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Abstract

One of the most popular approaches to multi-target tracking is
tracking-by-detection. Current min-cost flow algorithms which solve
the data association problem optimally have three main drawbacks:
they are computationally expensive, they assume that the whole video
is given as a batch, and they scale badly in memory and computation
with the length of the video sequence. In this paper, we address each
of these issues, resulting in a computationally and memory-bounded
solution.

Contribution

•Dynamic version of the successive shortest-path algorithm.
•Solves the data association problem optimally, reuses computation.
•Faster inference than standard solvers.
•Optimal data association for an online setting.
•Approximate online solution
with bounded memory and computation.

•Capable of handling videos of arbitrary in real time.
•State-of-the-art results on KITTI and PETS2009 benchmarks.
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Results on KITTI Tracking Benchmark. State-of-the-art per-
formance for significantly faster inference than standard solvers.

Problem Statement

•Given a set of detections X = {xi} (car, pedestrian, and cyclist) per
frame with xi = (frame, position, size, appearance, detector score)

•Find the set of optimal trajectories T = {Tk} by maximizing
the posterior probability p(T |X ) = p(T ) ∏

i(xi|T )

•Zhang et al. [7] showed how data association with pairwise energies
can be formulated as a network flow problem.

•Standard solvers can be leveraged to retrieve the global optimum.
•Their formulation solves for the globally optimal trajectories including
their number, and hence implicitly solves the model selection problem.

Graph Construction

Observation model
p(xi|T ) =

{
Pi if ∃Tk ∈ T ∧ i ∈ Tk
1− Pi otherwise

Pair-wise prior over trajectories
p(T ) ∝

∏
T∈T

Ψ(T )
∏

T,T ′∈T
[T ∩ T ′ = ∅]

Unary factors
Ψ(T ) = Ψen(xo1)Ψex(xol)

l−1∏
i=1

Ψli(xoi,xoi+1)2D Bounding Boxes as Input Detections [2]

Input Detections xi in Time Domain Final World Association

Possible Trajectories as Graph Representation Optimal Association as Shortest Paths

Association Features

Bounding Box Overlap Positional and Size Similarity Orientation Similarity

x-corr

signal #1 signal #2

Flow Overlap Color Histogram Similarity Template Matching

Dynamic Successive Shortest Path Algorithm

•Dynamic algorithm. Performs computations only when necessary.
•Nodes are held in a priority queue.
•The most promising node is relaxed in each iteration.
•The queue is dynamically updated depending on previous updates.

Online Memory-bounded SSP

•Most of the past can be neglected for a tight approximation.
•Only trajectories that were optimal are retained.
•Simply deleting edges from the graph is suboptimal and discards
previous computations.

• In order to “remember” known paths, costs of clipped trajectories
are summed up and new entry edges added to the graph.

Ground Truth: KITTI Tracking Dataset

•3D Ground Truth
Tracklets

•1249 Car Tracklets
•459 Pedestrian
Tracklets

Qualitative Results

KITTI-Tracking Benchmark. Stable and consistent results for long-term and
complex scenes including challenging illumination or partial occlusions.

Quantitative Results

HM [1] [4] [5] [3] mbodSSP SSP mbodSSP*SSP*
MOTA 0.42 0.350.48 0.44 0.52 0.52 0.54 0.67 0.67
MOTP 0.78 0.750.77 0.78 0.78 0.78 0.78 0.79 0.79
F1 0.60 0.610.67 0.62 0.69 0.70 0.71 0.83 0.83
FAR 0.0480.460.180.0530.083 0.14 0.11 0.34 0.40
MT 0.077 0.110.14 0.11 0.14 0.15 0.21 0.34 0.41
ML 0.42 0.340.34 0.39 0.35 0.30 0.27 0.10 0.090
IDS 12 223 125 2738 33 0 7 117 194
Frag. 578 624 401 3241 540 708 717 894 977

Quantitative Results on the KITTI-Car Dataset. Comparison of our pro-
posed methods to four state of the art methods and a HM baseline implementation.
Detections: DPM [2] reference detections and Regionlets [6] (marked with a star).
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Run Time and Memory Comparison. Computational performance of all
solvers using one long sequence. From left to right: Mean runtime and idealized
memory consumption for every solver.
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τ 5 10 15 20 50 100
MOTA 0.50 0.52 0.48 0.49 0.51 0.52
MOTP 0.78 0.78 0.78 0.78 0.78 0.78
F1 0.69 0.70 0.68 0.69 0.70 0.71
FAR 0.15 0.14 0.14 0.14 0.14 0.14
MT 0.14 0.15 0.16 0.17 0.18 0.15
ML 0.30 0.30 0.34 0.33 0.30 0.26
IDS 2 0 0 0 4 5
Frag. 703 708 690 701 710 712

Online Approximation Performance. Impact of different values for the history
length τ .
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