing
worse on “Building”. We hypothesize that unlike in 2D
where occlusions strongly impact the results (e.g. Fig. 6 left,
pedestrian standing in front of a car), cars can be more

13

(a) Semantic GT (b) Instance GT (c) Bbox GT

(d) PointNet++ [78] (e) PointGroup [49] (f) VoteNet [76]

Fig. 7: Qualitative Results for 3D Scene Perception. We establish benchmarks for 3D semantic/instance segmentation and
3D bounding box detection. This figure shows the ground truth and the prediction of a baseline method for each sub-task.

Raw Input Acc. Raw Input Comp. Enc-Dec Acc. Enc-Dec Comp. Enc-Dec Semantic GT Semantic

Fig. 8: Qualitative Results for Semantic Scene Completion evaluated at a distance threshold of 20cm. Green denotes
complete/accurate, red denotes incomplete/inaccurate and blue denotes points in unobserved region.

easily separated in 3D. As for buildings, many instances
are spatially connected (e.g., Fig. 6 right), making the in-
stance segmentation task harder in 3D where boundaries
are harder to detect on the sparse point cloud.

Semantic Scene Completion: While standard scene percep-
tion tasks aim to predict a semantic label for each observed
scene point, the semantic scene completion task additionally
requires predicting geometry and semantics in unobserved
regions. Given a single LiDAR scan as input, this task
requires semantic scene completion within a corridor of
30m around the vehicle poses of a 100m trajectory. For
evaluation, we measure reconstruction quality and semantic
prediction accuracy. The former measures geometric accu-
racy independent of semantics, using completeness and accu-
racy over a range of distance thresholds following common
practice [89]. We consider a threshold of 20cm as the main
metric. As our ground truth reconstruction may not be
complete, we evaluate accuracy only in observed regions.
We further measure the F1 score as the harmonic mean of
the completeness and the accuracy. The semantic predic-
tion quality is conditioned on the geometric reconstruction.
Specifically, we measure the confidence weighted mIoU over
the same set of thresholds where a true positive prediction is
made when 1) a ground truth point is classified as complete
at the given threshold and 2) its closest reconstructed point
has the correct label. See Appendix G.6 for more details of
the ground truth construction and evaluation metrics.

We consider two baselines for this task, both taking
a single raw LiDAR frame as input. For calibration, we
implement a naı̈ve baseline which returns the input as
output. The second baseline is a learning-based approach

where we use an encoder-decoder architecture to predict the
complete scene structure from the raw LiDAR scan. More
details about this baseline can be found in Appendix G.6.
Table 4f and Fig. 8 illustrate the results. As expected, the
raw LiDAR scans are accurate but incomplete. The learning-
based approach instead achieves higher completeness but
the predictions are less accurate. For the learning-based
approach we also predict a semantic label at each 3D point.
Fig. 8 shows that the model is able to correctly predict
semantic labels at a coarse level but struggles to predict
smaller objects like cars.

Discussion: Our results show that 3D semantic segmenta-
tion is harder than 2D semantic segmentation. In contrast,
our conclusions for instance segmentation vary for different
classes. Some classes, e.g., cars, are easier to segment in 3D,
suggesting further works can explore 3D information to en-
hance 2D instance segmentation. 3D bounding box detection
remains challenging, especially when a high IoU is desired.
Lastly, while inferring dense geometry and semantics from
raw sparse observations can benefit autonomous driving,
completing the scene and predicting semantics jointly is a
difficult task that requires further research.

6.2 Novel View Synthesis

Simulation is an essential tool for training and evaluating
autonomous vehicles. While existing methods trained in
simulated scenes struggle to generalize to real scenes, cre-
ating a simulation environment based on real-world images
is a promising direction to close the gap between real-
world scenarios and synthetic environments [24], [110]. We
thus establish challenging benchmarks towards this goal,

14

(a) GT Image (b) NeRF [64] (c) FVS [83]

(d) GT Image + PSPNet [116] (e) NeRF [64] + PSPNet [116] (f) FVS [83] + PSPNet [116]

Fig. 9: Qualitative Results for Novel View Appearance & Semantic Synthesis. The first row shows the GT image and novel
view appearance synthesis results. The second row shows the corresponding semantic segmentation using PSPNet [116].

including novel view appearance synthesis and novel view
semantic synthesis.

Novel View Appearance Synthesis: In this benchmark,
we are interested in novel view RGB image synthesis for
driving scenarios. While we evaluate on a set of held-out
perspective images, the benchmark participant can choose
from a set of input modalities9, including posed perspec-
tive/fisheye images or accumulated point clouds. For per-
spective and fisheye images, we release approximately 50%
of the frames for training and use the remaining 50% for
testing. In addition, the evaluation server also provides
a harder setting with a 90% drop rate. See appendix for
details. The point cloud is accumulated over all frames
where each point fuses colors from different viewpoints. We
adopt three standard evaluation metrics for this benchmark:
peak signal-to-noise ratio (PSNR), structural similarity in-
dex (SSIM), and perceptual metric (LPIPS) [115].

We evaluate two sets of baselines on two different input
modalities. We first consider a naı̈ve baseline using the
accumulated point cloud (PCL) as input. Specifically, we
project non-occluded colored points to test viewpoints, fol-
lowed by nearest neighbor interpolation to fill in the missing
values. As there are no 3D points in the sky, we heuristically
assign a mean blue color to the sky region. We further
consider several state-of-the-art baselines for image-based
novel view synthesis, including methods based on Neural
Radiance Fields [7], [27], [64] or per-view depth maps [54],
[83]. Results in Table 5 (left) and Fig. 9 (1st row) reveal the
challenges of this benchmark. We observe that NeRF [64]
shows promising results but struggles to synthesize fine
structure. FVS performs better in rendering fine details (e.g.,
license plate) but exhibits noticeable artifacts due to the
inaccurate underlying geometry (e.g., left car). Interestingly,
FVS/PBNR performs better in LPIPS but has a lower PSNR
compared to NeRF-based methods, suggesting that LPIPS is
more sensitive to fine detail than larger regional errors.

Novel View Semantic Synthesis: An important property
of simulation environments like CARLA [29] is that they
provide not only RGB images but also auxiliary information
like semantic label maps. Towards a real-world simulator
with the same capability, we therefore consider a novel
benchmark that requires joint novel view and semantic
synthesis. The input data for this task is the same as for

9. The used input modalities will be indicated on the leaderboard.

Method Input PSNR SSIM LPIPS mIoUclass mIoUcategory
GT Image – – – – 72.0 83.6
PCL PC 12.81 0.576 0.549 39.4 46.8
NeRF [64] PI 21.18 0.779 0.343 53.0 73.9
mip-NeRF [7] PI 21.54 0.778 0.365 51.2 72.0
DS-NeRF [27] PI 21.28 0.777 0.347 54.8 75.5
FVS [83] PI 20.00 0.790 0.193 67.1 78.5
PBNR [54] PI 19.91 0.811 0.191 65.1 77.8

TABLE 5: Quantitative Results for Novel View Appearance
& Novel View Semantic Synthesis using a 50% drop rate.
Input: “PC” denotes the accumulated point cloud and “PI”
means perspective images.

the novel view synthesis task, while the methods are tasked
to predict both an RGB image and a semantic segmentation
map at a given target camera pose. Therefore, the evaluation
metric of this task additionally comprises mIoU for semantic
segmentation as shown in Table 5 (right). As no prior work
has addressed this problem yet, we consider a naı̈ve two-
stage solution as baseline to bootstrap this benchmark, i.e.,
we apply an existing semantic segmentation model (PSP-
Net [116]) on the synthesized images. For comparison, we
also evaluate the semantic segmentation performance on
the original ground truth images (GT Image). Note that
the artifacts in the synthesized images lead to a significant
performance drop for semantic segmentation. As illustrated
in Fig. 9, the fence is misclassified as building when the
synthesized images are taken as input to PSPNet, despite
that the fence is still visible in these images. It is also
interesting to note that semantic segmentation performance
is aligned with the LPIPS metric, as both apply pre-trained
networks on synthesized images.

Discussion: Our baselines reveal the different challenges
in novel view appearance synthesis with different input
modalities. While point clouds provide a good represen-
tation of 3D geometry, it is not easy to model view de-
pendency. When instead taking a sparse set of multi-view
images as input, the task is similarly difficult despite little
variation in the camera orientation. We believe that future
works should explore the combination of different input
modalities to improve image fidelity further. Moreover,
given the low performance of our simple baselines on the
novel view semantic synthesis task, there is a large potential
for future improvements, i.e., by learning view and semantic
synthesis jointly.

15

(a) GT Semantic Reconstruction (b) ORB-SLAM2 + SGM (c) SUMA++

Fig. 10: Qualitative Results for Semantic Mapping on test sequence 3 colored based on semantic class labels.

6.3 Semantic SLAM

We further establish a semantic SLAM benchmark at the
intersection of robotics and computer vision. Here, the goal
is to simultaneously estimate poses and reconstruct a se-
mantic map from monocular/stereo images and/or LiDAR
scans. While there is a growing interest in evaluating in-
door semantic reconstructions of SLAM algorithms at room-
level [87], [102], existing works on outdoor semantic SLAM
typically evaluate only pose estimation while ignoring the
quality of the semantic reconstruction [12], [23]. Considering
that the semantic reconstruction is valuable on its own for
down-stream tasks, e.g. planning [28], we thus additionally
evaluate geometric and semantic reconstructions where the
latter is enabled by the dense semantic annotations of KITTI-
360. For this benchmark, the test sequences are separated
from those used for 3D scene perception such that the
accumulated point cloud is held out from the public.

Localization: Given an estimated trajectory, we adopt the
standard Absolute Pose Error (APE) and Relative Pose Error
(RPE) [37] as metrics for evaluating pose estimation. We
consider four test sequences for this task and report the
evaluation results on each test sequence without averaging.

We evaluate two baseline methods, ORB-SLAM2 [66]
and SUMA++ [23], where the former takes stereo images
as input and the latter is applied on LiDAR scans. Ta-
ble 6a compares the localization results of ORB-SLAM2 and
SUMA++. For both methods, the APE exceeds 2 meters and
the RPE is around 2% in general. ORB-SLAM2 achieves bet-
ter overall performance compared to SUMA++, suggesting
that the stereo images of our dataset contain rich features for
the purpose of localization. One possibility for improving
localization accuracy is to exploit the 3D bounding boxes
and instance labels available in our dataset [71], [109].

Geometric and Semantic Mapping: We measure the quality
of the geometric and semantic mapping using the same
metrics considered in the semantic scene completion bench-
mark. As richer input observations are available in this
task, we adopt a smaller distance threshold of 10cm as the
main metric. Specifically, we first measure geometry accu-
racy using completeness and accuracy, and then evaluate
semantics on the completed ground truth points via the

Test ORB-SLAM2 SUMA++
Seq. APE (m) RPE (%) APE (m) RPE (%)

0 1.53 ± 0.74 2.42 ± 1.34 2.27 ± 1.38 2.66 ± 2.12
1 2.22 ± 0.78 2.46 ± 1.37 2.87 ± 1.50 2.43 ± 1.80
2 2.12 ± 0.94 1.50 ± 1.01 4.62 ± 4.24 2.90 ± 2.90
3 1.79 ± 0.96 1.72 ± 1.22 2.77 ± 1.44 2.88 ± 2.42

(a) Localization. RPE evaluated with a delta unit of 1 meter.
Test ORB-SLAM2 + PSPNet SUMA++
Seq. Acc./ Comp. / F1 mIoU Acc./ Comp. / F1 mIoU

0 78.5 / 72.8 / 75.5 35.3 90.8 / 63.1 / 74.5 19.9
1 81.8 / 76.8 / 79.2 31.6 89.3 / 62.9 / 73.8 17.3
2 82.5 / 70.8 / 76.2 30.4 89.6 / 64.5 / 75.0 17.6
3 84.3 / 79.1 / 81.6 32.7 94.2 / 66.3 / 77.8 22.8

(b) Semantic mapping evaluated at a threshold of 10cm.

TABLE 6: Quantitative Results for Semantic SLAM. Eval-
uated on 4 test sequences.

confidence weighted mIoU. As the mapping accuracy is
highly correlated with the APE, we compare ground truth
and estimated reconstruction in local windows to minimize
the impact of pose drifts. Each local window consists of 50
consecutive frames and is aligned to the ground truth based
on the trajectory, see Appendix I.2 for more details.

We use the same baselines considered in the localiza-
tion benchmark. As ORB-SLAM2 does not provide dense
reconstruction nor semantic information, we obtain dense
semantic reconstruction by unprojecting 2D semantic seg-
mentations (PSPNet [116]) using depth maps from semi-
global matching (SGM) [42]. SUMA++ aims for semantic
SLAM and estimates poses and a semantic surfel map from
LiDAR scans. We experimentally observe that it is sufficient
to take the center of the surfels as the reconstructed points.

Table 6b and Fig. 10 show the reconstruction and se-
mantic prediction results. We observed that both baselines
produce good reconstructions on the ground region. For
regions above the ground, SUMA++ is less complete as it
only uses LiDAR scans and thus the maximum height is
limited. ORB-SLAM2 + SGM results in higher complete-
ness but worse accuracy. In terms of semantic predictions,
SUMA++ produces reasonable results on the LiDAR scans
but struggles to achieve good overall performance due to
its low completeness. In contrast, ORB-SLAM2 + PSPNet
contains more flying points due to the outliers of stereo

16

matching (e.g., sky points colored blue). Exploring semantic
information to remove sky points may further improve the
performance of this baseline.

Discussion: We evaluate localization accuracy of existing
SLAM methods and suggest exploring 3D instance-level
information in further works. Further, reconstructing accu-
rate geometry and semantics remains a challenging task.
Our benchmark allows to investigate important questions
towards solving this challenging task, e.g., which input
modality is better suited for this task, whether semantic
prediction and geometric reconstruction can benefit each
other and if joint optimization is desirable.

7 CONCLUSION

We present KITTI-360, a large scale 3D video dataset com-
prising 300k images and laser point clouds with consistent
semantics in both 2D and 3D. We create a WebGL-based
annotation tool and annotate both static and dynamic ob-
jects in 3D. We propose a method to obtain dense semantic
instance labels from annotated 3D primitives. In the pres-
ence of 3D data, our method yields better results compared
to several 2D label transfer baselines while lowering the
annotation time.

Furthermore, we establish novel online benchmarks for
several challenging tasks at the intersection of computer
vision, graphics and robotics. We evaluate several baselines
for each benchmark. Our results show that existing methods
achieve satisfactory results on well-established benchmarks,
e.g., 2D/3D segmentation, where inference is directly per-
formed on given observations. However, it is much harder
to solve tasks that require jointly recovering the geometry,
appearance and estimating the semantics as in the newly
introduced tasks for semantic scene completion, novel view
appearance/semantic synthesis and semantic SLAM. We
hope that our dataset, online benchmarks and annotation
tools will fertilize new research across communities, foster-
ing progress towards the grand goal of full autonomy.

ACKNOWLEDGMENTS

The authors thank Siyuan Peng, Bernhard Jaeger, Shrisha
Bharadwaj, Apratim Bhattacharyya, Paul Henderson, and
Zehao Yu for their help in implementing the baselines,
Kashyap Chitta, Katja Schwarz, and Yue Wang for proof-
reading, and SurfingTech for annotating parts of the dataset.
Andreas Geiger was supported by the ERC Starting Grant
LEGO-3D (850533) and the DFG EXC number 2064/1 -
project number 390727645. Yiyi Liao was supported by
the German Federal Ministry of Education and Research
(BMBF): Tübingen AI Center, FKZ: 01IS18039A.

REFERENCES

[1] “Daimler urban segmentation dataset,” http://www.6d-vision.
com/scene-labeling. 3

[2] D. Acuna, H. Ling, A. Kar, and S. Fidler, “Efficient interactive
annotation of segmentation datasets with polygon-rnn++,” 2018.
4

[3] M. Andriluka, J. Uijlings, and V. Ferrari, “Fluid annotation: a
human-machine collaboration interface for full image annota-
tion,” 2018. 4

[4] M. Aygun, A. Osep, M. Weber, M. Maximov, C. Stachniss,
J. Behley, and L. Leal-Taixe, “4d panoptic lidar segmentation,”
in CVPR, 2021. 4

[5] V. Badrinarayanan, I. Budvytis, and R. Cipolla, “Mixture of trees
probabilistic graphical model for video segmentation,” IJCV, vol.
110, no. 1, pp. 14–29, 2014. 4

[6] V. Badrinarayanan, F. Galasso, and R. Cipolla, “Label propagation
in video sequences,” in CVPR, 2010. 1, 4

[7] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-
Brualla, and P. P. Srinivasan, “Mip-nerf: A multiscale representa-
tion for anti-aliasing neural radiance fields,” in ICCV, 2021. 14,

[8] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stach-
niss, and J. Gall, “Semantickitti: A dataset for semantic scene
understanding of lidar sequences,” in ICCV, 2019. 1, 3, 4,

[9] J. Behley, V. Steinhage, and A. B. Cremers, “Performance of
histogram descriptors for the classification of 3d laser range data
in urban environments,” in ICRA, 2012. 3

[10] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,
“The ball-pivoting algorithm for surface reconstruction,” VCG,
vol. 5, no. 4, pp. 349–359, 1999. 8,

[11] Y. Boykov and V. Kolmogorov, “An experimental comparison
of min-cut/max-flow algorithms for energy minimization in vi-
sion.” PAMI, vol. 26, pp. 1124–1137, 2004. 9

[12] N. Brasch, A. Bozic, J. Lallemand, and F. Tombari, “Semantic
monocular SLAM for highly dynamic environments,” in ICRA,
2018. 15

[13] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object
classes in video: A high-definition ground truth database,” Pat-
tern Recognition Letters, vol. 30, no. 2, pp. 88–97, 1 2009. 3

[14] T. Bruls, W. Maddern, A. A. Morye, and P. Newman, “Mark
yourself: Road marking segmentation via weakly-supervised an-
notations from multimodal data,” in ICRA, 2018. 4

[15] I. Budvytis, V. Badrinarayanan, and R. Cipolla, “Label propaga-
tion in complex video sequences using semi-supervised learn-
ing,” in BMVC, 2010. 4

[16] I. Budvytis, P. Sauer, T. Roddick, K. Breen, and R. Cipolla, “Large
scale labelled video data augmentation for semantic segmenta-
tion in driving scenarios,” in ICCV, 2017. 4

[17] Y. Cabon, N. Murray, and M. Humenberger, “Virtual KITTI 2,”
arXiv.org, vol. 2001.10773, 2020. 4

[18] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A
multimodal dataset for autonomous driving,” in CVPR, 2020. 1,
3, 4, 12

[19] L. Castrejon, K. Kundu, R. Urtasun, and S. Fidler, “Annotating
object instances with a polygon-rnn,” in CVPR, 2017. 4

[20] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner,
M. Savva, S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learn-
ing from rgb-d data in indoor environments,” in 3DV, 2017. 3

[21] M. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett,
D. Wang, P. Carr, S. Lucey, D. Ramanan, and J. Hays, “Argoverse:
3d tracking and forecasting with rich maps,” in CVPR, 2019. 3

[22] L.-C. Chen, S. Fidler, A. L. Yuille, and R. Urtasun, “Beat the
mturkers: Automatic image labeling from weak 3d supervision,”
in CVPR, 2014. 4

[23] Y. Chen, C. Dong, P. Palanisamy, P. Mudalige, K. Muelling, and
J. M. Dolan, “Attention-based hierarchical deep reinforcement
learning for lane change behaviors in autonomous driving,” in
IROS, 2019. 15,

[24] Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam,
S. Xue, E. Yumer, and R. Urtasun, “Geosim: Realistic video
simulation via geometry-aware composition for self-driving,” in
CVPR, 2021. 13

[25] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes
dataset for semantic urban scene understanding,” in CVPR, 2016.
3, 4, 6, 7, 9, 10, 12,

[26] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Niessner, “Scannet: Richly-annotated 3d reconstructions of
indoor scenes,” in CVPR, 2017. 3, 4

[27] K. Deng, A. Liu, J. Zhu, and D. Ramanan, “Depth-supervised
nerf: Fewer views and faster training for free,” arXiv.org, vol.
2107.02791, 2021. 14,

[28] W. Ding, L. Zhang, J. Chen, and S. Shen, “Safe trajectory gen-
eration for complex urban environments using spatio-temporal
semantic corridor,” IEEE Robotics and Automation Letters, 2019. 15

http://www.6d-vision.com/scene-labeling
http://www.6d-vision.com/scene-labeling

17

[29] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” in CoRL, 2017. 14

[30] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in Proc. of the Second International Conference on Knowledge
Discovery and Data Mining (KDD), 1996. 12,

[31] R. Gadde, V. Jampani, and P. V. Gehler, “Semantic video cnns
through representation warping,” in ICCV, 2017. 4

[32] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “Virtual worlds as
proxy for multi-object tracking analysis,” in CVPR, 2016. 4

[33] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets
robotics: The KITTI dataset,” IJRR, vol. 32, no. 11, pp. 1231–1237,
2013. 4, 5

[34] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for au-
tonomous driving? The KITTI vision benchmark suite,” in CVPR,
2012. 1, 3, 5

[35] A. Geiger and C. Wang, “Joint 3d object and layout inference
from a single rgb-d image,” in GCPR, 2015. 2

[36] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S.
Chung, L. Hauswald, V. H. Pham, M. Mühlegg, S. Dorn, T. Fer-
nandez, M. Jänicke, S. Mirashi, C. Savani, M. Sturm, O. Vorobiov,
M. Oelker, S. Garreis, and P. Schuberth, “A2D2: audi autonomous
driving dataset,” arXiv.org, vol. 2004.06320, 2020. 3, 4, 12

[37] M. Grupp, “evo: Python package for the evaluation of odometry
and slam.” https://github.com/MichaelGrupp/evo, 2017. 15,

[38] M. Guillaumin, D. Küttel, and V. Ferrari, “Imagenet auto-
annotation with segmentation propagation,” IJCV, vol. 110, no. 3,
pp. 328–348, 2014. 4

[39] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler,
and M. Pollefeys, “Semantic3d.net: A new large-scale point cloud
classification benchmark,” in APRS, vol. IV-1-W1, 2017, pp. 91–
98. 3

[40] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick, “Mask R-CNN,”
PAMI, vol. 42, no. 2, pp. 386–397, 2020. 12

[41] L. Heng, B. Li, and M. Pollefeys, “Camodocal: Automatic intrinsic
and extrinsic calibration of a rig with multiple generic cameras
and odometry,” in IROS, 2013. 5

[42] H. Hirschmüller, “Stereo processing by semiglobal matching and
mutual information,” PAMI, vol. 30, no. 2, pp. 328–341, 2008. 15,

[43] J. Hoffman, D. Wang, F. Yu, and T. Darrell, “Fcns in the
wild: Pixel-level adversarial and constraint-based adaptation,”
arXiv.org, vol. 1612.02649, 2016. 4

[44] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard, “Octomap: An efficient probabilistic 3d mapping
framework based on octrees,” in AR, vol. 34, no. 3. Springer,
2013, pp. 189–206.

[45] X. Huang, P. Wang, X. Cheng, D. Zhou, Q. Geng, and R. Yang,
“The apolloscape open dataset for autonomous driving and its
application,” PAMI, 2020. 3, 4, 6, 12

[46] S. D. Jain and K. Grauman, “Supervoxel-consistent foreground
propagation in video,” in ECCV, 2014. 4

[47] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer vision for
autonomous vehicles: Problems, datasets and state of the art,”
Foundations and Trends in Computer Graphics and Vision, 2020. 1

[48] M. Jancosek and T. Pajdla, “Multi-view reconstruction preserving
weakly-supported surfaces,” in CVPR, 2011. 8

[49] L. Jiang, H. Zhao, S. Shi, S. Liu, C. Fu, and J. Jia, “Pointgroup:
Dual-set point grouping for 3d instance segmentation,” in CVPR,
2020. 12, 13,

[50] R. Kesten, M. Usman, J. Houston, T. Pandya, K. Nadhamuni,
A. Ferreira, M. Yuan, B. Low, A. Jain, P. Ondruska, S. Omari,
S. Shah, A. Kulkarni, A. Kazakova, C. Tao, L. Platinsky, W. Jiang,
and V. Shet, “Level 5 perception dataset 2020,” https://level-5.
global/level5/data/, 2019. 3

[51] M. Kiefel and P. Gehler, “Human pose estimation with fields of
parts,” in ECCV, 2014. 8

[52] D. Kim, S. Woo, J.-Y. Lee, and I. S. Kweon, “Video panoptic
segmentation,” in CVPR, 2020. 3

[53] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and
temples: Benchmarking large-scale scene reconstruction,” ACM
Trans. on Graphics, vol. 36, no. 4, 2017.

[54] G. Kopanas, J. Philip, T. Leimkühler, and G. Drettakis, “Point-
based neural rendering with per-view optimization,” Computer
Graphics Forum, vol. 40, no. 4, pp. 29–43, 2021. 14,

[55] P. Krähenbühl and V. Koltun, “Efficient inference in fully con-
nected CRFs with Gaussian edge potentials,” in NIPS, 2011. 7, 8,
9,

[56] M. Larsson, E. Stenborg, L. Hammarstrand, M. Pollefeys, T. Sat-
tler, and F. Kahl, “A cross-season correspondence dataset for
robust semantic segmentation,” in CVPR, 2019. 3

[57] Y. Liao, K. Schwarz, L. Mescheder, and A. Geiger, “Towards
unsupervised learning of generative models for 3d controllable
image synthesis,” in CVPR, 2020. 12

[58] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV, 2014.

[59] H. Ling, J. Gao, A. Kar, W. Chen, and S. Fidler, “Fast interactive
object annotation with curve-gcn,” in CVPR, 2019. 4

[60] C. Liu, J. Yuen, and A. Torralba, “Nonparametric scene parsing
via label transfer,” PAMI, vol. 33, no. 12, pp. 2368–2382, 2011. 4

[61] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” in CVPR, 2015. 11, 12,

[62] V. Madhavan and T. Darrell, “The bdd-nexar collective: A large-
scale, crowsourced, dataset of driving scenes,” Master’s thesis,
2017. 3

[63] A. Martinović, J. Knopp, H. Riemenschneider, and L. Van Gool,
“3d all the way: Semantic segmentation of urban scenes from
start to end in 3d,” in CVPR, 2015. 4

[64] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “NeRF: Representing scenes as neural
radiance fields for view synthesis,” in ECCV, 2020. 1, 14,

[65] D. Munoz, J. A. Bagnell, and M. Hebert, “Co-inference machines
for multi-modal scene analysis,” in ECCV, 2012. 3, 4

[66] R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: an open-source
SLAM system for monocular, stereo, and RGB-D cameras,”
vol. 33, no. 5, pp. 1255–1262, 2017. 15,

[67] A. Mustafa and A. Hilton, “Semantically coherent co-
segmentation and reconstruction of dynamic scenes,” in CVPR,
2017. 4

[68] N. S. Nagaraja, P. Ochs, K. Liu, and T. Brox, “Hierarchy of
localized random forests for video annotation,” in DAGM, 2012.
4

[69] S. T. Namin, M. Najafi, M. Salzmann, and L. Petersson, “A multi-
modal graphical model for scene analysis,” in WACV, 2015. 4

[70] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder, “The
mapillary vistas dataset for semantic understanding of street
scenes,” in ICCV, 2017. 3

[71] L. Nicholson, M. Milford, and N. Sünderhauf, “Quadricslam:
Dual quadrics from object detections as landmarks in object-
oriented SLAM,” IEEE Robotics and Automation Letters, 2019. 15

[72] M. Niemeyer and A. Geiger, “Giraffe: Representing scenes as
compositional generative neural feature fields,” in CVPR, 2021.
12

[73] P. Osborne, “The mercator projections,” 2008. [Online]. Available:
http://mercator.myzen.co.uk/mercator.pdf 5

[74] J. Ost, F. Mannan, N. Thuerey, J. Knodt, and F. Heide, “Neural
scene graphs for dynamic scenes,” CVPR, 2021. 12

[75] Q.-H. Pham, P. Sevestre, R. S. Pahwa, H. Zhan, C. H. Pang,
Y. Chen, A. Mustafa, V. Chandrasekhar, and J. Lin, “A*3d dataset:
Towards autonomous driving in challenging environments,” in
ICRA, 2020. 3

[76] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep hough voting
for 3d object detection in point clouds,” in ICCV, 2019. 12, 13,

[77] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in CVPR,
2017. 12,

[78] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,” in
NIPS, 2017. 12, 13,

[79] C. R. Qi, Y. Zhou, M. Najibi, P. Sun, K. Vo, B. Deng, and
D. Anguelov, “Offboard 3d object detection from point cloud
sequences,” in CVPR, 2021. 4

[80] S. Qiao, Y. Zhu, H. Adam, A. L. Yuille, and L. Chen, “Vip-deeplab:
Learning visual perception with depth-aware video panoptic
segmentation,” in CVPR, 2021. 3, 4

[81] M. A. Reza, H. Zheng, G. Georgakis, and J. Kosecka, “Label
propagation in rgb-d video,” in IROS, 2017. 4

[82] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data:
Ground truth from computer games,” in ECCV, 2016. 4

[83] G. Riegler and V. Koltun, “Free view synthesis,” in ECCV, 2020.
14,

[84] H. Riemenschneider, A. Bódis-Szomorú, J. Weissenberg, and L. V.
Gool, “Learning where to classify in multi-view semantic seg-
mentation,” in ECCV, 2014. 3

https://github.com/MichaelGrupp/evo
https://level-5.global/level5/data/
https://level-5.global/level5/data/
http://mercator.myzen.co.uk/mercator.pdf

18

[85] L. G. Roberts, “Machine perception of three-dimensional solids,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1963. 1

[86] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. Lopez,
“The synthia dataset: A large collection of synthetic images for
semantic segmentation of urban scenes,” in CVPR, 2016. 4

[87] A. Rosinol, M. Abate, Y. Chang, and L. Carlone, “Kimera: an
open-source library for real-time metric-semantic localization
and mapping,” in ICRA, 2020. 15

[88] X. Roynard, J. Deschaud, and F. Goulette, “Paris-lille-3d: A point
cloud dataset for urban scene segmentation and classification,”
in CVPR Workshops, 2018. 3

[89] T. Schöps, J. L. Schönberger, S. Galliani, T. Sattler, K. Schindler,
M. Pollefeys, and A. Geiger, “A multi-view stereo benchmark
with high-resolution images and multi-camera videos,” in CVPR,
2017. 13,

[90] M. Schönbein and A. Geiger, “Omnidirectional 3d reconstruction
in augmented manhattan worlds,” in IROS, 2014. 5

[91] M. Schönbein, T. Strauss, and A. Geiger, “Calibrating and center-
ing quasi-central catadioptric cameras,” in ICRA, 2014. 5

[92] S. M. Seitz and R. Szeliski, “Applications of computer vision to
computer graphics,” in Computer Graphics, 1999. 1

[93] S. Song, S. Lichtenberg, and J. Xiao., “Sun rgb-d: A rgb-d scene
understanding benchmark suite,” in CVPR, 2015. 3

[94] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik,
P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han,
J. Ngiam, H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao,
A. Joshi, Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalabil-
ity in perception for autonomous driving: Waymo open dataset,”
in CVPR, 2020. 3

[95] N. Sundaram, T. Brox, and K. Keutzer, “Dense point trajectories
by gpu-accelerated large displacement optical flow,” in ECCV,
2010. 9, 10,

[96] W. Tan, N. Qin, L. Ma, Y. Li, J. Du, G. Cai, K. Yang, and
J. Li, “Toronto-3d: A large-scale mobile lidar dataset for semantic
segmentation of urban roadways,” in CVPR Workshops, 2020. 1, 3

[97] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and
M. Chandraker, “Learning to adapt structured output space for
semantic segmentation,” in CVPR, 2018. 4

[98] S. Umeyama, “Least-squares estimation of transformation pa-
rameters between two point patterns,” PAMI, vol. 13, no. 4, pp.
376–380, 1991.

[99] J. P. Valentin, S. Sengupta, J. Warrell, A. Shahrokni, and P. H.
Torr, “Mesh based semantic modelling for indoor and outdoor
scenes,” in CVPR, 2013. 3

[100] S. Vijayanarasimhan and K. Grauman, “Active frame selection
for label propagation in videos,” in ECCV, 2012. 9, 10,

[101] V. Vineet, G. Sheasby, J. Warrell, and P. H. S. Torr, “Posefield: An
efficient mean-field based method for joint estimation of human
pose, segmentation, and depth,” in EMMCVPR, 2013. 8

[102] J. Wald, K. Tateno, J. Sturm, N. Navab, and F. Tombari, “Real-time
fully incremental scene understanding on mobile platforms,” RA-
L, vol. 3, no. 4, pp. 3402–3409, 2018. 15

[103] M. Weber, J. Xie, M. Collins, Y. Zhu, P. Voigtlaender, H. Adam,
B. Green, A. Geiger, B. Leibe, D. Cremers, A. Osep, L. Leal-Taixe,
and L.-C. Chen, “STEP: Segmenting and tracking every pixel,” in
NeurIPS Datasets and Benchmarks, 2021. 3

[104] P. H. Winston, “Heterarchy in the m.i.t. robot,” MIT Artificial
Intelligence Laboratory, Tech. Rep., 1971. 1

[105] J. Xiao, A. Owens, and A. Torralba, “SUN3D: A database of big
spaces reconstructed using sfm and object labels,” in ICCV, 2013.
3

[106] J. Xiao and L. Quan, “Multiple view semantic segmentation for
street view images.” in ICCV, 2009. 4

[107] J. Xie, M. Kiefel, M.-T. Sun, and A. Geiger, “Semantic instance
annotation of street scenes by 3d to 2d label transfer,” in CVPR,
2016. 2, 9, 10, 11,

[108] Y. Xiong, R. Liao, H. Zhao, R. Hu, M. Bai, E. Yumer, and
R. Urtasun, “Upsnet: A unified panoptic segmentation network,”
in CVPR, 2019. 7,

[109] S. Yang and S. A. Scherer, “Cubeslam: Monocular 3-d object
SLAM,” vol. 35, no. 4, pp. 925–938, 2019. 15

[110] Z. Yang, Y. Chai, D. Anguelov, Y. Zhou, P. Sun, D. Erhan,
S. Rafferty, and H. Kretzschmar, “Surfelgan: Synthesizing realistic
sensor data for autonomous driving,” in CVPR, 2020. 13

[111] S. Yogamani, C. Hughes, J. Horgan, G. Sistu, P. Varley, D. O’Dea,
M. Uricár, S. Milz, M. Simon, K. Amende, C. Witt, and H. Rashed,

“Woodscape: A multi-task, multi-camera fisheye dataset for au-
tonomous driving,” in ICCV, 2019. 3

[112] S. Zakharov, W. Kehl, A. Bhargava, and A. Gaidon, “Autolabeling
3d objects with differentiable rendering of SDF shape priors,” in
CVPR, 2020. 4

[113] M. Zeiler, “Adadelta: An adaptive learning rate method,”
arXiv.org, vol. 1212.5701, 2012. 9

[114] H. Zhang, A. Geiger, and R. Urtasun, “Understanding high-level
semantics by modeling traffic patterns,” in ICCV, 2013. 2

[115] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang,
“The unreasonable effectiveness of deep features as a perceptual
metric,” in CVPR, 2018. 14,

[116] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in CVPR, 2017. 7, 9, 12, 14, 15,

[117] X. Zhu, Y. Xiong, J. Dai, L. Yuan, and Y. Wei, “Deep feature flow
for video recognition,” in CVPR, 2017. 4

[118] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. D. Newsam, A. Tao,
and B. Catanzaro, “Improving semantic segmentation via video
propagation and label relaxation,” in CVPR, 2019. 4

[119] S. M. I. Zolanvari, S. Ruano, A. Rana, A. Cummins, R. E. da Silva,
M. Rahbar, and A. Smolic, “Dublincity: Annotated lidar point
cloud and its applications,” in BMVC, 2019. 1, 3

Yiyi Liao received her Ph.D. degree from the
Department of Control Science and Engineer-
ing, Zhejiang University, China in 2018. She is
currently a PostDoctoral researcher at the Au-
tonomous Vision Group, University of Tübingen
and Max Planck Institute for Intelligent Systems,
Germany. Her research interests include 3D vi-
sion and scene understanding.

Jun Xie received her Ph.D. degree from the
Electrical Engineering Department of University
of Washington in 2016. She is currently a re-
search engineer at Google. Her research inter-
ests include image segmentation and 3D vision.

Andreas Geiger received his Diploma in com-
puter science and his Ph.D. degree from Karl-
sruhe Institute of Technology in 2008 and 2013.
Currently, he is leading the Autonomous Vision
Group at the University of Tübingen and the
Max Planck institute for Intelligent Systems in
Tübingen. His research interests include com-
puter vision, machine learning and scene under-
standing with a focus on self-driving vehicles.

APPENDIX A
ANNOTATION DATA PREPARATION

A.1 Point Cloud Accumulation

To facilitate annotation, we accumulate all laser measure-
ments in a common world coordinate system and augment
them with 3D points from stereo matching [42]. To reduce
outliers of stereo matching, we consider only points up
to 15m distance, and apply left-right as well as forward-
backward consistency checks over 5 frames. We fuse all 3D
points sequentially and ignore a point closer than 5 cm to its
nearest neighbor in the fused point cloud. This downsam-
pling operation allows for reducing the data loading traffic
and memory of the web based annotation tool.

A.2 Dense Point Cloud on Dynamic Objects

Our simple dynamic object detection consists of two steps.
In the first step, we apply volumetric fusion over a se-
quential of laser scans and search for 3D points located in
(mostly) free regions. As a dynamic object always moves in
the free space, the voxels along its moving trajectory are oc-
cupied occasionally and thus the expected status over time
should be free. Hence the dynamic points can be detected
by finding points inside of all “free” voxels. Specifically, we
build a 3D occupancy volumetric grid V for each batch by
fusing Velodyne observations using Octomap [44]. Given a
set of measurements z1:t from frame 1 to t, the occupancy
probability of each voxel v ∈ V is updated as follow:

p(v|z1:t) =

max(min(p(v|z1:t−1) + p(v|zt), pmax), pmin)

if p(v|z1:t−1) > pmin

pmin

if p(v|z1:t−1) = pmin

(8)

where p(v|z1:t) is the log-odds of the probability, pmax and
pmin are the upper bound and lower bound of the log-odds
respectively. Note that we clamp a voxel to be free if there is
sufficient evidence from previous frames to support its free
status. We denote the set of free voxels as Ṽ .

Due to the noise in measurements and poses, the free
voxels may also contain many 3D points of static objects as
shown in Fig. 11a. It is hard to avoid these false positive
detections as each voxel is classified as free or occupied
independently. Therefore, we consider a second step to
filter out clusterings of noisy detections. Specifically, we
segment the original accumulated point cloud into a branch
of clusters using the Region Growing algorithm10, and we
calculate the occupancy probability of each cluster c based
on the detection in the first step:

p(c) =
1

N

N∑
i

[
ci ∈ Ṽ

]
(9)

where ci denotes a single point in the cluster, N denotes
number of points, and ci ∈ Ṽ means that ci is spatially
located within V . A cluster c is considered as dynamic if
p(c) is larger than a given threshold. With the second step,

10. https://pcl.readthedocs.io/projects/tutorials/en/latest/region
growing segmentation.html

(a) Fine-grained detection (b) Coarse-grained detection

Fig. 11: Dynamic Object Detection. (a) Detected dynamic
points with decision on 3D grids. (b) Detected dynamic
points with decision on point cloud clusters.

(a) RGB (b) Color wrt. height

(c) Color wrt. height variance (d) Color wrt. annotation

Fig. 12: Color Codings of 3D points supported by our
annotation interface.

we are able to filter out false positive detections as shown
in Fig. 11b. It is acceptable if a few false positive detections
remains since the dense point cloud will be further labeled
by our annotators.

APPENDIX B
ANNOTATION INTERFACE

In this section, we demonstrate the annotation tool and
process in detail.

B.1 Annotation Scene

Color Coding: Fig. 12 shows different color codings of 3D
points that we provide in the annotation tool. Annotators
can choose different color codings accordingly. For example,
Fig. 12c helps annotators to identify the boundary between
“Road” and “Sidewalk” and Fig. 12d allows annotators to
check unannotated region (shown as white).

3D Viewpoint: To assist annotators to better visualize
the scene, we also provide different viewports, namely,
normal and orthographic viewports as shown in Fig. 13. The
orthographic viewport helps annotators accurately identify
stuff classes’ boundaries and annotate individual objects

https://pcl.readthedocs.io/projects/tutorials/en/latest/region_growing_segmentation.html
https://pcl.readthedocs.io/projects/tutorials/en/latest/region_growing_segmentation.html

(a) Normal viewport (b) Orthographic viewport

Fig. 13: 3D Viewport.

Fig. 14: 2D Camera View. We illustrate fisheye and perspec-
tive camera views and virtual camera poses.

efficiently (see “fast object annotation mode” in Section B.2).
Besides, annotators can also adjust point size and brightness
to work with different levels of detail.

2D Camera View: For better perceiving the scene, we also
show fisheye and perspective images as well as the pose
of each camera, enabling annotators to select informative
viewpoints efficiently, as shown in Fig. 14.

B.2 Annotation Functions
We provide a few shortcuts and functions to facilitate the
annotation process.

Bounding Primitive Manipulation: To best enclose the 3D
object, each bounding primitive can be manipulated with
translation, scaling, and rotation, resulting in 9 degrees of
freedom. In addition, annotators are also asked to assign
an orientation to each bounding primitive to understand
objects’ (especially instances) orientation. See Fig. 15 for
each operation’s shortcuts.

Bounding Primitive Copy: We also provide a “copy” short-
cut to allow annotators to quickly insert new annotations
with the same label and similar pose to previously anno-
tated objects. This is especially useful for objects appearing
frequently with similar sizes such as building and car.

Fast Object Annotation: We support quickly annotating
a subset of object classes by simply drawing a line along
the object. This fast annotation mode is enabled under the
orthographic view for a few pre-selected classes, where

Fig. 15: Bounding Primitive Manipulation.

Mouse Down

Mouse Up

Fig. 16: Fast Object Annotation.

the annotator draws a line along the longest side in the
middle. While this line only specifies the length of the
object in one dimension and its orientation, we heuristically
place a bigger bounding primitive centered at this line and
iteratively shrink the bounding primitive until it touches
any non-ground points. As shown in Fig. 16, this simple
technique allows for efficient and accurate annotation.

Object-Centric Mode: To enable a clear observation of a
single object from the accumulated point cloud, we also help
annotators with the “object-centric” mode. With a single 3D
bounding box selected, triggering the “object-centric” mode
hides all the other bounding primitives as well as points far
from the selected primitive. In addition, both front view and
side views images are automatically switched to the ones in
which the selected primitive is most visible.

Completeness Check: As illustrated in Fig. 12d, the an-
notator can check the completeness level of the annotation
by visualizing the point cloud based on existing bounding
primitives. Specifically, we color each 3D point if it is
enclosed by a bounding primitive and leave the unlabeled
region as white. This helps the annotator easily identify any
unlabeled 3D points.

B.3 Ground Annotation
Ground bounding primitives are simply annotated as 2D
polygons. The extruded height of the ground polygon
is automatically determined as follows: for each vertex
v = {x, y} on the polygon, we first search the nearest
camera of this given vertex, and assign the height of the
camera to this vertex as its initial height ẑ. Then we search
nearest neighbors of point {x, y, ẑ} in the 3D point cloud,
and update height z as the median height of these nearest
neighbors. See Fig. 17 as an example for “Road” annotation.
Annotators can also modify the 2D polygon anytime by
dragging its control points.

(a) Ground annotation process (b) Finished annotation

Fig. 17: Ground Annotation.

B.4 Dynamic Object Annotation
We implement a semi-automatic annotation scheme to label
dynamic objects efficiently. Our semi-automatic annotation
relies on two assumptions: the size of the dynamic object
is fixed over time, and its trajectory is smooth. There-
fore, the required annotation is reduced to adding posed
3D primitives at several keyframes. Our annotation tool
then automatically places the remaining primitives along
the trajectory. The smooth trajectory is obtained via spline
interpolation based on the primitives at the keyframes.
We annotate articulated dynamic objects, e.g., pedestrians,
using the maximum extent bounding box.

As the speed of the dynamic object may not be constant,
we place the remaining primitives based on the observed 3D
points at each timestamp. Specifically, we first discretize the
annotated 3D primitives into voxels and fuse the occupancy
status of each voxel over all annotated primitives as shown
in Fig. 18a. A voxel is considered as occupied if it is occupied
in any of the annotated 3D primitives, otherwise it is free.
This fused occupancy status is considered an “occupancy
template” for searching matching 3D primitive along the
trajectory. Given a timestamp between the first and the
last annotated timestamp, we slide the 3D primitive on
the interpolated spline and calculate the occupancy status
based on 3D points collected at the given timestamp. We
choose the pose that provides the maximum overlap with
the occupancy template, see Fig. 18b.

To facilitate users’ interaction, we plot the interpolated
spline in the annotation tool and allow the annotator to
refine the spline by simply adjusting the 3D bounding
primitives inserted at the keyframes. We also display the au-
tomatically generated 3D primitives to help the user check
if they are accurate. The poses of each automatically gener-
ated bounding primitive can also be adjusted if necessary.
Typically, it requires 2 ∼ 5 annotated keyframes to produce
accurate annotations for the full moving trajectory. Fig. 19
illustrates the dynamic annotation at a given timestamp.

APPENDIX C
LABEL DEFINITION

Table 7 shows the definition of the 37 classes that we use
for annotating 3D scenes. We adhere to the definition of
Cityscapes as close as possible while a few inconsistent label
definitions are inevitable as our annotations are performed
in 3D. For example, the “Traffic Sign” in Cityscapes only
includes the front side while we consider both the front and
the back. We do not distinguish the back as each traffic sign
is labeled by a single 3D bounding primitive and it might be

(a) Annotated bounding primitives

(b) Automatically generated bounding primitive

Fig. 18: Semi-Automatic Dynamic Object Annotation. (a)
We discretize the annotated 3D primitives and fuse the
occupancy status. (b) We search along the spline and find the
matching bounding primitive by maximizing the overlap.

Fig. 19: Dynamic Annotations. The above 3D primitives
are automatically generated along the interpolated spline
visualized in orange.

observed in 2D from both sides. Thus, each traffic sign has
a consistent label regardless of which side it is observed.

APPENDIX D
MORE DETAILS OF LABEL TRANSFER INFERENCE

D.1 Accumulation of Input Point Cloud

In contrast to the point cloud accumulation for annotation
as introduced in Appendix A, here we need to distinguish
static and dynamic points for label transfer inference and
thus determine visible points on every frame. Specifically,
we consider a point static if it is not enclosed by any dy-
namic bounding primitive and accumulate all static points

Category Class Instance Definition
flat road 7 Horizontal surfaces on which cars usually drive, including road markings. Typically delimited by curbs, rail

tracks, or parking areas. However, road is not delimited by road markings and thus may include bicycle lanes
or roundabouts.

sidewalk 7 Horizontal surfaces designated for pedestrians or cyclists. Delimited from the road by some obstacle, e.g.
curbs or poles (might be small), but not only by markings. Often elevated compared to the road and often
located at the side of a road. The curbs are included in the sidewalk label. Also includes the walkable part of
traffic islands, as well as pedestrian-only zones, where cars are not allowed to drive during regular business
hours. If it’s an all-day mixed pedestrian/car area, the correct label is ground.

parking 7 Horizontal surfaces that are intended for parking and separated from the road, either via elevation or via a
different texture/material, but not separated merely by markings.

rail track 7 Horizontal surfaces on which only rail cars can normally drive. If rail tracks for trams are embedded in a
standard road, they are included in the road label.

construction building † 3 Includes structures that house/shelter humans, e.g. low-rises, skyscrapers. Translucent buildings made of
glass still receive the label building. Also includes scaffolding attached to buildings.

garage∗ 3 Structures for parking.
wall 7 Individually standing walls that separate two (or more) outdoor areas, and do not provide support for a

building.
fence 7 Structures with holes that separate two (or more) outdoor areas, sometimes temporary.
guard rail 7 Metal structure located on the side of the road to prevent serious accidents. Rare in inner cities, but occur

sometimes in curves. Includes the bars holding the rails
bridge 7 Bridges (on which the ego-vehicle is not driving) including everything (fences, guard rails) permanently

attached to them.
tunnel 7 Tunnel walls and the (typically dark) space encased by the tunnel, but excluding vehicles.
gate∗ 7 A passageway or opening in a wall of fence for entrance or exit.
stop∗ 3 A place where a bus or train stops for passengers to get on or off. It intends to protect waiting pedestrians

from rain, wind and snow.
object pole† 3 Long, vertically oriented poles, e.g. sign poles or traffic light poles. This does not include objects mounted on

the pole, which have a larger diameter than the pole itself (e.g. most street lights).
smallpole∗ 3 Small, vertically oriented poles, e.g. sign poles or traffic light poles. This does not include objects mounted on

the pole, which have a larger diameter than the pole itself (e.g. most street lights).
traffic light 3 The traffic light box without its poles in all orientations and for all types of traffic participants, e.g. regular

traffic light, bus traffic light, train traffic light
traffic sign † 3 Signs installed by the state/city authority with the purpose of conveying information to

drivers/cyclists/pedestrians, e.g. traffic signs, parking signs, direction signs, or warning reflector posts. Both
frontal and back side are included.

lamp∗ 3 A lamp usually mounted on a pole and constituting one of a series spaced at intervals along a public road or
highway.

trash bin∗ 3 A container that holds materials that have been thrown away.
vending machine∗ 3 An automated machine for selling merchandise.
box∗ 3 Any rigid typically rectangular container excluding trash bin and vending machine. Some examples are electric

box, honey bucket, package, etc.
nature vegetation 7 Trees, hedges, and all kinds of vertically growing vegetation. Plants attached to buildings/walls/fences are

not annotated separately, and receive the same label as the surface they are supported by.
terrain 7 Grass, all kinds of horizontally spreading vegetation, soil, or sand. These are areas that are not meant to be

driven on. This label may also include a possibly adjacent curb. Single grass stalks or very small patches of
grass are not annotated separately and thus are assigned to the label of the region they are growing on.

sky sky 7 Open sky (without tree branches/leaves)
human person 3 All humans that would primarily rely on their legs to move if necessary.

rider 3 Humans relying on some device for movement. This includes drivers, passengers, or riders of bicycles,
motorcycles.

vehicle car 3 This includes cars, jeeps, SUVs, vans with a continuous body shape (i.e. the driver’s cabin and cargo
compartment are one). Does not include trailers, which have their own separate class.

truck 3 This includes trucks, vans with a body that is separate from the driver’s cabin, pickup trucks, as well as their
trailers.

bus 3 This includes buses that are intended for 9+ persons for public or long-distance transport.
caravan 3 Vehicles that (appear to) contain living quarters. This also includes trailers that are used for living and has

priority over the trailer class.
trailer 3 Includes trailers that can be attached to any vehicle, but excludes trailers attached to trucks. The latter are

included in the truck label.
train 3 All vehicles that move on rails, e.g. trams, trains.
motorcycle 3 This includes motorcycles, mopeds, and scooters without the driver or other passengers. The latter receive the

label rider
bicycle 3 This includes bicycles without the cyclist or other passengers. The latter receive the label rider.

void unknown construction 3 All remaining construction regions which are not mentioned in the “construction” session
unknown vehicle 3 All remaining vehicle regions which are not mentioned in the “vehicle” session
unknown object 3 All remaining object regions which are not mentioned in the “object” session

∗ classes do not exist in Cityscapes
† classes with definitions slightly different from Cityscapes

TABLE 7: Label Definition. We adhere to the label definition of Cityscapes as close as possible. Inconsistent classes are
marked.

first. For each dynamic object, we retrieve all points in-
side the corresponding bounding primitives {bmt } for every
timestamp t and accumulate them in the canonical object-
centered coordinate system by taking the inverse trans-
form of the object pose defined by {bmt } (world-to-object
transformation). Next, we insert the accumulated dynamic
point clouds back to the world coordinate following the
object pose (object-to-world transformation). This allows us
to obtain dense 3D points during inference for both static
and dynamic regions.

D.2 Accumulation of Inferred 3D Label

Our inference is performed individually on each frame
defined over the corresponding 2D pixels and visible 3D
points. To obtain 3D labels on the accumulated point clouds,
we thus fuse 3D labels obtained from each frame. Specif-
ically, if a 3D point is visible in multiple frames, we take
the majority of its inferred classes as its final label. The
confidence of this 3D point is also averaged over confidence
values of these points of the majority label. If a 3D point is
not visible in any of the frames but is uniquely labeled by a
single class, we assign this unique label to the 3D point and
a confidence value of 1.0. In the remaining cases, we treat
the 3D point’s label as unknown.

D.3 Pixel Unary Potentials of Ground Objects

The first term of the pixel unary potential is a binary feature
ξPi (si) ∈ {0, 1} which indicates admissible labels. For non-
planar object classes, ξPi (si) is obtained based on the projec-
tion of 3D primitives, whereas planar object classes directly
use projections of 2D polygons to obtain more accurate
boundaries. As introduced in Appendix B.3, the ground
bounding primitives are extruded to 3D to enclose the
3D points. This leads to oversized 2D projections, making
it hard to determine the boundary between two adjacent
ground object annotations (e.g., “Road” and “Sidewalk”).
As opposed to our conference version [107], which exploits
a geometric unary potential to address this problem, we in-
stead directly project the 2D polygons of the ground objects
before extruding them to 3D. This allows us to obtain ac-
curate ground object boundaries from ξPi (si) and avoid the
complexity introduced by the additional geometric unary
term.

D.4 Instance Augmentation of Pixel Unary Potentials

We adopt a state-of-the-art panoptic segmentation method
UPSNet [108] pre-trained on Cityscapes [25] to obtain in-
stance hypotheses for “Car”, “Truck”, and “Pedestrian”. We
first run UPSNet on our images to get probability maps
of all instances. For each annotated instance within the
aforementioned classes, we retrieve matched instances from
the predictions of UPSNet. More specifically, given a set of
3D points annotated with one instance (e.g., one car) and a
probability map of one instance predicted by UPSNet, we
consider they match if more than 50% of the 3D points fall
into the high-probability region of the predicted instance.
This allows for improving instance boundaries as shown in
Fig. 20.

APPENDIX E
MORE RESULTS OF LABEL TRANSFER INFERENCE

E.1 Detailed Quantitative Comparisons
Here, we show detailed quantitative comparisons for in-
dividual classes. Table 8 and Table 9 show quantitative
comparison to label transfer baselines on static and dynamic
objects, respectively. We evaluate the intersection over union
(IoU) of each class where the mIoU is the average over all
classes. We further show detailed ablation study in Table 10
and Table 11 for semantic and instance label transfer.

E.2 Qualitative Comparison to Baselines
We compare our method qualitatively to several 2D-to-2D
and 3D-to-2D label transfer baselines in Fig. 21. Note how
the 2D-to-2D label transfer baselines fail in the presence of
strong occlusions and large displacements.

E.3 Qualitative Comparison of Ablation Study
Fig. 22 compares different variants of our label transfer
model. Consistent with the quantitative analysis, our full
model achieves the best performance.

APPENDIX F
DATASET

F.1 Statistical Analysis
Fig. 23 shows the distribution of the semantic labels in
KITTI-360. Fig. 23a and Fig. 23b suggests that the semantic
distribution of the 2D pixels and the 3D points are similar
(except for the “Sky” class). We also show the distribution
of our 3D bounding boxes in Fig. 23c.

F.2 Dataset Split
We split KITTI-360 into training and test sets without spatial
overlapping as shown in Fig. 24. We maintain an online
evaluation server and hold back the labels of the test
set. Considering that different tasks involve different label
modalities, the test set is further divided into two parts with
different information released. Specifically, the first part of
the test dataset is used for semantic scene understanding
(except for semantic scene completion) and novel view
synthesis, where we hold back the 2D semantic/instance
segmentation maps and 3D pointwise labels. Note that the
accumulated point clouds are released while their labels
are removed. The other part is adopted for semantic scene
completion and semantic SLAM where the accumulated
point clouds are further removed. We release vehicle poses
for both test sets.

APPENDIX G
SEMANTIC SCENE UNDERSTANDING BENCHMARK

G.1 Benchmark of 2D Semantic segmentation
G.1.1 Evaluation Metrics
We evaluate confidence weighted mIoU where both the
intersection and the union are weighted (per-pixel) by the
confidence of our pseudo-ground truth. More formally, let
{TP} and {TP, FP, FN} denote the set of image pixels in the

(a) Without Instance Unary (b) With Instance Unary

Fig. 20: Ablation Study of Instance Unary. The top row shows the input image with the projected 3D points and inferred
semantic segmentation boundaries. The second row shows the inferred semantic instance segmentation. As can be seen
from (a), it is challenging to distinguish instance boundaries given sparse projections of point clouds. This can be effectively
improved by incorporating instance unary as shown in (b).

(a) Label Prop. [100] (b) Sparse Track. + GC [95] (c) 3D Prop. + GC

(d) Fully Conn. CRF [55] (e) PSPNet [116] (f) 3D Primitives + GC

(g) 3D Mesh + GC (h) 3D Points + GC (i) Proposed Method

Fig. 21: Qualitative Comparison to Baselines. Each subfigure shows from top-to-bottom: the input image with inferred
semantic segmentation and the errors with respect to 2D ground truth annotation where colors indicate ground truth labels.

intersection and the union of one class label (or one category
label), respectively. The weighted IoU of this class can be
defined as follow:

IoU =

∑
i∈{TP} ci∑

i∈{TP, FP, FN} ci
(10)

where ci ∈ [0, 1] denotes the confidence value at pixel i. In
the standard evaluation ci = 1 for all pixels. The mIoU is
then calculated as the mean of the weighted IoU over all
class labels or category labels.

While we provide 19 classes for training following
Cityscapes [25], we omit two classes, “Train” and “Bus” dur-

ing evaluation since these two classes are rarely observed
in the test region when we split the training and test sets
according to the camera poses as shown in Fig. 24.

G.1.2 Baselines

We train and evaluate two well-known methods, Fully Con-
volutional Neural Network (FCN) [61] and Pyramid Scene
Parsing Network (PSPNet) [116]. For FCN, we adopt the
ResNet-101 model provided by PyTorch as a backbone. The
model is pre-trained on a subset of the Microsoft COCO
dataset. As for PSPNet, we use the official PyTorch imple-

(a) LA (b) LA + 3D (c) LA + PW

(d) LA + PW + CO (e) LA + PW + CO + 3D (f) Full Model

Fig. 22: Qualitative Results for Ablation Study. Each subfigure shows from top-to-bottom: the input image with inferred
semantic segmentation, and the errors with respect to 2D ground truth annotation where colors indicate ground truth
labels.

Method Road Park Sdwlk Terr Bldg Vegt Car Trler Crvn Gate Wall Fence Box Sky mIoU Acc
Label Prop. [100] 85.9 27.8 59.4 48.7 78.8 67.5 51.0 12.6 48.1 25.8 47.1 44.3 0.0 89.6 49.0 81.0
Sparse Track. + GC [95] 83.4 33.0 38.7 49.8 76.2 61.0 75.1 73.5 78.8 24.6 6.7 25.0 11.6 79.0 51.2 79.1
3D Prop. + GC 77.1 50.5 75.4 64.5 83.1 76.8 82.1 91.2 91.7 62.6 59.9 58.1 55.5 81.6 72.1 87.4
Fully Conn. CRF [55] 90.1 46.4 67.4 61.3 88.3 78.4 85.6 48.9 78.1 30.5 33.7 45.6 43.1 92.7 63.6 88.7
PSPNet [116] 95.6 46.2 77.1 64.8 88.9 81.7 91.5 46.5 84.0 30.6 41.7 50.2 52.3 89.2 67.2 90.4
3D Primitives + GC 81.7 31.4 45.9 22.5 59.6 56.7 63.0 67.1 61.7 42.3 25.5 52.3 31.3 50.3 49.4 73.4
3D Mesh + GC 91.7 54.6 67.6 31.4 81.3 72.1 85.2 93.5 86.0 59.4 35.9 61.2 50.1 65.6 66.8 85.7
3D Points + GC 93.5 62.2 76.5 37.2 82.0 74.1 87.5 94.7 85.7 73.2 52.2 69.0 61.1 68.0 72.6 87.8
Proposed Method 95.2 72.9 84.5 67.9 90.3 84.2 92.2 93.4 90.8 78.8 64.3 73.1 56.8 92.8 81.2 93.1

TABLE 8: Comparison to Label Transfer Baselines on Semantic Segmentation Transfer of Static Objects. We compare
our method to 2D label transfer baselines (top) and to 3D to 2D label transfer baselines (bottom) on 120 consecutive images
of static objects.

Method Car Truck Trailer Motor Bicycle Rider Person mIoU Acc
Label Prop. [100] 28.5 53.2 71.7 11.1 42.0 32.2 21.8 37.2 59.1
Sparse Track. + GC [95] 10.1 22.0 13.2 5.2 1.4 5.6 0.1 8.2 12.5
3D Prop. + GC 15.7 40.3 24.1 2.2 0.2 2.0 17.1 14.5 21.7
Proposed Method 77.7 85.1 69.8 60.5 42.9 49.5 59.0 63.5 94.1

TABLE 9: Comparison to Label Transfer Baselines on Semantic Segmentation Transfer of Dynamic Objects. We compare
our method to 2D label transfer baselines (top) and to 3D to 2D label transfer baselines (bottom) on 120 consecutive images
that contain dynamic objects.

mentation11 which also uses ResNet-101 as backbone. The
model is pre-trained on the ImageNet dataset.

G.1.3 Additional Results
We show the IoU of each class in Table 12a. We observe
that PSPNet consistently outperforms FCN in most of the
classes.

G.2 Benchmark of 2D Instance Segmentation
G.2.1 Evaluation Metric
Following [58], we measure the Average Precision (AP) over
10 IoU thresholds, ranging from 0.5 to 0.95 with a step size
of 0.05. We calculate confidence weighted IoU per instance
using Eq. 10. In this task, we consider 7 classes that contain

11. https://github.com/hszhao/semseg

instance labels, including “Building”, “Person”, “Rider”,
“Car”, “Truck”, “Motorcycle” and “Bicycle”.

G.2.2 Baselines
We evaluated two Mask R-CNN models with different back-
bones, i.e., ResNet-50 and ResNet-101, based on the official
implementation12. Both backbones are pre-trained on the
ImageNet dataset.

G.2.3 Additional Results
Table 12b shows the AP of each individual class as well
as the mean AP. We observe that performance of different
backbones is similar in more frequently observed classes
(e.g., “Building” and “Car”) while differs in less occurred
classes.

12. https://github.com/facebookresearch/detectron2

https://github.com/hszhao/semseg
https://github.com/facebookresearch/detectron2

Method Road Park Sdwlk Terr Bldg Vegt Car Trler Crvn Gate Wall Fence Box Sky mIoU Acc
LA 95.4 34.0 48.5 66.6 88.4 82.8 91.8 54.2 88.9 61.7 53.8 52.0 53.6 89.6 68.7 89.1
LA+3D 95.3 48.9 75.7 66.6 85.8 81.5 92.1 56.1 91.2 68.3 58.8 45.7 48.4 88.7 71.7 90.1
LA+PW 95.4 26.5 38.3 66.2 88.5 83.5 92.0 56.9 89.4 66.2 51.6 50.0 51.2 89.8 67.5 88.2
LA+PW+CO 95.5 70.0 82.5 67.4 89.8 83.7 92.4 87.2 89.0 75.4 57.9 68.3 60.0 89.9 79.2 92.5
LA+PW+CO+3D 95.1 72.7 84.0 67.3 90.3 84.1 92.2 93.1 90.8 77.3 63.0 72.1 56.7 92.8 80.8 93.0
Full Model 95.2 72.9 84.5 67.9 90.3 84.2 92.2 93.4 90.8 78.8 64.3 73.1 56.8 92.8 81.2 93.1
Full Model (90%) 97.5 83.1 92.0 80.3 93.9 90.1 95.1 95.0 93.2 86.3 74.6 81.4 79.9 93.7 88.3 96.0
Full Model (80%) 98.4 89.2 94.2 89.5 96.4 94.2 96.6 96.3 95.5 93.5 80.2 86.4 90.0 95.3 92.5 97.6
Full Model (70%) 98.8 88.8 95.0 92.2 97.7 95.8 97.3 97.1 96.7 96.1 85.2 88.2 95.0 96.3 94.3 98.4

TABLE 10: Ablation Study on Semantic Segmentation of Static Objects. This table shows the importance of the different
components in our model on all 120 images. The components are abbreviated as follows: LA = local appearance (pP), PW =
2D pairwise constraints (ψP,P), CO = 3D primitive constraints (ξP), 3D = 3D points (ϕL,ψP,L), Full Model = all potentials
including 3D pairwise constraints (ψL,L). Percentages denote fractions of estimated pixels with highest confidence.

Method Bldg Car Trler Crvn Box mIoU Acc
LA 79.0 88.4 54.4 89.3 50.3 72.3 86.7
LA+3D 77.6 89.6 56.3 91.5 49.7 72.9 88.7
LA+PW 79.0 90.3 57.2 89.8 48.4 72.9 85.8
LA+PW+CO 82.2 90.6 87.7 89.4 58.2 81.6 91.0
LA+PW+CO+3D 84.4 90.6 93.6 91.2 58.2 83.6 91.7
Full Model 84.4 90.6 93.8 91.2 58.6 83.7 91.8
Full Model (90%) 88.8 93.4 95.3 93.4 74.3 89.0 94.9
Full Model (80%) 92.0 94.8 96.4 95.6 77.8 91.3 96.6
Full Model (70%) 93.6 95.7 97.2 96.8 79.9 92.7 97.4

TABLE 11: Comparison to Label Transfer Baselines on Instance Segmentation on Static Objects. We compare our method
to 2D label transfer baselines (top) and to 3D to 2D label transfer baselines (bottom) on 120 consecutive images.

Method Road Sdwlk Bldg Wall Fence Pole Trlgt Trsgn Vegt Terr Sky Persn Rider Car Truck Motor Bicyc mIoUclass
FCN [61] 95.6 84.5 84.1 43.4 38.6 31.1 0.0 38.0 90.6 85.7 91.2 40.5 29.3 94.6 42.4 28.4 0.0 54.0
PSPNet [116] 96.6 87.3 87.0 65.0 55.6 40.1 0.0 43.0 92.6 88.4 91.9 55.5 48.3 95.6 60.4 52.1 44.1 64.9

(a) 2D Semantic Segmentation
Method Bldg Persn Rider Car Truck Motor Bicyc AP
ResNet50 26.5 27.2 10.9 53.2 6.2 5.3 7.3 19.5
ResNet101 27.0 22.9 15.9 52.0 10.2 12.7 5.7 20.9

(b) 2D Instance Segmentation
Method Bldg Car AP50 Bldg Car AP25

BoxNet [76] 8.2 0.0 4.1 46.6 0.6 23.6
VoteNet [76] 5.7 1.1 3.4 40.3 20.9 30.6

(c) 3D Bounding Box Detection
Method Road Sdwlk Bldg Wall Fence Pole Trlgt Trsgn Vegt Terr Sky Persn Rider Car Truck Motor Bicyc mIoUclass
PointNet [77] 54.2 14.4 28.1 2.7 1.4 0.3 0.0 2.2 56.5 16.4 – 0.0 – 19.9 0.0 0.0 0.0 13.1
PointNet++ [78] 82.1 66.3 62.1 30.5 24.9 38.3 0.0 23.4 71.2 47.3 – 2.0 – 84.8 0.5 1.6 0.0 35.7

(d) 3D Semantic Segmentation
Method Bldg Car AP
PointNet++ [78]+ [30] 11.5 35.9 23.7
PointGroup [49] 9.9 59.6 34.8

(e) 3D Instance Segmentation
Method Road Sdwlk Bldg Wall Fence Pole Trlgt Trsgn Vegt Terr Sky Persn Rider Car Truck Motor Bicyc mIoUclass
Enc-Dec 42.0 16.9 16.2 2.3 0.1 4.7 0.0 2.6 25.4 9.0 – 0.0 – 16.2 0.0 0.0 0.0 9.1

(f) Semantic Scene Completion

TABLE 12: Additional Quantitative Results for Semantic Scene Understanding. In each table, we show the performance
of individual classes with the overall metric in the last column.

G.3 Benchmark of 3D Bounding Box Detection

G.3.1 Evaluation Metric

We evaluate AP at a threshold of 0.5 and 0.25 for 3D
bounding box detection. As it is particularly challenging for
learning-based algorithms to generalize well to other classes
with fewer training samples, we measure the mean AP over
two classes: “Building” and “Car”.

G.3.2 Baselines

We evaluate the state-of-the-art 3D bounding box de-
tection method, VoteNet [76], and its simplified version,
BoxNet [76] as baselines. We adopt the official implemen-
tation 13 for both methods.

13. https://github.com/facebookresearch/votenet

https://github.com/facebookresearch/votenet

(a) Distribution of 2D semantic labels over 78k frames.

(b) Distribution of 3D semantic labels over 1B points.

(c) Distribution of 3D semantic labels over 68k bounding boxes.

Fig. 23: Dataset Statistics. (a) and (b) show the histogram of
the 19 training semantic classes in 2D and 3D, respectively.
(c) shows the class distribution of 3D bounding boxes that
contains instance IDs.

G.3.3 Additional Results
Table 12c shows the AP on each class as well as the mean
AP. Both methods achieve reasonable performance at the
IoU threshold of 0.25 while struggle at the higher threshold.

G.4 Benchmark of 3D Semantic Segmentation
G.4.1 Evaluation Metric
For 3D semantic segmentation, we also evaluate confidence
weighted mIoU using Eq. 10. Here, the confidence of each

Fig. 24: Dataset Split. We split the dataset into one training
set, one validation set, and two test sets with held-out
ground truth.

3D point is obtained by averaging the confidence of 3D
points on multiple frames, as introduced in Appendix D.2.
Similar to 2D semantic segmentation, we omit “Train” and
“Bus” during evaluation. Note that there is no “Sky” point
in 3D, thus it is also discarded. Moreover, since we train and
evaluate only in static regions, we ignore “Rider” as it only
appears as a dynamic object.

G.4.2 Baselines

We train and evaluate two baselines, PointNet [77] and
PointNet++ [78]. As the original implementations are built
on Tensorflow, we adopt a faithful Pytorch reimplementa-
tion14 that contains both methods.

G.4.3 Additional Results

Table 12d shows the detailed results of 3D semantic seg-
mentation. As expected, PointNet++ achieves better perfor-
mance on all classes compared to PointNet.

G.5 Benchmark of 3D Instance Segmentation

G.5.1 Evaluation Metric

In 3D instance segmentation, we also evaluate AP over 10
IoU thresholds, ranging from 0.5 to 0.95 with a step size of
0.05. The IoU of each 3D instance is weighted (per-point)
by the confidence of our pseudo-ground truth. Here, we
evaluate on “Building” and “Car” the same as the 3D box
bounding detection benchmark.

14. https://github.com/yanx27/Pointnet Pointnet2 pytorch

https://github.com/yanx27/Pointnet_Pointnet2_pytorch

>50m

>45o

(a) Valid neighbor points

30m

(b) Crop point cloud

Fig. 25: Ground Truth Generation for Scene Completion
Benchmark. The blue star denotes the center of the input
laser scan. The blue and red dots denote valid and invalid
neighbors along the corridor, respectively.

G.5.2 Baselines
We first consider a naı̈ve baseline based on the results
we obtained from 3D semantic segmentation using Point-
Net++ [78]. Specifically, we first extract points of the same
class label (“Building” or “Car”) based on the semantic
segmentation results. Next, we group the extracted point
cloud using DBSCAN [30]15, where clusters with less than
500 points are ignored. Each valid cluster is then considered
as an instance with a confidence score of 1.0. The second
baseline is a state-of-the-art approach, PointGroup [49]. We
follow the official implementation16 to train and evaluate
this baseline.

G.5.3 Additional Results
Table 12e shows the detailed results of 3D instance segmen-
tation. Interestingly, the 3D instance segmentation perfor-
mance of “Car” is higher than the 2D baselines in Table 12b.
We hypothesize that unlike in 2D where occlusions strongly
impact the results, cars can be more easily separated in 3D.

G.6 Benchmark of Semantic Scene Completion

G.6.1 Data Preparation
The ground truth of the semantic scene completion task
is the accumulated point cloud within a corridor of 30m
around the vehicle poses of a 100m trajectory (50m in each
direction), see Fig. 25 for an illustration. The input to this
task is a single LiDAR scan whose center is visualized by
the blue star point. We first determine a set of neighboring
vehicle poses close to the given center illustrated in Fig. 25a,
and then crop the accumulated point cloud using the union
of circles located at those poses as shown in Fig. 25b.
To avoid evaluating in significantly occluded regions that
typically occur when the vehicle turns a large angle, we also
check the orientation of each pose as shown in Fig. 25a.
Specifically, if the forward direction of one pose deviates
more than 45◦ compared to the heading angle of the given
center, it is eliminated from the neighboring poses.

G.6.2 Evaluation Metric
In this task we evaluate geometric completion and semantic
estimation, respectively. Geometric completion is evaluated

15. http://www.open3d.org/docs/0.12.0/python api/open3d.
geometry.PointCloud.html

16. https://github.com/dvlab-research/PointGroup

via completeness and accuracy at a threshold of 20cm. Com-
pleteness is calculated as the fraction of ground truth points
of which the distances to their closest reconstructed points
are below the threshold. Accuracy instead measures the
percentage of reconstructed points that are within a distance
threshold to the ground truth points. As our ground truth
reconstruction may not be complete, we prevent punishing
reconstructed points by dividing the space into observed
and unobserved regions, which are determined by the un-
observed volume from a 3D occupancy map obtained using
OctoMap [44]. A reconstructed point is only evaluated when
it falls into the observed region within the union of the
neighboring circles shown in Fig. 25b. We further measure
the F1 score as the harmonic mean of the completeness and
the accuracy. Note that SemanticKITTI [8] also considers
a semantic scene completion task, but considers voxel as
representation and measures mIoU over voxels for both re-
construction and semantics. We instead avoid discretization
and directly evaluate on point clouds using standard metrics
to separately assess accuracy and completeness.

G.6.3 Baselines
We implement two baselines for this task. For calibra-
tion, the first baseline returns the input LiDAR scan as
output. The second baseline is a learning-based approach
that adopts an encoder-decoder structure. Specifically, the
encoder first learns features from the input point cloud. It
then merges the point-wise features to voxels such that a
3D U-Net is applied to predict a volumetric reconstruction.
The network is trained using a cross-entropy loss where the
ground truth point cloud is also discretized into a volume.
As our evaluation server requires submission in the form of
point clouds, we uniformly and densely sample points from
each occupied voxel as the final output.

G.6.4 Additional Results
Table 12f shows detailed semantic estimation performance
of the learning-based baseline. As can be seen, it is challeng-
ing to predict the geometry and the semantics jointly. The
overall performance of this baseline is worse compared to
baselines that directly perform 3D semantic segmentation
in Table 12d.

APPENDIX H
NOVEL VIEW SYNTHESIS BENCHMARK

H.1 Benchmark of Novel View Appearance Synthesis
H.1.1 Evaluation Metric
We adopt three standard metrics to evaluate novel view ap-
pearance synthesis: peak signal-to-noise ratio (PSNR), and
structural similarity index (SSIM), and perceptual metric
(LPIPS) [115].

H.1.2 Data Preparation
We select 5 static scenes with a driving distance of ∼ 50
meters each for evaluating NVS at a 50% drop rate. We
select one frame every ∼ 0.8 meters driving distance (corre-
sponding to the overall average distance between frames) to
avoid redundancy when the vehicle is slow. We release 50%
of the frames for training and retain 50% for evaluation.

http://www.open3d.org/docs/0.12.0/python_api/open3d.geometry.PointCloud.html
http://www.open3d.org/docs/0.12.0/python_api/open3d.geometry.PointCloud.html
https://github.com/dvlab-research/PointGroup

G
T

Im
ag

e
PC

L
N

eR
F

[6
4]

m
ip

-N
eR

F
[7

]
D

S-
N

eR
F

[2
7]

FV
S

[8
3]

PB
N

R
[5

4]

Fig. 26: Additional Qualitative Results for Novel View Appearance & Semantic Synthesis. The left column row shows the
GT image and novel view appearance synthesis results. The right column shows the corresponding semantic segmentation
using PSPNet [116].

Moreover, we select 10 static scenes with a driving distance
of ∼ 50 meters each for evaluating NVS at a 90% drop rate.
On average, we select one frame every 4 meters driving
distance in this setting. We release 50% of the frames for
training and retain 50% for evaluation.

H.1.3 Baselines

We evaluate two sets of baselines for this task. The first base-
line (PCL) takes a colored point cloud as input. We project
non-occluded points to the test viewpoint and interpolate
the missing values to obtain the full image. To determine
non-occluded points, we reconstruct a mesh using the ball-
pivoting method [10] on the accumulated point cloud. As
there is no point in the sky region, we in-paint the sky
using a constant blue color. The sky region is heuristically
determined based on the projected 3D points, i.e., a large
connected area in the upper half of the image without any
3D projections is considered as the sky.
The second set of baselines takes a set of images as input. For
all NeRF-based methods [7], [27], [64], we train one model
on each scene individually, using cascaded sampling with
256 coarse samples and 256 fine samples. We adopt the
PyTorch reimplementation of NeRF 17, the original imple-
mentation of mip-NeRF 18 and DS-NeRF 19. As for Free View
Synthesis (FVS) [83], we follow its original implementation20

and use their released model trained on the Tanks and
Temples dataset [53] which generalizes well. We follow the
original implementation21 of PBNR [54] that optimizes a set
of attributes such as reprojected features or depth in each
input view.

H.1.4 Additional Results

We show additional qualitative results of all methods in
Fig. 26 (left). The PCL baseline exhibits blocky artifacts
due to interpolation. The vanilla NeRF shows promising
performance but sometimes struggles due to the sparse
input views. While mip-NeRF and DS-NeRF both improve
the performance, the thin structures (e.g., fence) are still
not well recovered. Interestingly, FVS and PBNR are better
at preserving the fine details (e.g., license plate) but have
lower PSNR. This could be due to small misalignments in
the image space.

H.2 Benchmark of Novel View Semantic Synthesis

H.2.1 Evaluation Metric

We evaluate the confidence weighted mIoU using Eq. 10.
Similar to the 2D semantic segmentation task, we omit
“Train” and “Bus” during evaluation. We additionally omit
“Truck”, “Person”’, “Rider”, “Bicycle” and “Traffic Light”
as these classes do not appear in the 5 static scenes for
evaluating NVS.

17. https://github.com/yenchenlin/nerf-pytorch
18. https://github.com/google/mipnerf
19. https://github.com/dunbar12138/DSNeRF
20. https://github.com/isl-org/FreeViewSynthesis
21. https://gitlab.inria.fr/sibr/projects/pointbased neural

rendering

H.2.2 Baselines

As there is no existing research work on this new bench-
mark, we directly apply PSPNet used in the 2D semantic
segmentation task to synthesized images for semantic label
prediction.

H.2.3 Additional Results

We show confidence weighted IoU on individual classes in
Table 13. Note that this naı̈ve baseline leads to significantly
degraded performance on most of the classes. As shown in
Fig. 26 (right), small changes in the image space sometimes
lead to sigficant changes in the semantic prediction.

APPENDIX I
SEMANTIC SLAM BENCHMARK

I.1 Localization

I.1.1 Evaluation Metric

We adopt the standard Absolute Pose Error (APE) and
Relative Pose Error (RPE) [37] as metrics for evaluating pose
estimation. We align the predicted trajectory to the ground
truth using a rigid transformation to evaluate the APE [98].
The RPE is evaluated between two frames with a distance
of 1 meter.

I.1.2 Baselines

We evaluate ORB-SLAM2 [66]22 and SUMA++ [23]23 using
their official implementations as baselines.

I.1.3 Additional Results

Fig. 27 shows qualitative comparison of predicted trajec-
tories. As can be seen, both methods achieve reasonable
performance while SUMA++ has a larger maximum error
than ORB-SLAM2.

I.2 Geometric & Semantic Mapping

I.2.1 Evaluation Metric

We adopt the same evaluation metrics considered in the
semantic scene completion benchmark, as introduced in
Appendix G.6. When evaluating the quality of reconstruc-
tion, we compare ground truth and estimated reconstruction
in local windows to minimize the impact of pose drifts.
Specifically, we divide the test sequences into a set of local
windows, each consisting of 50 consecutive frames. We
first crop the ground truth and the reconstructed point
cloud wrt. the region of interest of each window. These
two local point clouds are then aligned using the similarity
transformation between the corresponding poses [98] and
compared afterwards. Finally, we average the completeness,
accuracy, and mIoU metrics over the entire test sequence.
Following [89], we measure completeness and accuracy over
discretized voxels such that these metrics are insensitive to
the density of the point clouds.

22. https://github.com/raulmur/ORB SLAM2
23. https://github.com/PRBonn/semantic suma

https://github.com/yenchenlin/nerf-pytorch
https://github.com/google/mipnerf
https://github.com/dunbar12138/DSNeRF
https://github.com/isl-org/FreeViewSynthesis
https://gitlab.inria.fr/sibr/projects/pointbased_neural_rendering
https://gitlab.inria.fr/sibr/projects/pointbased_neural_rendering
https://github.com/raulmur/ORB_SLAM2
https://github.com/PRBonn/semantic_suma

Method Road Sdwlk Bldg Wall Fence Pole Trsgn Vegt Terr Sky Car Motor mIoUclass
Original 95.6 85.6 75.2 57.4 55.0 42.7 19.8 93.2 91.8 93.4 95.3 58.5 72.0
PCL 92.0 70.4 39.4 29.7 15.3 2.2 1.5 67.2 81.7 42.1 31.3 0.0 39.4
NeRF [64] 93.2 74.2 58.4 35.1 15.2 16.6 13.8 83.8 64.9 91.6 88.1 1.2 53.0
mip-NeRF [7] 93.0 72.9 55.9 30.4 14.8 12.6 9.5 82.0 63.2 91.5 87.9 0.0 51.2
DS-NeRF [27] 93.2 75.4 56.5 35.4 19.1 26.5 16.6 83.5 63.9 91.5 89.2 6.5 54.8
FVS [83] 95.5 83.2 65.0 54.2 44.0 17.8 33.8 90.5 87.3 91.0 92.6 50.2 67.1
PBNR [54] 95.3 82.4 67.1 46.6 44.4 28.8 18.9 90.0 87.7 89.1 88.5 42.2 65.1

TABLE 13: Additional Quantitative Results for Novel View Semantic Synthesis.

I.2.2 Baselines
To obtain dense semantic reconstruction given the local-
ization results of ORB-SLAM2, we unproject 2D semantic
segmentation maps obtained from PSPNet [116] using depth
maps estimated by semi-global matching (SGM) [42]. We
merge the unprojected 3D points using the poses predicted
by ORB-SLAM2. As for SUMA++, we use the semantic
estimation model pre-trained on KITTI.

I.2.3 Additional Results
We show additional qualitative results of the geometric
mapping in Fig. 28 in terms of completeness and accuracy
at the threshold of 10cm. Consistent with the quantitative
results, SUMA++ is more accurate while ORB-SLAM2+SGM
is more complete.

(a) ORB-SLAM2 (b) SUMA++

Fig. 27: Qualitative Results on Localization. Each figure compares the predicted trajectory to the ground truth. Color
indicates the APE in meters.

C
om

pl
et

en
es

s
A

cc
ur

ac
y

(a) ORB-SLAM2 (b) SUMA ++

Fig. 28: Qualitative Results on Localization and Mapping. Completeness and accuracy evaluated at a threshold of 10cm.
The first row shows the ground truth point cloud with green denoting complete and red for incomplete. The second
row shows the predicted point cloud with green denoting accurate, red for inaccurate, and blue for points in unobserved
regions. Note that SUMA++ is more accurate while ORB-SLAM2+SGM is more complete.

