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Abstract

Recent years have witnessed enormous progress in AI-related
fields such as computer vision, machine learning, and autonomous
vehicles. As with any rapidly growing field, it becomes increas-
ingly difficult to stay up-to-date or enter the field as a begin-
ner. While several survey papers on particular sub-problems have
appeared, no comprehensive survey on problems, datasets, and
methods in computer vision for autonomous vehicles has been
published. This book attempts to narrow this gap by providing a
survey on the state-of-the-art datasets and techniques. Our sur-
vey includes both the historically most relevant literature as well
as the current state of the art on several specific topics, includ-
ing recognition, reconstruction, motion estimation, tracking, scene
understanding, and end-to-end learning for autonomous driving.
Towards this goal, we analyze the performance of the state of
the art on several challenging benchmarking datasets, including
KITTI, MOT, and Cityscapes. Besides, we discuss open prob-
lems and current research challenges. To ease accessibility and
accommodate missing references, we also provide a website that
allows navigating topics as well as methods and provides addi-
tional information.
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Chapter 1

Introduction

Since the first successful demonstrations in the 1980s [168, 170, 661], great
progress has been made in the field of autonomous vehicles. However, despite
these advances and ambitious commercial goals, fully autonomous navigation
in general environments has not been realized to date. The reason for this is
two-fold: First, autonomous systems which operate in complex dynamic en-
vironments require models which generalize to unpredictable situations and
reason in a timely manner. Second, informed decisions require accurate per-
ception, yet most of the existing computer vision models are still inferior to
human perception and reasoning.

Existing approaches to self-driving can be roughly categorized into modu-
lar pipelines and monolithic end-to-end learning approaches. Both approaches
are contrasted at a conceptual level in Figure 1.1. The modular pipeline is the
standard approach to autonomous driving, mostly followed in the industry.
The key idea is to break down the complex mapping function from high-
dimensional inputs to low-dimensional control variables into modules which
can be independently developed, trained, and tested. In Figure 1.1 (top),
these modules comprise low-level perception, scene parsing, path planning,
and vehicle control. However, this is just one particular example of modular-
izing a self-driving stack and other or more fine-grained modularizations are
also possible. Existing approaches typically leverage machine learning (e.g.,
deep neural networks) to extract low-level features or to parse the scene into
individual components. In contrast, path planning and vehicle control are
dominated by classical state machines, search algorithms, and control mod-
els.

The major advantage of modular pipelines is that they deploy human inter-
pretable intermediate representations such as detected objects or free space
information which allow gaining insights into failure modes of the system.
Furthermore, the development of modular pipelines can be easily parallelized

11
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Steer

Gas Brake

Sensory Input

Modular Pipeline

Path
Planning

Vehicle
Control

Scene
Parsing

Low-level
Perception

Steer
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Sensory Input
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Neural
Network

Figure 1.1: Approaches to Self-Driving. Classical modular pipeline (top)
vs. monolithic end-to-end learning approach (bottom). See text for details.

within companies where typically different teams work on different aspects
of the driving problem simultaneously. Furthermore, it is comparably easy
to integrate first principles and prior knowledge about the problem into the
system. Examples include traffic laws that can be explicitly enforced in the
planner or knowledge about the vehicle dynamics, which lead to improved
vehicle control. Other aspects that are more difficult to specify by hand, such
as the appearance of pedestrians, are learned from large annotated datasets.

A major drawback of modular approaches is the fact that human-designed
intermediate representations are not necessarily optimal for the driving task,
which typically includes aspects like safety, comfort, and time for reaching
the goal. Moreover, most modules are trained and validated independently
from each other, making use of auxiliary loss functions. Consider the problem
of object detection as an example. Most objects in the scene are not directly
relevant for the driving task, yet the learning algorithm is not informed about
the relevance of each object and therefore tasks a neural network to detect
all objects with equal importance. Thus, the network is wasting capacity on
irrelevant objects while not being able to detect the driving relevant objects
with the necessary accuracy. This demonstrates the difficulty of defining
appropriate intermediate representations and auxiliary loss functions.

An alternative to modular pipelines is end-to-end learning-based mod-
els which try to learn a policy, i.e., a function from observations to actions
using a generic model such as a deep neural network. This approach is il-
lustrated in Figure 1.1 (bottom) and discussed in detail in Chapter 15. The
network parameters can be learned either via imitation learning by replicat-
ing the behavior of a teacher or using reinforcement learning by exploring the
world and taking actions that are likely to yield a high user-specified reward.
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However, reinforcement learning approaches suffer from the credit assignment
and reward shaping problems, are typically slow and can only be applied in
non-safety-critical simulation environments. Imitation learning, on the other
hand, suffers from overfitting and does not easily generalize to novel scenar-
ios. Furthermore, holistic neural network-based approaches are often hard to
interpret as they present themselves as “black boxes” to the user which do
not reveal why a certain error has occurred.

In this survey, we focus on perception for autonomous vehicles. In par-
ticular, we discuss the perception-related modules of the modular pipeline
as well as end-to-end learning-based approaches. Other aspects of the self-
driving problem are discussed in related surveys: For example, Winner et
al. [716] put emphasis on driver assistance systems, considering both their
structure and their function. Similarly, Klette [356] provides an overview of
vision-based driver assistance systems. They describe most aspects of the
perception problem at a high level but do not provide an in-depth review of
the state of the art in each task as we pursue in this survey. Complementary
to our work, Zhu et al. [798] provide an overview of environment perception
for intelligent vehicles, focusing on lane detection, traffic sign/light recogni-
tion as well as vehicle tracking. In contrast, our goal is to bridge the gap
between the robotics, intelligent vehicles, and computer vision communities
by providing an extensive overview and comparison, including works from all
three fields.

This survey is structured as follows: first, we provide a brief history of
autonomous driving, followed by an introduction to camera models and cal-
ibration techniques. We then provide an overview of autonomous driving-
related datasets with a particular focus on perception before surveying the
relevant perception tasks and the state-of-the-art algorithms for solving them.
More specifically, we review object detection, tracking, semantic (instance)
segmentation, reconstruction, motion estimation, and scene understanding
techniques. Each chapter starts with the problem definition, an overview
over the most important methods and main design choices, a qualitative and
quantitative analysis of the top-performing techniques on the most popular
datasets, as well as a discussion of the state of the art in this area. Finally,
we provide an overview of state-of-the-art end-to-end models for autonomous
driving before concluding this survey. To ease navigation, we also provide an
interactive online tool1 which visualizes the surveyed papers with an inter-
active graph and additional information in an easily accessible manner. We
hope that our survey will become a useful tool for researchers in the field of
autonomous vision and lowers the entry barrier for beginners by providing a
thorough overview of the field.

1http://www.cvlibs.net/projects/autonomous_vision_survey

http://www.cvlibs.net/projects/autonomous_vision_survey
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Chapter 2

History of Autonomous
Driving

Similar to the invention of the automobile by Carl Benz in 1886, self-driving
technology promises to profoundly impact our mobility. In this chapter, we
briefly review the history of driverless and self-driving vehicles from 1925 to
2019.

The first demonstration of a driverless vehicle was reported in 1925 when
Houdina Radio Control demonstrated the “American Wonder”, a remote-
controlled vehicle that traveled along Broadway in New York City trailed by
an operator in another vehicle[665]. Several years later, General Motors ap-
proached Norman Bel Geddes to sketch his vision about mobility 20 years
into the future, culminating in Futurama, the most successful exhibition at
the New York World Fair in 1939. Besides multi-lane highways, this vision
sketched radio-controlled electric cars that navigated via electromagnetic cir-
cuits installed in the roadway. This vision led to several prototypes such as
the GM Firebird II [100] in 1956, and RCA Labs’ wire controlled car in 1960
as well as a demonstration of Citroen with its DS 19 and the Cabinentaxi1 of
Demag/MBB in 1970. However, the idea of infrastructure-based autonomous
navigation is largely restricted to specific use cases such as ground trans-
portation at airports, park shuttles, or automated facilities due to its limited
scalability and high cost.

In 1986, the first self-driving car prototypes which did not rely on dedi-
cated infrastructure hit the road. This pioneering effort was led by the Navlab
team at CMU in the US as well as Ernst Dickmanns’s team at the Bundeswehr
University Munich in Germany. Carnegie Mellon University’s Navlab team
[661] (Figure 2.1) achieved another major milestone in 1995, by driving from

1https://www.youtube.com/watch?v=ERdF0FK-2io
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Figure 2.1: The Navlab. The self-contained laboratory from CMU for nav-
igational vision system research. Reprinted by permission from Springer Na-
ture Customer Service Centre GmbH: Springer Nature High Precision Navi-
gation, Thorpe et al. [661], c© 1988.

Washington, D.C., to San Diego, CA, 98% autonomously with manual lon-
gitudinal control in the ’No hands across America’ tour [535, 533]. With
ALVINN [534], the Navlab team at CMU demonstrated an imitation learn-
ing approach where a relatively small neural network was optimized in an
end-to-end fashion to keep the vehicle on the road based on user demonstra-
tions. On the contrary, Dickmanns presented a modular approach in which
a vehicle and road model was used for continuously estimating the state and
controlling the vehicle [169]. The project was conducted in the context of
the European PROMETHEUS project, which involved more than 13 vehicle
manufacturers and several research units from governments and universities
of 19 European countries. In 1995, the PROMETHEUS team demonstrated
the first autonomous long-distance drive from Munich, Germany, to Odense,
Denmark, at velocities up to 175 km/h with about 95% autonomous driving
[171, 210, 167].

Motivated by the success of the PROMETHEUS projects to drive au-
tonomously on highways, Franke et al. [211] describe a real-time vision system
for autonomous driving in complex urban traffic situations. While highway
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scenarios have been studied intensively, urban scenes have not been addressed
before. Their system included depth-based obstacle detection and tracking
from stereo as well as a framework for monocular detection and recognition of
relevant objects such as traffic signs. Many approaches to the challenging task
of autonomous driving developed during these projects are presented and dis-
cussed in [48]. They concluded that sufficient computing power is becoming
increasingly available, but difficulties like reflections, wet roads, direct sun-
shine, tunnels, and shadows still make data interpretation challenging. Thus,
they suggested the enhancement of sensor capabilities. They also pointed out
that the legal aspects related to the responsibility and impact of automatic
driving on human passengers need to be considered carefully. In summary,
the automation will likely be restricted to special infrastructures and will be
extended gradually.

While full self-driving has remained unsolved to date, driver assistance sys-
tems have reached commercial success, enriching driving comfort and safety.
In 1995, Mitsubishi presented the first LiDAR-based distance control [137],
and in 1999 Mercedes-Benz implemented the radar-assisted adaptive cruise
control. In 2000, navigation systems and digital road maps became avail-
able. Today, differential GPS in combination with inertial measurement units
(IMU) allows for localization at an accuracy of 5cm in good conditions, en-
abling the use of detailed lane-level road maps (HD maps) and providing
redundancy for noisy vision-based localization.

In 2004, the Defense Advanced Research Projects Agency (DARPA) of
the US Department of Defense started to organize and sponsor a series of 3
races to foster the development of self-driving technology [154]. The first race,
the Darpa Grand Challenge 2004, was limited to US participants. DARPA
offered a prize money of $1 million for the first team autonomously complet-
ing a 240km long dirt route from California to Nevada through the Mojave
desert, guided by GPS waypoints. However, none of the robot vehicles com-
pleted the route. One year later, in 2005, DARPA announced a second edi-
tion of its challenge with 5 vehicles successfully completing the route [89] and
Stanford taking the lead, arriving 10 minutes before the CMU team which
ranked second. In 2007, DARPA organized the last race of this series, the
Darpa Urban Challenge [90], where also international participants were al-
lowed (Figure 2.2). In contrast to the previous challenges, this competition
required vehicles to drive a 96 km route through a mock-up town at George
Air Force Base while obeying traffic laws, avoiding obstacles, negotiating with
other vehicles, and merging into traffic. This time, the CMU team finished
first, followed by the Stanford team, which ranked second. Notably, most of
the successful teams relied heavily on the emerging multi-beam LiDAR tech-
nology developed in a pioneering effort by Velodyne2. This spinning multi-

2https://www.velodynelidar.com/

https://www.velodynelidar.com/
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Figure 2.2: AnnieWAY. Participant in the DARPA Urban Challenge.
Reprinted, with permission, from Andreas Geiger and Karlsruher Institut
für Technologie - MRT.

beam LiDAR scanner allowed for obtaining precise depth measurements with
a 360-degree field-of-view around the vehicle, which turned out crucial for
navigating urban environments.

In 2009, Google took the lead and hired a range of star scientists who
had participated in the Darpa Challenges (including Sebastian Thrun, Chris
Urmson, and Mike Montemerlo). They started their own self-driving car
program which included the development of a new driving platform and a
custom, affordable multi-beam LiDAR scanner. According to accident reports
[481], Google’s self-driving cars were involved in 14 collisions, while 13 were
caused by others until 2016.

In 2010, the VisLab team led by Alberto Broggi at the University of
Parma in Italy conducted the VisLab Intercontinental Autonomous Challenge
(VIAC)[79]. Based on the experience with various prototype vehicles [75, 67,
258], VIAC [47] was an effort to drive semi-autonomously from Parma in Italy
to Shanghai in China. In this demonstration, a second vehicle automatically
followed a route defined by a manually driven lead vehicle either visually
or based on GPS waypoints sent by the lead vehicle. The onboard system
allowed for detecting obstacles, lane marking, ditches, berms, and to identify
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Figure 2.3: Waymo Autonomous Vehicle. Source: Waymo c© 2019
Waymo.

the presence and position of the preceding vehicle.

In the same year, Audi demonstrated a self-driven car ride to the summit
of Pikes Peak at 4300 meters above sea level and the Technical University of
Braunschweig showcased their Stadtpilot[70] which was able to navigate in a
small geofenced innercity area based on LiDAR, cameras, and HD maps. In
2015, the VisLab team conducted the PROUD project [77], a demonstration
of inner-city and freeway driving in Parma.

In 2011, TNO organized the Grand Cooperative Driving Challenge [392],
a competition focusing on autonomous cooperative driving behavior. It was
held in Helmond, Netherlands in 2011 for the first time and in 2016 for the
second edition. During the competition, the semi-autonomous vehicles had to
negotiate convoys, join convoys, and lead convoys. While longitudinal control
was autonomous, lateral control was provided by a human safety driver. The
winner (team KIT in 2011 [240] and team Halmstad in 2016) was selected
based on a system that assigned points to randomly mixed teams.

In 2012, the KITTI Vision Benchmark3 [243, 242] was released. For the
first time, researchers around the globe were able to evaluate their progress
on various self-driving perception tasks (including reconstruction, motion es-
timation, and object recognition) in a fair and objective manner. At the same
time, deep learning started to revolutionize many fields, including computer
vision and robotics, which laid the foundations for significant improvements
in particular in terms of accuracy, robustness, and run-time of the perception
components of self-driving vehicles.

3http://www.cvlibs.net/datasets/kitti/

http://www.cvlibs.net/datasets/kitti/
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Figure 2.4: SAE Levels of Autonomy. Reprinted, with permission, from
Mike Lemanski.

In 2013, Mercedes Benz demonstrated the S500 Intelligent Drive, a 103
km autonomous ride on the historic Bertha Benz route from Mannheim to
Pforzheim in Germany. The system was developed by Daimler research in
collaboration with the Karlsruhe Institute of Technology (KIT) [810]. The
Mercedes S500 vehicle was equipped with close-to-production sensor hard-
ware. Object detection and free-space analysis were performed using radar
and stereo vision. Monocular vision was used for traffic light detection and ob-
ject classification. Two complementary vision algorithms, point-feature-based
and lane-marking-based, allowed for centimeter-accurate localization relative
to manually annotated HD maps. While focusing on a single route, the effort
demonstrated that autonomous driving in complex inner-city environments
based on close-to-production hardware and HD maps is feasible.

The EU funded collaborative project V-Charge [219] conducted by Volk-
swagen, Bosch, and several academic partners (ETHZ, Oxford, Parma, Braun-
schweig) aimed for fully autonomous charging and parking of electric vehicles.
In the context of this project, a fully operational system has been demon-
strated which included vision-only localization, mapping, navigation and con-
trol. The project supported many publications on different problems such as
calibration [293, 292], stereo [271], reconstruction [269, 268, 267], SLAM [257]
and free space detection [272].

In 2014, the society of automotive engineers released their classification
of autonomous driving systems into 6 SAE levels of autonomy, ranging from
level 0 (no autonomy) to level 5 (full autonomy), illustrated in Figure 2.4.
In the same year, Mercedes released its S Class and Tesla its Autopilot [660]
with level 2 autonomy (the driver has to monitor the system at all times),
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providing autonomous steering, lane keeping, acceleration, and braking on
the highway. One year later, ride-hailing company Uber launched its own
self-driving effort [673], hiring a large number of robotics researchers from
CMU. From October 2016, all vehicles produced by Tesla are equipped with
eight cameras, twelve ultrasonic sensors, and a forward-facing radar with the
goal of enabling full self-driving in the future. However, both Uber and Tesla
witnessed fatal accidents in which neither the driver was attentive, nor the
self-driving system was functioning properly.

In 2016, after completing over 1,5 million miles, Google’s self-driving
efforts became Waymo, a stand-alone subsidiary of Alphabet Inc. Today,
Waymo offers 400 citizens of Phoenix access to its early rider program [706]
which features full self-driving in several geo-fenced districts of Phoenix (Fig-
ure 2.3) with a safety driver on the back seat.

In the same year, NVIDIA [60] demonstrated a 98% autonomous ride
from Holmdel to Atlantic Highlands in Monmouth County NJ using a single
convolutional neural network. The network was trained via imitation learning
to predict vehicle control directly from input images. In 2018, several last-mile
delivery projects were launched, including Nuro [467], a project founded by
two former Google self-driving car engineers and Scout [605], a fully-electric
delivery system designed to safely get packages to Amazon customers using
autonomous delivery devices. In 2019, Bosch and Daimler announced a fleet
of autonomous cars, providing customers a shuttle service with automated
vehicles on selected routes in California [151].
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Chapter 3

Sensors

The navigation of autonomous systems is usually addressed with a sensor suite
which comprises various different types of sensors, including cameras, wheel
odometry, and range sensors (SONAR, RADAR, and LiDAR). As an example,
Tesla uses several cameras, RADAR, and ultrasonics for their advanced driver-
assistance system Autopilot. Fusing information from several sensors allows
exploiting their complementary characteristics and addressing the limitations
of individual sensors, e.g., the loss of structure information in cameras or
missing color information in range data.

Wheel odometry measures the rotation of a wheel and can be used to esti-
mate the distance covered by the autonomous vehicle. However, wheel odom-
etry does not provide the full vehicle pose (i.e., all six degrees of freedom)
and is thus typically combined with visual odometry or SLAM techniques
discussed in Chapter 13. Range sensors, i.e., SONAR, RADAR, LiDAR, pro-
vide additional information about the geometry and structure of the scene.
Ultrasonic sensors (SONAR) emit high-frequency sound waves and measure
the time for sound waves to travel to nearby objects. The distance to objects
is computed from the travel time since the speed of sound waves is known.
RADAR and LiDAR work with the same principle but use electromagnetic
waves and laser light pulses instead of sound waves. Because of the larger
wavelength, RADAR sensors benefit from a larger working distance than Li-
DAR and SONAR but at the price of lower accuracy.

As cameras are cheap, passive, and easy to deploy, they are an attractive
sensor choice for self-driving cars, and several existing driver assistance sys-
tems rely on cameras for lane keeping or pedestrian detection. We now briefly
discuss the most dominant camera types and give a short overview of popular
calibration pipelines for estimating intrinsic and extrinsic sensor parameters.

23
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Figure 3.1: Pinhole Camera Model. In the pinhole model the three-
dimensional world coordinates (X,Y, Z) are mapped to a two-dimensional
image plane (x, y) using a perspective projection defined by the principle point
(p) and focal length (f). c© 2004 Cambridge University Press. Reprinted,
with permission, from Hartley and Zisserman [278].

3.1 Camera Models

Most conventional cameras comprise an aperture and one or multiple lenses
and can be well approximated by the pinhole camera model (Figure 3.1).
Omnidirectional cameras allow to significantly increase the field of view by
exploiting mirrors or special lenses. Event cameras enable the acquisition
of intensity changes at very high temporal resolutions. In the following, we
provide a brief overview of omnidirectional and event cameras. We refer the
reader to [652, 278] for an in-depth discussion of the pinhole camera model
and projective geometry.

3.1.1 Omnidirectional Cameras

A panoramic field of view is desirable in autonomous driving to gain maximum
information about the surrounding area for safe navigation. Omnidirectional
cameras with a 360-degree field of view (see Figure 3.2) provides enhanced
coverage by eliminating the need for more cameras or mechanically turnable
cameras. There are different types of omnidirectional cameras. Catadioptric
cameras combine a standard camera with a shaped mirror, such as a parabolic,
hyperbolic, or elliptical mirror, while dioptric cameras use purely dioptric
fisheye lenses. Polydioptric cameras use multiple cameras with overlapping
field of view to provide a full spherical field of view.

Geyer and Daniilidis [248] provide a unifying theory for all central cata-
dioptric systems which is known as unified projection model in the literature
and widely used by different calibration toolboxes [460, 293, 292]. Scara-
muzza and Martinelli [590] propose to model the imaging function using the
Taylor series expansion. Mei and Rives [460] improve upon the unified projec-
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(a) Equirectangular Projection (b) Spherical Projection

Figure 3.2: Omnidirectional Cameras. Equirectangular (a) and spheri-
cal (b) view of a panorama from DeepMind’s StreetLearn research project
[475]. c© 2020 Google LCC. Reprinted, with permission, from DeepMind’s
StreetLearn research project www.streetlearn.cc

tion model of [248] to account for real-world errors by modeling distortions.
Schönbein et al. [598] propose a fast approximation to computationally ex-
pensive non-central camera models.

Omnidirectional cameras are gaining popularity in autonomous driving re-
search. For feature-based applications such as navigation, motion estimation,
and mapping, a large field of view enables the extraction and matching of
interest points from all around the car. Thus, omnidirectional cameras have
been successfully used to improve ego-motion estimation of vehicles [587] and
3D reconstruction of static scenes [597, 271].

3.1.2 Event Cameras

Contrary to conventional frame-based cameras, event cameras produce a
stream of asynchronous events of brightness changes surpassing a pre-defined
threshold at microsecond resolution, as illustrated in Figure 3.3. An event
comprises the location, sign, and timestamp of the change. As events are
sparse in both space and time, this representation has the potential to reduce
transmission and processing demands. The high temporal resolution enables
the development of highly reactive systems.

Dynamic and Active-Pixel Vision Sensors (DAVIS) output both CMOS
images at fixed frame rates as well as asynchronous events, hence combining
the benefits of both sensors. Mueggler et al. [485] provide a collection of
real and synthetic datasets captured with DAVIS to push research on event-
based methods. Binas et al. [53] present the DAVIS Driving Dataset and
demonstrate end-to-end learning of steering angles. Recent work exploits
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(a) CMOS vs. DVS (b) DVS with Stimulus

Figure 3.3: Event Cameras. (a) A standard CMOS camera sends images
at a fixed frame rate (blue) while a Dynamic Vision Sensor (DVS) sends spike
events at the time they occur (red). Each event corresponds to a local, pixel-
level change of brightness. c© 2015 RSS. Reprinted, with permission, from
Mueggler et al. [484]. (b) Visualization of the output of a DVS looking at a
rotating dot. Colored dots mark individual events. Events that are not part
of the spiral are caused by sensor noise. Reprinted from Liu and Delbruck
[427], c© 2010, with permission from Elsevier.

DAVIS for feature tracking [237] and SLAM [686], improving accuracy and
robustness over using only a single modality.

Several methods have been developed which exploit the high temporal
resolution and the asynchronous nature of event sensor for various problems.
The majority of these methods focus on the application in unmanned aerial
vehicles (UAVs) since very efficient methods are necessary to navigate these
systems. In this context, event-based cameras have been used for ego-motion
estimation [484], simultaneous localization and mapping (SLAM) [547] as well
as for finding feature correspondences [226]. More recently, the benefits of
event-based sensors have been exploited for autonomous vehicles by learning
steering angles end-to-end [449].

3.2 Calibration

Geometric calibration is the problem of estimating intrinsic and extrinsic
parameters of one or multiple sensors in order to accurately relate 3D world
points to 2D measurements. Fiducial markers and checkerboards are often
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used to facilitate parameter estimation [784, 62, 340, 9, 244].
Various methods for camera calibration can be found since the beginning

of the 1970s. Heikkila and Silven [290] were the first to consider the entire cal-
ibration pipeline, including control point extraction, model fitting, and image
correction. They proposed a four-step procedure to obtain the parameters
of a physical camera model and address the problem of compensating image
distortions.

Modern vehicles are typically equipped with multiple different sensors with
the goal of increasing robustness and coverage. Several calibration procedures
have been proposed to address the needs of such big sensor suites. While early
approaches [784, 62] rely on manual extraction of interest points in laser scans,
Kassir and Peynot [340] and Andreasson and Lilienthal [9] propose the first
complete automatic camera-to-range calibration systems. Geiger et al. [244]
demonstrate how to automatically calibrate a setup involving two cameras and
a single range sensor such as Kinect or Velodyne laser scanner. Heng et al.
[293] tackle the problem of estimating the intrinsic and extrinsic parameters
of a multi-camera rig without overlapping field of view. Heng et al. [292]
extend this work by removing the requirement to modify the environment by
using a map and natural features instead of fiducial markings.
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Chapter 4

Datasets & Benchmarks

Datasets have played a key role in the progress of many research fields by
providing problem-specific examples with ground truth. Quantitative eval-
uations of different approaches provide key insights about their capacities
and limitations. Landmark examples in the field of computer vision include
the Middlebury benchmarks for stereo and optical flow [592] and the PAS-
CAL VOC object recognition challenges [197]. In particular, many of these
datasets [592, 197, 28, 243, 92, 396, 134, 364, 602] also provide online evalua-
tion servers that allow for a fair comparison on held-out test sets and provide
researchers in the field an up-to-date overview over the state of the art. This
way, current progress and remaining challenges can be easily identified by the
research community.

In the context of autonomous vehicles, [243, 134, 364, 495, 7, 175, 396]
have introduced challenging benchmarks for reconstruction, motion estima-
tion, recognition tasks, and tracking, and contributed to closing the gap be-
tween laboratory settings and challenging real-world situations. Kang et al.
[338] provide a detailed overview of different datasets and testing environ-
ments in the context of autonomous driving.

Only a few years ago, datasets with a few hundred annotated examples
were considered sufficient for many problems. The introduction of datasets
with many hundred to thousands of labeled examples has led to spectacular
breakthroughs in many computer vision disciplines by allowing to train high-
capacity deep models in a supervised fashion. However, collecting a large
amount of annotated data is not an easy endeavor, in particular for tasks
such as optical flow or semantic segmentation where pixel-level annotations
are required. For optical flow, Scharstein and Szeliski [592] and Baker et al.
[28] acquire dense pixel-level annotations in a controlled lab environment using
a time-consuming procedure whereas Geiger et al. [243] and Kondermann et
al. [364] are only able to provide sparse pixel-level annotations of real street

29
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Middlebury [592] + -- 4 XS XS XS

EPFL Multi-View [638] ++ + 4 XS
DTU MVS [325] + - S
ETH3D [602] ++ + 4 S S

Tanks and Temples [358] ++ + 4 S

SlowFlow [322] ++ ++ S

HCI Benchmark [364] ++ + 4 4 M
MPI Sintel [92] O + 4 M M
Flying Chairs [177] -- -- L

Flying Things [457] - O ( 4) L L

ImageNet [162] ++ ++ XL XL
PASCAL VOC [197] ++ ++ XL XL

Microsoft Coco [425] ++ ++ XL XL
Cityscapes [134] ++ + 4 4 L L
EuroCity Persons Dataset [68] ++ ++ 4 4 L

Mapillary [495] ++ ++ 4 L
ApolloScape [312] ++ + 4 L XL XL XL
NuScenes [93] ++ + 4 XL XL

Berkeley DeepDrive [767] ++ + 4 XL XL XL XL
German Traffic Sign Recognition Benchmark [634] ++ + 4 4 XL L XL XL XL
German Traffic Sign Detection Benchmark [302] ++ + 4 4 XL M XL XL XL

Tsinghua-Tencent 100K [805] ++ + 4 XL XL XL XL XL
SYNTHIA [569] O + 4 XL
Playing for Data [560] + + 4 L

Playing for Benchmarks [559] + + 4 4 XL XL XL XL

Caltech Lanes Dataset [7] ++ + 4 M

VPGNet Dataset [400] ++ + 4 L

MOTChallenge [396] ++ + 4 M
Caltech Pedestrian Detection [175] ++ + 4 XL

Argoverse [104] ++ + 4 4 L
Waymo Open Dataset [646] ++ + 4 4 XL XL XL

KITTI [243] ++ + 4 4 S S S M S S S M
VirtualKITTI [225] O + 4 4 S S L L L L

Table 4.1: Popular Datasets in Computer Vision and Self-Driving.
Overview of popular datasets for Stereo, Reconstruction, Optical Flow, Ob-
ject Detection, Traffic Sign Detection, Semantic Segmentation, Road Detec-
tion, Lane Detection, Tracking. Datasets specific to the autonomous driving
scenario are marked with a checkmark in the corresponding column. The
size of extra small datasets (XS) are in the order of tens examples/scenes for
training, small sized (S) in the order of hundreds, medium sized (M) in the
order of thousands, large (L) and extra large (XL) sized datasets in the order
of 10 and >100 thousands, respectively. We (subjectively) rate realism and
diversity with {--,-,O,+,++} from low to high.
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scenes using a LiDAR laser scanner. Janai et al. [322] pursued a different
approach to obtain dense pixel-level annotations in arbitrary real scenes by
using a high-speed camera to solve the optical flow problem in a simpler
setting. Recently, crowdsourcing with Amazon’s Mechanical Turk platform1

has been popularized for annotating large scale datasets, e.g., [162, 425, 396,
470, 175]. However, the annotation quality obtained via Mechanical Turk is
often not sufficient and significant efforts in post-processing and clean-up are
typically required.

An alternative to manual annotation is offered by modern computer graphic
techniques which allow generating large-scale synthetic datasets with pixel-
level ground truth. However, the creation of photorealistic virtual worlds is
time-consuming and expensive. Nevertheless, the popularity of movies and
video games has led to an industry creating very realistic 3D content which
nourishes the hope to replace real data completely using synthetic datasets.
Consequently, several synthetic datasets [92, 177, 457, 225, 569] have been
proposed and are being used by AI researchers. It remains an open question,
however, whether the realism and variety attained will be sufficient to replace
real-world datasets and if models trained on synthetic data will be able to
generalize to real-world inputs. Challenges include complex object shape and
appearances as well as adversarial environmental conditions such as direct
lighting, reflections from specular surfaces, fog, or rain.

Studying the performance of a system over time, e.g., in case of environ-
mental changes or rare situations, is another important aspect for autonomous
vehicles. In Section 4.2.6 we discuss several recent datasets for long-term au-
tonomy. While most of these datasets focus on environmental changes, it is
more difficult to capture rare situations which can only be captured with a
large fleet of vehicles that log these situations in real-world driving. A no-
table exception is the Tesla Shadow Mode [659] of the Autopilot system which
is a dormant logging-only mode that allows validating the Autopilot system
running in the background in real and particularly rare situations.

In the following, we will first introduce the most popular computer vision
datasets and benchmarks addressing tasks relevant to autonomous vehicles.
Thereafter, in Section 4.2, we will focus on datasets particularly dedicated to
autonomous vehicles. We also provide a detailed overview of the most popular
datasets in computer vision in Table 4.1 and discuss them in the following.

4.1 Computer Vision Datasets

In this section, we introduce the most popular computer vision datasets and
benchmarks relevant to autonomous driving tasks. In particular, we discuss

1https://www.mturk.com/mturk/welcome

https://www.mturk.com/mturk/welcome
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Figure 4.1: MS COCO Object Recognition Dataset. Examples from the
MS COCO [425] object detection task. Figure courtesy of www.cocodataset.
org c© 2015 COCO Consortium.

datasets for object recognition and tracking, stereo and 3D reconstruction,
and optical flow estimation.

4.1.1 Object Recognition

The availability of large-scale, publicly available datasets such as ImageNet
[162], PASCAL VOC [197] and Microsoft COCO [425] propelled the develop-
ment of novel computer vision algorithms, in particular, deep learning tech-
niques, for recognition tasks such as object classification, detection, and se-
mantic segmentation.

The EU funded PASCAL Visual Object Classes (VOC) challenge2 by Ev-
eringham et al. [197] is a benchmark for object classification, object detection,
object segmentation, and action recognition. It consists of challenging con-
sumer photographs collected from Flickr with high-quality annotations and
contains a large variability in pose, illumination, and occlusion. Since its in-
troduction, the VOC challenge has become one of the most popular testbeds
for benchmarking recognition algorithms. It has been regularly adapted to
the needs of the community until the end of the PASCAL program in 2012.
Over the years, the benchmark grew in size, reaching a total of 11,530 images
with 27,450 annotated objects in 2012.

In 2014, Lin et al. [425] introduced the Microsoft COCO dataset3 (Fig-
ure 4.1) for object detection, instance segmentation, and contextual reason-
ing. They provide images of complex everyday scenes containing common
objects in their natural context. The dataset comprises 91 object classes, 2.5
million annotated instances, and 328k images in total. Microsoft COCO is
significantly larger in the number of instances per class than the PASCAL
VOC object segmentation benchmark. All objects have been annotated with
per-instance segmentations.

2http://host.robots.ox.ac.uk/pascal/VOC/
3http://mscoco.org/

www.cocodataset.org
www.cocodataset.org
http://host.robots.ox.ac.uk/pascal/VOC/
http://mscoco.org/
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Figure 4.2: ETH3D Reconstruction Dataset. Examples from the ETH3D
[602] dataset. Colored 3D point cloud renderings in the upper row and depth
in the lower row. Figure courtesy of www.eth3d.net.

ImageNet [162], PASCAL VOC [197] and Microsoft COCO [425] are to
date the largest and most diverse datasets for object classification, detection,
and segmentation (Table 4.1).

4.1.2 Object Tracking

For tracking multiple objects, the first centralized benchmark, MOTChal-
lenge4, was introduced by Leal-Taixé et al. [396] and Milan et al. [470]. The
benchmark contains 14 challenging video sequences in unconstrained envi-
ronments filmed with static and moving cameras. MOTChallenge combines
several existing multi-object tracking benchmarks such as PETS [206] and
KITTI [243]. Public detections provided by the benchmark allow analyzing
the performance of tracking systems independent of the detector.

4.1.3 Stereo and 3D Reconstruction

For stereo vision and multi-view reconstruction, there are several publicly
available datasets. The Middlebury stereo benchmark5 introduced by [592,
593, 591] was proposed with the goal of providing a unified testbed for a fair
comparison of stereo matching algorithms. An evaluation server was created,
allowing for a direct comparison of the latest approaches. The success of
the Middlebury stereo benchmark in fostering research in binocular vision
motivated Seitz et al. [607] to create the Middlebury multi-view stereo (MVS)
benchmark6. The dataset consists of calibrated high-resolution multi-view

4https://motchallenge.net/
5http://vision.middlebury.edu/stereo/
6http://vision.middlebury.edu/mview/

www.eth3d.net
https://motchallenge.net/
http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/mview/
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images with registered 3D ground truth models and played a key role in
advancing research in MVS.

However, the Middlebury datasets lack in size and diversity in compar-
ison to other datasets for stereo and reconstruction (Table 4.1). The DTU
MVS dataset7 by Jensen et al. [325] provides 124 different scenes which were
recorded in a controlled laboratory environment. Reference data is obtained
by combining structured light scans from different camera positions. While
the DTU MVS dataset is more diverse than Middlebury in terms of the num-
ber of objects used as well as their complexity, neither of these two datasets
exhibits the full spectrum of complexities of real-world scenes.

With the goal of moving multi-view stereo out of the laboratory, Strecha
et al. [638] presented the EPFL Multi-View dataset 8, which comprises images
and LiDAR scans of 5 different buildings as well as a fountain.

Recently, Schöps et al. [602] published the ETH3D 9 dataset (Figure 4.2)
providing high-resolution DSLR imagery as well as synchronized low-resolution
stereo videos for a variety of indoor and outdoor scenes. They used a high-
precision laser scanner as [638] and registered all images using a robust opti-
mization technique.

Similarly, Tanks and Temples10 presented by Knapitsch et al. [358] used a
high-precision laser scanner and two high-resolution cameras (one with global
and the other with rolling shutter) to create a novel dataset of outdoor and
indoor scenes. The dataset consists of 14 scenes comprising sculptures, large
vehicles, house-scale buildings as well as large indoor and outdoor scenes.

For large-scale reconstruction, multiple Internet photo collections have
been proposed over time. The most popular collections are combined in the
BigSFM dataset 11 and comprise Vienna [319], Dubrovnik [416], and Rome
[140]. While Dubrovnik and Rome were retrieved from Flickr, Vienna was
recorded with a calibrated camera. Besides large-scale reconstruction, these
datasets are also frequently used for evaluating loop-closure detection (Sec-
tion 13.4.2) and localization methods (Section 13.3).

4.1.4 Optical Flow

Similar to stereo vision, the Middlebury flow benchmark12 by Baker et al. [28]
provided the first unified test environment and evaluation server for optical
flow approaches. The benchmark comprises sequences with non-rigid motion,
synthetic sequences, and a subset of the Middlebury stereo benchmark (static

7http://roboimagedata.compute.dtu.dk/?page_id=36
8https://www.epfl.ch/labs/cvlab/data/data-strechamvs/
9https://www.eth3d.net

10https://www.tanksandtemples.org
11http://www.cs.cornell.edu/projects/bigsfm/
12http://vision.middlebury.edu/flow/

http://roboimagedata.compute.dtu.dk/?page_id=36
https://www.epfl.ch/labs/cvlab/data/data-strechamvs/
https://www.eth3d.net
https://www.tanksandtemples.org
http://www.cs.cornell.edu/projects/bigsfm/
http://vision.middlebury.edu/flow/
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scenes). For all non-rigid sequences, ground truth flow is obtained by tracking
hidden fluorescent textures sprayed onto the objects. In comparison to other
optical flow datasets (Table 4.1), the Middlebury flow dataset is limited in size
and missing real-world challenges like complex structures, lighting variation,
and shadows due to the laboratory conditions in which it has been recorded.
In addition, Middlebury only contains small motions of up to twelve pixels
which do not allow the investigation of challenges related to fast motions.

The acquisition of optical flow ground truth is very difficult since no sensor
exists that can capture optical flow ground-truth in general natural scenes.
While [243, 364] use a LiDAR laser scanner for this purpose, they only obtain
sparse pixel-level annotations and are restricted to static scenes (only camera
motion). Janai et al. [322] present a novel approach to obtain accurate refer-
ence data from High-Speed video cameras by tracking pixels through densely
sampled space-time volumes. This method allows the acquisition of optical
flow ground truth in challenging everyday scenes and the data augmentation
with realistic effects such as motion blur to compare methods in varying con-
ditions. Janai et al. [322] provide 160 diverse real-world sequences of dynamic
scenes with a significantly larger resolution (1280×1024 pixels) than previous
optical datasets.

The problem of acquiring optical flow ground truth can also be resolved
by creating synthetic datasets. Towards this goal, Butler et al. [92] take
advantage of the open-source movie Sintel, a short animated film. They create
the MPI Sintel optical flow benchmark13 by rendering scenes with optical
flow ground truth. Sintel consists of 1,628 frames and provides three different
datasets with varying complexity that are obtained using different passes of
the rendering pipeline. Similar to Middlebury, they provide an evaluation
server for comparison.

The limited size of optical flow datasets hampered the training of deep
high-capacity models. Thus, Dosovitskiy et al. [177] introduced a simple syn-
thetic 2D dataset of flying 3D chairs rendered on top of random background
images from Flickr to train a convolutional neural network. As the limited
realism of this dataset proved insufficient to learn highly accurate models,
Mayer et al. [457] presented another large-scale dataset consisting of three
synthetic stereo video datasets with optical flow ground truth: FlyingTh-
ings3D, Monkaa, and Driving. FlyingThings3D provides everyday 3D objects
flying along randomized 3D trajectories in a randomly created scene. Inspired
by the KITTI dataset, a driving dataset has been created which uses car mod-
els from the same pool as FlyingThings3D and additionally highly detailed
tree and building models from 3D Warehouse. Monkaa is an animated short
movie similar to Sintel used in the MPI Sintel benchmark.

While synthetic optical flow datasets provide numerous examples for train-

13http://sintel.is.tue.mpg.de/

http://sintel.is.tue.mpg.de/
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Figure 4.3: KITTI Dataset. The recording platform with sensors (top left),
trajectory (top center), disparity and optical flow (top right) and 3D object
labels (bottom) from the KITTI benchmark proposed by Geiger et al. [243].
c© 2012 IEEE. Reprinted, with permission, from Geiger et al. [243].

ing deep neural networks, they lack realism and are limited in diversity, as
indicated in Table 4.1. Therefore, large-scale synthetic datasets are typically
used for pre-training, and, afterwards, the pre-trained models are fine-tuned
on small, more realistic datasets.

4.2 Autonomous Driving Datasets

Several datasets have been proposed to specifically address the problem of
autonomous driving. The KITTI Vision Benchmark14 introduced by Geiger
et al. [243, 242] was the first publicly available benchmark for stereo, optical
flow, visual odometry/SLAM, and 3D object detection (Figure 4.3) in the
autonomous driving context. The dataset has been captured from an au-
tonomous driving platform equipped with high-resolution color and grayscale
stereo cameras, a Velodyne 3D laser scanner, and high-precision GPS/IMU
inertial navigation system.

Due to the limitations of the rotating laser scanner used as reference sen-
sor, the stereo and optical flow benchmark were restricted to static scenes with
camera motion. In the 2015 version of the optical flow and stereo Benchmark,

14http://www.cvlibs.net/datasets/kitti/

http://www.cvlibs.net/datasets/kitti/
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Menze and Geiger [462] provide ground truth for dynamic scenes by fitting
3D CAD models to all vehicles in motion. This new version of KITTI also
combined the stereo and flow ground truth to form a novel 3D scene flow
benchmark. For the KITTI object detection challenge, a special 3D label-
ing tool has been developed to annotate all 3D objects with 3D bounding
boxes in 7481 training and 7518 test images. The benchmark for object de-
tection was separated into a vehicle, pedestrian and cyclist detection tasks,
allowing to focus the analysis on the most important problems in the context
of autonomous vehicles. The visual odometry / SLAM challenge consists of
22 stereo sequences, with a total length of 39.2 km. The ground truth pose
is obtained by using GPS/IMU localization unit which was fed with RTK
correction signals.

The KITTI dataset has established itself as one of the standard bench-
marks in all of the aforementioned tasks, in particular in the context of au-
tonomous driving applications. While KITTI provides annotated data and
an evaluation server for all problems considered in this work (Table 4.1), it is
still comparably limited in size. Therefore, the KITTI dataset is usually used
mostly for evaluation and fine-tuning.

Very recently, major companies working on autonomous driving solutions
also started making their annotated data publicly available. The autonomous
driving project Apollo from Baidu created the Data Open Platform15 consist-
ing of simulation, annotation, and demonstration data for autonomous driv-
ing. The ApolloScape dataset[312] provides annotated street view images for
semantic (144K images) and instance segmentation (90K images), lane detec-
tion (160K images), car detection (70K) and tracking of traffic participants
(100K images). The dataset allows evaluating the performance of methods in
various weather conditions and at different day times.

The company Nutonomy released the NuScenes dataset16 [93], which pro-
vides data for semantic segmentation and object detection. The dataset
consists of over 1 million camera images. However, both ApolloScape and
NuScenes have been recorded only in one or two cities, respectively, and are
therefore still limited in diversity.

ARGO AI [104] presented Argoverse17, a novel 3D object tracking dataset.
A fleet of autonomous vehicles collected different sensor data, such as 360◦

images, forward-facing stereo imagery, LiDAR, and 6-DOF pose. They also
provide 290km of lane markings and 10k human-annotated tracked objects.

Finally, Waymo Open Dataset18 [646] and Lyft Level 5 AV Dataset19 [347]
were presented providing semantic annotations and object detections for many

15http://data.apollo.auto
16https://www.nuscenes.org
17https://www.argoverse.org
18https://waymo.com/open/
19https://level5.lyft.com/dataset/

http://data.apollo.auto
https://www.nuscenes.org
https://www.argoverse.org
https://waymo.com/open/
https://level5.lyft.com/dataset/
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Figure 4.4: Mapillary Vistas Dataset. Examples colorized according to
the class definition of the Mapillary Vistas Dataset proposed by Neuhold et al.
[495]. c© 2017 IEEE. Reprinted, with permission, from Neuhold et al. [495].

driving scenarios. Both companies started challenges to push the research in
2D and 3D object detection.

4.2.1 Object Detection and Semantic Segmentation

The Cityscapes Dataset20 by Cordts et al. [134] provides a benchmark and
large-scale dataset for pixel-level and instance-level semantic labeling that
captures the complexity of real-world urban scenes. High-quality pixel-level
annotations are provided for 5,000 images, while 20,000 additional images
have been annotated with coarse labels obtained using crowdsourcing. While
Cityscapes provides an evaluation server for a fair comparison of methods,
the dataset is limited in size and diversity.

For object detection, Braun et al. [68] presented a large-scale dataset
recorded in 31 cities of 12 European countries. Similar to Cityscapes, an
evaluation server allows a fair comparison of methods. However, they only
provide bounding box, occlusion, and orientation annotations for pedestrians,
cyclists, and other riders in urban traffic.

The crowdsourcing company Mapillary21 has collected 282 million street-
level images covering 4.5 million road kilometers around the world. Based
on this data, the Mapillary Vistas Dataset 22 [495] has been created and
shared with the community, providing 25,000 high-resolution images with
dense annotation for 66 object categories and instance-specific labels for 37
classes (Figure 4.4).

The Berkeley DeepDrive dataset23 [767] for object detection, instance seg-
mentation, road, and lane detection provides 100K partially annotated driv-
ing videos from New York, Berkeley, San Francisco, and the Bay Area. The
dataset is more diverse in scenes and weather conditions than Cityscapes,
but it is still limited in the number of cities used for the recording. In this

20https://www.cityscapes-dataset.com/
21https://www.mapillary.com/app
22https://www.mapillary.com/dataset/vistas
23https://bdd-data.berkeley.edu

https://www.cityscapes-dataset.com/
https://www.mapillary.com/app
https://www.mapillary.com/dataset/vistas
https://bdd-data.berkeley.edu
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context, the Mapillary Vistas Dataset is the most diverse autonomous driving-
related dataset for semantic segmentation and object recognition (Table 4.1).
However, datasets like Mapillary Vistas Dataset, ImageNet, PASCAL VOC,
and Microsoft Coco are less suited for training and testing temporal coher-
ence of methods since they provide only single images in contrast to KITTI,
Cityscapes, and Berkeley DeepDrive which provide image sequences.

So far, datasets for 3D semantic segmentation have been limited in size
[488, 40, 265, 785] and the number of classes [242] due to the large labeling
effort required for annotating detailed object boundaries. Recently, Behley
et al. [38] present a large dataset for 3D semantic segmentation based on the
KITTI Visual Odometry Benchmark [242]. In contrast to previous annota-
tions for KITTI, they provide dense point-wise annotations for the complete
360-degree field-of-view of the LiDAR. The dataset comprises over 20,000
scans with 25 different classes.

4.2.2 Tracking

The Caltech Pedestrian Detection Benchmark24 proposed by Dollar et al.
[175] provides 250,000 frames of sequences recorded while driving through
regular traffic in an urban environment. 350,000 bounding boxes and 2,300
unique pedestrians were annotated, including temporal correspondence be-
tween bounding boxes and detailed occlusion labels.

4.2.3 Traffic Sign Detection

While all previously discussed detection datasets focus on the detection of
generic objects or traffic participants, only a few datasets exist for the recog-
nition and detection of traffic signs. The most popular datasets for this task
are the German Traffic Sign Recognition Benchmark (GTSRB25) [634] and
the German Traffic Sign Detection Benchmark (GTSDB26) [302]. GTSRB
considers the task of classifying traffic signs into their corresponding category
and consists of 50,000 images. In contrast, GTSDB provides 600 training and
300 test images for the task of detecting traffic signs. Reliable ground truth
annotations for 40 different classes were created using a semi-automatic anno-
tation tool. Recently, the limits of both datasets have been reached by state-
of-the-art detection systems and Zhu et al. [805] presented Tsinghua-Tencent
100K27, a new traffic sign detection benchmark. In contrast to GTSDB, their
benchmark consists of 100,000 images with 30,000 signs. They provide high

24http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
25http://benchmark.ini.rub.de/?section=gtsrb
26http://benchmark.ini.rub.de/?section=gtsdb
27https://cg.cs.tsinghua.edu.cn/traffic-sign/

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://benchmark.ini.rub.de/?section=gtsrb
http://benchmark.ini.rub.de/?section=gtsdb
https://cg.cs.tsinghua.edu.cn/traffic-sign/
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resolution images with pixel mask annotations and bounding boxes for each
traffic sign.

4.2.4 Road and Lane Detection

The KITTI benchmark was extended by Fritsch et al. [214] to the task of
road/lane detection. In total, 600 diverse training and test images have been
selected for manual annotation of road and lane areas. Mattyus et al. [455]
used aerial images to enhance the KITTI dataset with fine-grained segmen-
tation categories such as parking spots and sidewalk as well as the number
and location of road lanes.

A larger dataset for lane detection, the Caltech Lane Detection dataset28,
has been proposed by Aly [7]. The dataset was recorded in Pasadena in
California at different day times and consists of over 1200 frames. The first
large-scale lane detection dataset was presented by Lee et al. [400] and pro-
vides over 20,000 images. In contrast to previous datasets, they also consider
different weather conditions. The Berkeley DeepDrive dataset29 [767] with
100,000 images is so far the largest and most diverse lane/road detection
dataset.

4.2.5 Flow and Stereo

Complementary to the datasets presented in Section 4.1.4 and KITTI, the
HCI benchmark30 proposed by Kondermann et al. [364] includes realistic,
systematically varied radiometric and geometric challenges for autonomous
driving. Overall, a total of 28,504 stereo pairs with stereo and flow ground
truth is provided. The major limitation of the HCI Benchmark is that all
sequences were recorded in a single street section, and thus the dataset lacks
diversity. However, the controlled environment allows for more easily simu-
lating rare events such as accidents which are of great interest for validating
autonomous driving systems.

4.2.6 Long-Term Autonomy

Several datasets such as KITTI or Cityscapes focus on the development of al-
gorithmic competences for autonomous driving but do not address challenges
of long-term autonomy, as for example environmental changes over time. In
order to address this problem, Carlevaris-Bianco et al. [96] presented a new
long-term vision and LiDAR dataset comprising 27 sessions. However, the
dataset was not recorded from a vehicle but instead using a Segway robot

28http://www.mohamedaly.info/datasets/caltech-lanes
29https://bdd-data.berkeley.edu
30http://hci-benchmark.org
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Figure 4.5: Long-Term Autonomy. Examples for different weather con-
ditions, seasons and day times for a scene from the Workshop organized by
Balntas et al. [30]. Reprinted, with permission, from Balntas et al. [30].

on the campus of the University of Michigan. A novel dataset for long-term
autonomous driving has been presented by Maddern et al. [445]. They col-
lected images, LiDAR, and GPS data while traversing 1,000 km in central
Oxford, UK during an entire year. This allowed them to capture large varia-
tions in scene appearance due to illumination, weather and seasonal changes,
dynamic objects, and constructions. Such long-term datasets allow for an
in-depth investigation of problems that detain the realization of autonomous
vehicles such as localization at different times of the year, as illustrated in
Figure 4.5.

Several datasets have been proposed which address environmental changes
for multi-view reconstruction. The structure-from-motion dataset BigSFM
discussed in Section 4.1.3, for instance, consists of Internet photos taken with
different cameras at different times. Recently, Sattler et al. [582] presented
three datasets for visual localization (Aachen Day-Night, RobotCar Seasons
and CMU Seasons) recorded under different weather conditions, seasons and
during night and day. While the Aachen Day-Night dataset consists of images
recorded using consumer cameras, RobotCar Seasons, and CMU Seasons were
obtained using a car-mounted camera. More recently, Scape Technologies31

presented a long-term dataset captured around the Imperial College London
campus using a low-end, consumer spherical camera [29]. The dataset was
recorded over a period of one year and incorporates different weather condi-
tions, day times, and seasons.

4.3 Synthetic Data Generation using Game En-
gines

Data from animated movies as used in [92, 457] is very limited since the
content is hard to change, and such movies are rarely open-source. Moreover,
rendering 3D models into random scenes as in [177, 457] lacks realism and

31https://scape.io/

https://scape.io/
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Figure 4.6: Synthetic Datasets. Examples from Virtual KITTI [225], SYN-
THIA [569], Carla [179] and Playing for Data [560]. Figure courtesy of Gaidon
et al. [224], Ros et al. [568], Dosovitskiy et al. [178], and Richter et al. [561]

diversity. In contrast, game engines allow for creating an infinite amount of
more realistic and diverse data.

One of the first datasets exploring game engines is the Virtual KITTI
dataset32 presented by Gaidon et al. [225]. They propose a real-to-virtual
world cloning method to create realistic proxy worlds that resemble real sce-
narios. A cloned virtual world allows varying conditions such as weather or
illumination and using different camera settings. This way, the proxy world
can be used for virtual data augmentation to train deep networks. Virtual
KITTI contains 35 photo-realistic synthetic videos with a total of 17,000 high
resolution frames. They provide ground truth for object detection, tracking,
scene and instance segmentation, depth, and optical flow.

In concurrent work, Ros et al. [569] created SYNTHIA33, a synthetic col-

32https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds
33http://synthia-dataset.net/

https://europe.naverlabs.com/research/computer-vision/proxy-virtual-worlds
http://synthia-dataset.net/
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lection of imagery and annotations of urban scenarios for semantic segmen-
tation. They rendered a virtual city using the Unity Engine. The dataset
consists of 13,400 randomly taken virtual images from the city and four video
sequences with 200,000 frames in total. Pixel-level semantic annotations are
provided for 13 classes.

In the Playing for Data project34, Richter et al. [560] extracted pixel-
accurate semantic label maps for images from the commercial video game
Grand Theft Auto V. Towards this goal, they developed a tool that operates
between the game and the graphics hardware to obtain pixel-accurate object
signatures across time. Their algorithm allows them to produce dense seman-
tic annotations for 25,000 images synthesized by the photorealistic open-world
computer game with minimal human supervision. This work was extended in
Playing for Benchmarks35 [559] to obtain dense correspondences and semantic
instances from the game engine. The benchmark consists of about 250,000
images with dense annotations for semantic segmentation, instance segmenta-
tion, object detection, tracking, 3D scene layout, visual odometry, and optical
flow. They provide an online evaluation server for semantic segmentation, in-
stance segmentation, visual odometry, and optical flow. Similarly, Qiu et al.
[539] provide an open-source tool to create virtual worlds by accessing and
modifying the internal data structure of Unreal Engine 4. They show how
virtual worlds can be used to test deep learning algorithms by linking them
with the deep learning framework Caffe [328].

Recently, Carla36, an open-source simulator for autonomous driving, was
introduced by Dosovitskiy et al. [179]. Carla allows generating synthetic data
for control and perception of an autonomous driving system in urban envi-
ronments. Complete access to the engine and digital assets are provided for
non-commercial usage. Based on the Unreal Engine 4, extensions for Carla
can be easily integrated by the community.

Modern game engines as used in Carla [179] and Playing for Data [560]
allow creating impressively realistic data for training large models, as shown
in Figure 4.6. While there is still a large gap between real and synthetic data
and the creation of 3D content is costly and time-consuming, game engines
enable the generation of large datasets and the investigation of dangerous
situations that can only be rarely observed in real data.

34https://download.visinf.tu-darmstadt.de/data/from_games/
35https://playing-for-benchmarks.org/
36http://carla.org/
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Chapter 5

Object Detection

5.1 Problem Definition

Reliable detection of objects, as shown in Figure 5.1, is a crucial requirement
to realize autonomous driving. As the vehicle shares the road with many
other traffic participants, particularly in urban areas, the awareness of other
traffic participants or obstacles is necessary to avoid accidents that might be
life-threatening. The detection in urban areas is hard because of the wide
variety of object appearances and occlusions caused by other objects or the
object of interest itself. In addition, the resemblance of objects to each other
or to the background and physical effects like cast shadows or reflections can
make the detection of objects difficult.

Reliable pedestrian detection is particularly difficult because of their com-
plex, highly varying motion and the large variety of appearances due to dif-
ferent clothing and articulated poses. Furthermore, the interaction of pedes-
trians with each other and the world often cause partial occlusions. This
problem has been deeply investigated as for example in advanced driver assis-
tance systems to increase road safety. Pedestrian protection systems (PPS)
detect the presence of stationary and moving people around a moving vehicle
in order to warn the driver against dangerous situations. Geronimo et al.
[247] survey pedestrian detection for Advanced Driver Assistance Systems.
While the driver can still handle missed detections of a PPS, an autonomous
car needs a flawless pedestrian detection system which is robust against all
weather conditions and efficient for real-time detection.

The object detection problem has been approached using a variety of in-
put modalities. Video cameras are the cheapest and most commonly used
type of sensors for the detection of objects. The visible spectrum (VS) is
typically used for daytime detections, whereas the infrared spectrum offers

45
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Figure 5.1: Object Detection. In object detection, we are interested in
finding all objects of certain classes in an image. These detections are usually
represented with bounding boxes. Figure courtesy of Berkeley DeepDrive
[768].

more visibility for night-time detection[640]. Thermal infrared (TIR) cam-
eras capture relative temperature, which allows distinguishing warm objects
like pedestrians from cold objects like vegetation or the road. Active sensors
that emit signals and observe their reflection, like laser scanners can provide
range information which is helpful for detecting an object and localizing it in
3D. However, laser scanners often have a smaller resolution compared with
video cameras. Depending on the weather conditions, time of day, or material
properties, it can be problematic to rely on a single type of sensor alone. VS
cameras and laser scanners are affected by reflective or transparent surfaces,
while hot objects (like engines) or warm temperatures can influence TIR cam-
eras. The combination of information from different sensors via sensor fusion
[191, 116, 254] allows for the robust integration of this complementary infor-
mation.

5.2 Methods

Classical object detection systems usually consist of multiple steps that are
applied consecutively to solve the object detection task. With the success of
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deep neural networks, most of these steps [613, 252, 286, 251] and even the
complete pipeline have been replaced by learned models [612, 552, 548, 430,
549, 424]. We start our discussion with classical pipelines, followed by more
modern approaches.

5.2.1 Classical Pipeline

A classical detection pipeline usually comprises the following steps: prepro-
cessing, region of interest extraction (ROI), object classification, and verifi-
cation or refinement. In the preprocessing step, tasks such as exposure and
gain adjustment, as well as camera calibration and image rectification, are
usually performed. Some approaches leverage temporal information with a
joint detection and tracking system. We discuss tracking approaches in-depth
in Chapter 6.

Regions of interest can be extracted using a sliding window approach,
which shifts a window over the image at different scales. As exhaustive search
is very expensive, several heuristics have been proposed for reducing the search
space. Typically, the number of evaluations is reduced by assuming a certain
ratio, size, and position of candidate bounding boxes. Apart from that, im-
age features, stereo, or optical flow can be leveraged for focusing the search
on relevant regions. Broggi et al. [76], for instance, leverage morphological
characteristics (size, ratio, and shape), vertical symmetry of human shape,
and distance information obtained from stereo for the extraction of relevant
ROIs. Selective Search [675] is an alternative approach to generate regions of
interest. Instead of an exhaustive search over the full image domain, selective
search exploits a segmentation of the image to extract approximate locations
efficiently. For a more detailed discussion, we refer the reader to Dollar et al.
[172], presenting an extensive evaluation of pedestrian detection systems from
monocular images with a focus on sliding window approaches.

The next step is the processing of candidate image regions from sliding
window to verify them and classify objects. The classification of all candidates
in an image can be quite costly due to the vast amount of image regions that
need to be processed. Therefore, a fast decision is necessary which quickly
discards candidates in the background region of the image. Viola et al. [689]
combine simple and efficient classifiers, learned using AdaBoost, in a cascade
that allows them to quickly discard false candidates while spending more
time on promising regions. With the work of Dalal and Triggs [152], linear
Support Vector Machines (SVMs) in combination with Histogram of Orienta-
tion (HOG) features have become popular tools for classification. Enzweiler
and Gavrila [189] provide an overview of classical approaches for monocular
pedestrian detection. They make the observation that SVM with HOG fea-
tures work well at higher resolutions while having a higher processing time
than cascaded approaches that are superior at lower resolutions and achieve
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Figure 5.2: Part-based Approaches. Illustration of the Deformable Part
Model (DPM) proposed by Felzenszwalb et al. [204]. The model consists of
a coarse global template (middle-left), several high resolution part templates
(middle-right) and the location (right). c© 2008 IEEE. Reprinted, with per-
mission, from Felzenszwalb et al. [204].

near real-time performance. In their survey, Benenson et al. [43] found no
clear evidence that a certain type of classifier (e.g., SVM or decision forests)
is better suited than any other. In particular, Wojek and Schiele [721] show
that AdaBoost and linear SVM perform roughly the same if enough features
are given. Benenson et al. [43] conclude that the number and diversity of
features is clearly an important factor for the performance of classifiers since
the classification problem becomes easier with higher dimensional representa-
tions. Consequently, today, all state-of-the-art object detection systems use
convolutional neural networks to learn expressive features in an end-to-end
fashion from large datasets [94, 739, 804, 755, 115, 552, 251].

Multi-Cue Object Detection: While most object detection systems rely
on single images as input, there are several approaches which show that using
multiple cues such as temporal and structure information can boost perfor-
mance. Temporal information from video sequences can provide important
additional constraints to solve the detection task better. Shashua et al. [620]
integrate additional cues measured over time (dynamic gait, motion paral-
lax) and situation-specific features (such as leg positions at certain poses)
into a detection system to obtain more reliable detections. Wojek et al. [719]
show significant improvement in detection performance by incorporating mo-
tion cues and combining different complementary feature types. The dense
correspondences between two frames (optical flow) [695] or joint tracking as
discussed in Chapter 6 also lead to significant performance gain since more
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information about the same object can be aggregated over time. Structure
information can be beneficial to generate region of interests and provide ad-
ditional information about the shape of objects to improve classification. To-
wards this goal, Keller et al. [341] jointly detect objects and estimate dense
depth maps from stereo images.

Generative Models for Augmenting Training Data: As object de-
tection is typically formulated as a supervised learning task, large amounts
of annotated training data are required to obtain good performance. Unfor-
tunately, generating examples belonging to the target class is usually time-
consuming because of manual labeling, while negative examples can be more
easily obtained. Enzweiler and Gavrila [190] address this bottleneck by cre-
ating synthesized virtual samples with a learned generative model. The gen-
erative model consists of probabilistic shape and texture models for a set of
generic poses. As the discriminative model, they consider a neural network
[717] and SVMs with Haar features [509] to demonstrate the generality of
their approach. The generative model captures prior knowledge about the
pedestrian class and allows significant improvement in classification perfor-
mance.

5.2.2 Part-based Approaches

Learning the appearance of articulated objects is difficult because all possible
articulations need to be considered. The idea of part-based approaches is to
split the complex appearance of non-rigidly moving objects like humans into
simpler parts and to represent articulation using these parts, as illustrated
in Figure 5.2. This provides greater flexibility and reduces the number of
training examples required for learning the appearance of each part.

The Deformable Part Model (DPM), by Felzenszwalb et al. [204], attempts
to break down the complex appearance of objects into easier parts. As a clas-
sifier, they train a SVM with latent structure variables which represent the
model configuration (part positions) and need to be inferred at training time.
They use a coarse global template covering the entire object and higher reso-
lution part templates to model the appearance of each part. An alternative to
this representation is the Implicit Shape Model proposed by Leibe et al. [402],
which learns a highly flexible representation of object shape. They extract
local features around interest points and perform clustering to construct a
codebook of local appearances that are characteristic for the particular ob-
ject class under consideration. Finally, they learn the occurrences of codebook
entries for each object. However, Benenson et al. [43] observe in their sur-
vey on detection approaches that part-based models like [204, 402] improve
results only slightly compared to the much simpler approach of Dalal and
Triggs [152].
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Figure 5.3: Object Detection Networks. Illustration of the three popular
object detection networks. Upper left: Region-based network Fast-RCNN
[251] that works on regions. Right: Region proposal network Faster-RCNN
[552] that learn to extract regions. Lower left: One-stage detector YOLO
[548] that formulates the detection task as regression problem. c© 2015, 2016
IEEE. Reprinted, with permission, from Girshick [251], Redmon et al. [548],
and Ren et al. [553].

The discussed part-based models can not represent relationships between
different objects, their parts, and the scene, which, for instance, is necessary
to reason about occlusions. Usually, a separate context model [299, 671,
163, 759] is learned which puts the detected objects in context to the 3D
scene. In contrast, Wu et al. [731] propose to learn an And-Or model that
embeds a grammar to represent large structural and appearance variations in
a reconfigurable hierarchy. The learned model takes into account structural
and appearance variations at multi-car, single-car, and part-levels jointly to
represent both context and occlusions.

5.2.3 Deep Learning for Detection

All previous methods rely on hand-crafted features that are difficult to design
and limited in their representation capabilities. With the renaissance of deep
learning [367], convolutional neural networks have been applied to the object
detection problem, resulting in significantly increased performance. Examples
of the three most popular architectures are illustrated in Figure 5.3.

Sermanet et al. [613] introduced CNNs to the pedestrian detection problem
by learning the extraction of expressive features in an unsupervised fashion
using convolutional sparse auto-encoders. Eventually, they train a classi-
fier in an end-to-end supervised fashion while extracting the features with a
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sliding window scheme and jointly fine-tuning the auto-encoders. However,
they use a shallow network with a small receptive field, which allows pre-
cise localization of the objects using a sliding window approach. In contrast,
deeper networks with larger receptive fields complicate the precise localiza-
tion because local information is extracted in earlier layers, while high-level
information is represented in deeper layers. Therefore, Girshick et al. [252]
propose R-CNNs to solve the CNN localization problem via a “recognition
using regions” paradigm. They generate many region proposals using se-
lective search [675], extract a fixed-length feature vector for each proposal
using a CNN and classify each region with a linear SVM. Region-based CNNs
are computationally expensive but several improvements have been proposed
to reduce the computational burden [286, 251]. He et al. [286] use spatial
pyramid pooling which allows computing a convolutional feature map for the
entire image with only one run of the CNN in contrast to R-CNN that needs
to be applied on many image regions. Girshick [251] (Fast-RCNN) further
improve upon these results by proposing a single-stage training algorithm us-
ing a multi-task loss that jointly learns to classify object proposals and refine
their spatial locations.

In region-based CNNs, the classical region proposal algorithm remained
the primary computational bottleneck and the main factor limiting perfor-
mance. Therefore, Ren et al. [552] (Faster-RCNN) introduced Region Pro-
posal Networks (RPN), which share full-image convolutional features with
the detection network and thus do not incur additional computational costs.
RPNs are trained end-to-end to generate high-quality region proposals, which
are classified using the Fast R-CNN detector [251].

Eventually, one-stage detectors [612, 548, 430, 549, 424] completely re-
moved the region proposal step by formulating the object detection task as a
regression problem. The first one-stage detector by Sermanet et al. [612] was
a deep convolutional version of the sliding window approach. They extract
features with a CNN and apply a classifier network based on AlexNet [367] on
the extracted feature maps in a sliding window fashion. Redmon et al. [548]
(YOLO) instead suggest to jointly learn spatially separated bounding boxes
and class probabilities from the topmost feature maps of a network based
on GoogLeNet [651]. This allows them to achieve real-time performance and
eventually YOLO9000 [549] to outperform the Region Proposal Networks.
Liu et al. [430] further improve in accuracy and efficiency by incorporating
feature maps from different scales and considering a fixed set of bounding
boxes. However, one-stage detectors [612, 548, 430, 424] could not compete
with region proposal algorithms. One reason for the performance gap is the
foreground-background class imbalance [424]. To alleviate this problem and
improve training, Lin et al. [424] propose a dynamically scaled cross-entropy
loss allowing them to reduce the contribution of easy examples.

All previous one-stage detectors use anchor bounding boxes that are densely



52 CHAPTER 5. OBJECT DETECTION

placed over the image, verified, and refined using regression. In contrast, Law
and Deng [393] propose to directly predict heatmaps for the top-left and
bottom-right corners of all bounding boxes. Finally, they need to identify
corners belonging to the same bounding box. Towards this goal, they train a
network to predict similar embedding vectors for corners of the same bound-
ing box, which allows them to group the corners according to the distance
between the embeddings.

Part-based models have also been introduced to CNN-based approaches.
Zhang et al. [783] propose to extract deep convolutional features from bottom-
up proposals obtained from a selective search algorithm and learn part ap-
pearance models. This allows them to enforce geometric constraints between
parts and to outperform previous methods.

5.2.4 Real-time Pedestrian Detection

In case of a potential collision with pedestrians, a fast detection system allows
the early intervention of the autonomous system. In classical literature, Be-
nenson et al. [42] provide fast pedestrian detections based on better handling
of scales and exploiting depth extracted from stereo. Instead of resizing the
images, they scale HOG features similar to Viola and Jones [690]. However,
CNN-based approaches recently also reached real-time efficiency due to strong
parallelization on the GPU. While Fast R-CNN [251] could only be applied
at 0.5 Hz, the faster version with the Region Proposal Network Faster-RCNN
[552] already achieves 17 Hz. Finally, YOLO9000 [549] can be applied at up
to 90 Hz at 288× 288 pixels resolution and achieves 40 Hz at 544× 544 pixels
resolution.

5.2.5 Human Pose Estimation

The pose of a person provides important information to the autonomous ve-
hicle about the behavior and intention of the person. However, the pose
estimation problem is challenging since the pose space is very large, and typ-
ically, people can only be observed at low resolutions because of their size
and distance to the vehicle. Several approaches have been proposed to jointly
estimate the pose and body parts of a person. Traditionally, a two-staged
approach was used by first detecting body parts and then estimating the pose
as in [528, 253, 645]. This is problematic in cases when people are in prox-
imity to each other because body-parts can be wrongly assigned to different
instances.

Pishchulin et al. [527] present DeepCut, visualized in Figure 5.4, a model
that jointly estimates the poses of all people in an image. The formulation
is based on partitioning and labeling a set of body-part hypotheses obtained
from a CNN-based part detector. The model jointly infers the number of
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Figure 5.4: Human Pose Estimation. Illustration of the DeepCut [527]
showing the initial detections and pairwise terms (a), joint clustering of nodes
belonging to the same person visualized by colors (b) and the predicted poses
(c). c© 2016 IEEE. Reprinted, with permission, from Pishchulin et al. [527].

people, their poses, spatial proximity, and part-level occlusions. Bogo et al.
[59] use DeepCut to estimate the 3D pose and 3D shape of a human body
from a single unconstrained image. Towards this goal, SMPL, a 3D body
shape model proposed by Loper et al. [433], is fit to predictions of the 2D
body joint locations from DeepCut. SMPL captures correlations in human
shape across the population, which allows fitting human poses robustly even
in the presence of weak observations.

5.2.6 Traffic Sign Detection

Reliable detection and recognition of traffic signs are essential for autonomous
vehicles. The introduction of the German Traffic Sign Recognition Benchmark
(GTSRB) by Stallkamp et al. [634] and the German Traffic Sign Detection
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Benchmark (GTSDB) by Houben et al. [302] are the most popular datasets
for traffic sign detection. However, recent CNNs already reach the limits of
GTSRB and GTSDB with a recall and precision of 100%. Therefore, Zhu et al.
[805] recently presented Tsinghua-Tencent 100K, a new traffic sign detection
benchmark, introducing new challenges to the community.

Several object detectors have been considered for traffic sign detection, i.e.,
SVMs [446], pattern matching techniques [78], voting schemes such as radial
symmetric detectors [35] and integral channel features [174, 452]. However,
the recent progress in deep learning also led to better traffic sign classifiers
[127, 614, 128, 330]. Ciresan et al. [127] propose a committee consisting of a
CNN trained on images and an MLP trained on HOG feature descriptors to
classify traffic signs. In contrast, Sermanet and LeCun [614] propose a multi-
scale CNN to learn meaningful features instead of using handcrafted features
such as HOG. For faster training, Jin et al. [330] present a stochastic gradient
descent method with a cost function similar to the objective function of the
SVM. Similar to [613], Aghdam et al. [3] propose a sliding window detector
that extracts features using a CNN. However, they apply the CNN using
dilated convolutions on several resolutions to learn the detection of traffic
signs at different scales. Finally, they train a convolutional network with
fully connected layers to classify the extracted features.

Garćıa et al. [233] compare generic object detectors on the popular GTSDB
dataset. Region-based networks [252, 286, 251] and one-stage generic detec-
tors [548, 549, 424] have difficulties with traffic signs at small scales. Traffic
signs can appear very small in the image depending on the size, distance,
and occlusions. Region-Proposal networks [552] give the best performance
of generic detectors and in combination with Inception V2 [318] for feature
extraction achieve comparable results with [3] on GTSDB. Yang et al. [758]
adapt Faster-RCNN [552] to the traffic sign detection task by extracting region
proposals in a coarse-to-fine fashion. A novel attention network is proposed
to roughly locate and classify RoIs before using the finer Region Proposal
Network. This allowed them to improve upon Faster-RCNN on both GTSDB
and Tsinghua-Tencent 100K datasets.

5.2.7 3D Object Detection from 2D Images

Geometric 3D representations of object classes can recover far more details
than just 2D or 3D bounding boxes, however, most of today’s object detectors
are focused on robust 2D matching. In contrast, Zia et al. [808] exploit the fact
that high-quality 3D CAD models are available for many important classes.
From these models, they obtain coarse 3D wireframe models using principal
components analysis and train detectors for the vertices of the wireframe.
At test time, they generate evidence for vertices by densely applying the
detectors. Zia et al. [809] extend this work by directly using detailed 3D CAD
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models in their formulation, combining them with explicit representations
of likely occlusion patterns. Further, a ground plane is jointly estimated to
stabilize the pose estimation process. This extension outperforms the pseudo-
3D model [808] and shows the benefits of reasoning in true metric 3D space.

While these 3D representations provide more expressive descriptions of
objects, they can not yet compete with state-of-the-art detectors using 2D
bounding boxes. To overcome this problem, Pepik et al. [514] propose a 3D
extension of the deformable parts model [204] that combines the 3D geometric
representation with robust matching to real-world images. They further add
3D CAD information of the object class of interest as geometry cue to enrich
the appearance model.

Kundu et al. [377] train a CNN to map 2D object proposals to full 3D
shape and pose. They add region-wise subnetworks for 3D shape and 3D
pose prediction to a Faster-RCNN/Network-on-Convolution [552, 554] archi-
tecture. To facilitate the problem, they learn a low dimensional shape-space
from CAD models and use it as shape prior. The 3D shape estimation is then
formulated as a prediction problem of a set of low dimensional shape param-
eters. With a differentiable Render-and-Compare loss, they are able to learn
3D shape and pose from 2D supervision (instance segmentation or depth). In
contrast, Ku et al. [370] suggest a more flexible approach using LiDAR point
clouds as supervision to avoid the dependency on annotated datasets of CAD
models. They use 2D detections of MS-CNN [94] and learn a model based
on Faster-RCNN [552] to regress amodal, oriented 3D bounding boxes. Man-
hardt et al. [447] also first extract 2D detection using an architecture based
on [552]. They propose a fully-differentiable mapping to lift the 2D detec-
tions, orientation, and scale estimation to the 3D space while using monocular
depth predictions [521] to guide the distance reasoning.

5.2.8 3D Object Detection from 3D Point Clouds

In contrast to cameras, laser range sensors directly provide accurate 3D in-
formation, which simplifies the extraction of object candidates and can be
helpful for the classification task as it provides 3D shape information.

Li et al. [411] exploit a fully convolutional neural network for detecting
vehicles from range data. They use a 2D representation of the 3D range data
analogous to cylindrical images with the channels encoding the 3D location
of the points. Given this representation, they simultaneously predict an ob-
jectness confidence and bounding box using a single 2D CNN. In contrast,
Wang and Posner [697] propose an efficient scheme to apply the common 2D
sliding window detection approach to 3D data. More specifically, they dis-
cretize the space into a 3D voxel grid and exploit the sparse nature of the
problem with a voting scheme on top of a linear classifier, which is shown
to be equivalent to convolutions on the full 3D point cloud. Engelcke et
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al. [188] extend this feature-centric voting scheme by implementing a novel
convolutional layer to apply sparse convolutions across the 3D point cloud.
Additionally, they encourage sparsity in the intermediate representation using
ReLU non-linearities and L1 penalty. While [697, 188] extract hand-crafted
features from the voxels, VoxelNet from Zhou and Tuzel [797] learns the fea-
tures in an end-to-end trainable deep network. They propose a voxel feature
encoding layer that learns a unified feature representation for the points of
the voxels. Eventually, a region proposal network generates detections from
these feature representations.

Relying only on laser range data makes the detection task challenging due
to the limited density of the laser scans and lack of appearance information.
Thus, existing LiDAR-based approaches perform weaker compared to their
image-based counterparts on the 2D detection problem of KITTI. However,
recently, it has been shown that the fusion of LiDAR and camera information
allows reducing the gap and eventually even outperforming state-of-the-art
2D detectors [117, 369, 139, 537, 181]. We will discuss these methods in
detail in Section 5.5.

5.3 Datasets

The most popular datasets for object detection are ImageNet [162], PAS-
CAL VOC [197], Microsoft COCO [425], KITTI [243] and Caltech Pedestrian
Detection [176]. While ImageNet, PASCAL VOC, and Microsoft COCO con-
sider the general detection problem, KITTI and Caltech Pedestrian Detec-
tion benchmark focus on classes that are relevant for the autonomous driving
context. KITTI provides separate benchmarks for 2D and 3D detection of
cars, pedestrians, and cyclists with 2D and 3D input modalities for both
benchmarks. In contrast, the Caltech Detection benchmark focuses on the
pedestrian detection problem only.

Recently, EuroCity Persons [68], a new large-scale benchmark for pedes-
trian detection, was presented. Also, several companies, i.e., ApolloScape
[312], NuScenes [93], and Berkeley DeepDrive [767], presented new publicly
available datasets for object detection in street scenes. Similarly to KITTI,
ApolloScape provides annotation for 3D car detection but is not considering
other classes than cars. The Berkeley DeepDrive dataset even provides ad-
ditional classes (traffic light, traffic sign, train) for the road object detection
problem. However, these datasets and benchmarks [68, 312, 93, 767] are not
yet established in the field.

In this work, we focus our attention on the KITTI benchmark since it
allows us to compare generic object and specific pedestrian detection systems
on the same data. We refer the interested reader to the survey papers [43, 786]
for an in-depth comparison of pedestrian detection systems on Caltech-USA.
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5.4 Metrics

The most popular measures for the performance of object detection systems
are the average precision (AP) and average recall (AR) [162, 197, 425, 134,
243]. In addition, the precision-recall curve is usually used to evaluate meth-
ods [197, 243]. For calculating precision and recall, the detections are cate-
gorized into true positives, false positives, and false negatives. Towards this
goal, the intersection-over-union (IOU) between the detected bounding boxes
and the ground truth bounding boxes is considered. A popular threshold for
true positives is an IOU of at least 50%. The AP with an IOU of 50% is
known as the PASCAL VOC [197] metric and used in many different bench-
marks [243, 176, 162]. In addition to the standard PASCAL VOC metric, MS
COCO [162] considers several additional metrics: the AP with an IOU of at
least 75%, for small, medium and large objects, and several AR metrics.

In our discussion here, we consider the metrics reported on the KITTI
benchmark [243]. The performance is assessed for three levels of difficulty
(easy, moderate, hard) using PASCAL VOC intersection-over-union (IOU)
[197]. While the PASCAL VOC metric (IOU of 50%) is used for pedestrians
and cyclists on KITTI, the metric used for cars is more strict and requires an
overlap of 70%. Easy examples have a minimum bounding box height of 40 px
and are fully visible, whereas moderate examples have a minimum height of
25 px and include partial occlusions. Hard examples have the same minimum
height but include large levels of occlusion. In Table 5.2, the estimation of
the object’s orientation is evaluated using the average orientation similarity
(AOS) proposed in [243].

5.5 State of the Art on KITTI

In Tables 5.1 and 5.3, we show the current state of the art on the KITTI
benchmark for object, pedestrian, and cyclist detection from images. Note
that for all result tables in this book, we list only public methods that have a
technical paper associated with them that describes the details of the method.

Region-based networks [252, 286, 251] have proven to be very successful
on the PASCAL VOC benchmark. However, they could not achieve similar
performance on KITTI benchmark. The main reason is that objects occur at
many different scales, and objects are often partially occluded. These objects
are hard to detect using generic region-based networks.

In contrast, Region Proposal Networks [552, 755, 94, 739] have been more
successful on the KITTI dataset. In the case of small objects, strong activa-
tions of convolutional neurons are more likely to occur in earlier layers. There-
fore, Yang et al. [755] (SDP+PRN) propose cascaded rejection classifiers that
gradually reject negative proposals using stronger features. Combined with a
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Method Moderate Easy Hard Runtime
1. RRC [551] 90.23 % 90.61 % 87.44 % 3.6 s / GPU
2. SJTU-HW [787] 90.08 % 90.81 % 79.98 % 0.85s / GPU
3. Deep MANTA [102] 90.03 % 97.25 % 80.62 % 0.7 s / GPU
4. sensekitti [752] 90.00 % 90.76 % 81.83 % 4.5 s / GPU
5. SINet+ [306] 89.73 % 90.51 % 77.82 % 0.3 s / GPU
11. SubCNN [738] 88.86 % 90.75 % 79.24 % 2 s / GPU
12. Deep3DBox [483] 88.86 % 90.47 % 77.60 % 1.5 s / GPU
13. MS-CNN [94] 88.83 % 90.46 % 74.76 % 0.4 s / GPU
23. Faster R-CNN [552] 79.11 % 87.90 % 70.19 % 2 s / GPU
41. YOLOv2 [549] 19.31 % 28.37 % 15.94 % 0.02 s / GPU

(a) KITTI Car Detection Leaderboard

Method Moderate Easy Hard Runtime
1. RRC [551] 75.33 % 84.16 % 70.39 % 3.6 s / GPU
2. SJTU-HW [787] 74.24 % 85.42 % 69.34 % 0.85s / GPU
3. MS-CNN [94] 73.62 % 83.70 % 68.28 % 0.4 s / GPU
4. GN [332] 71.55 % 80.73 % 64.82 % 1 s / GPU
5. SubCNN [739] 71.34 % 83.17 % 66.36 % 2 s / GPU
10. sensekitti [752] 67.28 % 80.12 % 62.25 % 4.5 s / GPU
11. Mono3D [114] 66.66 % 77.30 % 63.44 % 4.2 s / GPU
12. Faster R-CNN [552] 65.91 % 78.35 % 61.19 % 2 s / GPU
43. YOLOv2 [549] 16.19 % 20.80 % 15.43 % 0.02 s / GPU

(b) KITTI Pedestrian Detection Leaderboard

Method Moderate Easy Hard Runtime
1. RRC [551] 76.49 % 84.96 % 65.46 % 3.6 s / GPU
2. MS-CNN [94] 74.45 % 82.34 % 64.91 % 0.4 s / GPU
3. Deep3DBox [483] 73.48 % 82.65 % 64.11 % 1.5 s / GPU
4. SDP+RPN [755] 73.08 % 81.05 % 64.88 % 0.4 s / GPU
5. sensekitti [752] 72.50 % 81.76 % 64.00 % 4.5 s / GPU
6. SubCNN [739] 70.77 % 77.82 % 62.71 % 2 s / GPU
12. Mono3D [114] 63.85 % 75.22 % 58.96 % 4.2 s / GPU
13. Faster R-CNN [552] 62.81 % 71.41 % 55.44 % 2 s / GPU
26. YOLOv2 [549] 4.55 % 4.55 % 4.55 % 0.02 s / GPU

(c) KITTI Cyclist Detection Leaderboard

Table 5.1: KITTI Object Detection Leaderboard. Only image-based
methods are shown in these tables, i.e., no laser scan data is used. The
numbers represent average precision at different levels of difficulty based on
the object size and the level of occlusion/truncation. Higher numbers indicate
better performance. Methods below the horizontal line show older entries for
reference. Accessed on: June 2019.
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Figure 5.5: Multi-scale Deep CNN for Object Detection. The pro-
posal sub-network presented by Cai et al. [94] performs detection at multiple
output layers to match objects at different scales. Scale-specific detectors
are combined to produce a strong multi-scale object detector. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer
Nature ECCV, Cai et al. [94], c© 2016.

scale-dependent pooling approach that provides convolutional features from
the corresponding scale for each proposal, they achieve competitive results on
KITTI cyclist 5.1c. Xiang et al. [739] (SubCNN) improve on the orientation
estimation task by guiding the proposal generating and detection network
using subcategory information obtained from 3DVP [738]. Object subcat-
egories are defined for objects with similar properties or attributes such as
appearance, pose, or shape. This formulation allows them to achieve the best
performance in pedestrian orientation estimation (Table 5.2b). The best per-
forming Region-Proposal networks are presented by Cai et al. [94] and Chabot
et al. [102]. MS-CNN [94] consists of two subnetworks, i.e., a multi-scale pro-
posal network and a detection network. The proposal network, illustrated in
Figure 5.5, has several output layers corresponding to different scales. On
each output layer, the detection network is applied that allows detecting ob-
jects at different scales. Their multi-scale CNN performs well on pedestrians
and cyclists (Tables 5.1b,5.1c). Deep MANTA [102] leverages a 3D vehicle
model dataset for 3D vehicle detection from images. They first extract re-
gion proposals from the input image with an iterative refinement of region
proposals using a coarse-to-fine CNN (Deep MANTA network). Afterwards,
they use a network to choose the closest 3D model from the 3D dataset and
perform matching between the 2D regions from the image and 3D models to
recover the vehicle orientation and 3D location. This allows them even to
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detect parts of cars that are occluded and estimate the orientation of cars.
They achieve competitive results on car detection (Table 5.1a) and the best
performance on the car orientation estimation task (Table 5.2a).

One-stage detectors [548, 549, 424] have similar difficulties with objects at
different scales and occlusions as region-based networks on the KITTI dataset.
However, by leveraging feature pyramids as in [430], one-stage detectors [551,
787] can reach state-of-the-art performance. Zhang et al. [787] (SJTU-HW)
propose to improve the localization by embedding a localization-quality es-
timation into the detector. They fuse features from classification and box
regression subnetworks to estimate the localization quality. During infer-
ence, they combine the localization quality with the classification confidence
to obtain more accurate detections. This approach outperforms all Region
Proposal Networks on the pedestrian and car detection tasks. However, the
best performance on all detection tasks (Tables 5.1) is achieved by Ren et al.
[551]. Inspired by feature pyramids used in [430], they propose a Recurrent
Rolling Convolution architecture that aggregates contextual information from
multiple scales. By providing this rich contextual information to the classifier
and box regressors, they achieve state-of-the-art performance on all KITTI
detection tasks.

3D Object Detection from 3D Point Clouds: In Table 5.3, we show
the LiDAR-based state of the art on the KITTI benchmark for object, pedes-
trian, and cyclist detection. The performance is assessed similarly to the
image-based approaches using the intersection-over-union by projecting the
3D bounding boxes into the image plane.

Chen et al. [117] encode sparse point clouds using a compact multi-view
representation. While the proposal generation network utilizes the bird’s eye
view to generate 3D candidates, they eventually combine region-wise features
from multiple views via deep fusion for the final detection and box regres-
sion scheme, as illustrated in Figure 5.6. Instead of using an intermediate
representation, Ku et al. [369] propose to directly share features extracted
from LiDAR point clouds and RGB images with a Region Proposal Network
(RPN) and detector network. Costea et al. [139] improve on the pedestrian
and car detection task by considering dense optical flow as additional input.
They use multi-modal, multi-resolution filtering of intensities, gradient mag-
nitudes and orientations to obtain discriminative features for detection. In
contrast to [117, 369, 537, 181], they follow a boosting-based sliding window
approach and achieve competitive results while being faster than the deep
learning-based approaches.

Qi et al. [537] propose to directly work on the 3D point clouds by reducing
the search space using 2D detections in image space. This allows them to use
two variants of PointNet [234]; one for 3D object instance segmentation and
the other for 3D box regression. With this approach, they outperform all
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Method Moderate Easy Hard Runtime
1. Deep MANTA [102] 89.86 % 97.19 % 80.39 % 0.7 s / GPU
2. Deep3DBox [483] 88.56 % 90.39 % 77.17 % 1.5 s / GPU
3. SubCNN [739] 88.43 % 90.61 % 78.63 % 2 s / GPU
4. AVOD (LiDAR) [369] 87.46 % 89.59 % 79.54 % 0.08 s / GPU
5. AVOD-FPN (LiDAR) [369] 87.13 % 89.95 % 79.74 % 0.1 s / GPU
13. Pose-RCNN [69] 75.35 % 88.78 % 61.47 % 2 s / ¿8 cores
25. sensekitti [752] 44.56 % 47.06 % 41.50 % 4.5 s / GPU

(a) KITTI Car Detection and Orientation Estimation Leaderboard

Method Moderate Easy Hard Runtime
1. SubCNN [739] 63.41 % 71.39 % 56.34 % 2 s / GPU
2. Pose-RCNN [69] 62.25 % 74.85 % 55.09 % 2 s / ¿8 cores
3. Deep3DBox [483] 59.37 % 68.58 % 51.97 % 1.5 s / GPU
4. 3DOP (Stereo) [115] 58.59 % 71.95 % 52.35 % 3s / GPU
5. AVOD-FPN (LiDAR) [369] 57.53 % 67.61 % 54.16 % 0.1 s / GPU
8. AVOD (LiDAR)[369] 54.43 % 64.36 % 47.67 % 0.08 s / GPU
9. Mono3D [114] 53.11 % 65.74 % 48.87 % 4.2 s / GPU
10. FRCNN+Or [259] 50.91 % 63.41 % 45.46 % 0.09 s / GPU
11. sensekitti [752] 42.12 % 46.65 % 36.66 % 4.5 s / GPU

(b) KITTI Pedestrian Detection and Orientation Estimation Leaderboard

Method Moderate Easy Hard Runtime
1. SubCNN [739] 66.28 % 78.33 % 61.37 % 2 s / GPU
2. Pose-RCNN [69] 59.89 % 74.10 % 54.21 % 2 s / ¿8 cores
3. 3DOP (Stereo) [115] 59.79 % 73.46 % 57.04 % 3s / GPU
4. DeepStereoOP [520] 59.28 % 73.37 % 56.87 % 3.4 s / GPU
5. Mono3D [114] 58.12 % 68.58 % 54.94 % 4.2 s / GPU
6. AVOD-FPN (LiDAR) [369] 44.92 % 53.36 % 43.77 % 0.1 s / GPU
7. SECOND [751] 43.51 % 51.56 % 38.78 % 0.04 s / GPU
8. DPM-VOC+VP [514] 39.83 % 53.66 % 35.73 % 8 s / 1 core
9. sensekitti [752] 37.50 % 43.55 % 35.08 % 4.5 s / GPU
10. AVOD (LiDAR) [369] 36.38 % 44.12 % 31.81 % 0.08 s / GPU

(c) KITTI Cyclist Detection and Orientation Estimation Leaderboard

Table 5.2: KITTI Detection and Orientation Estimation Leader-
board. Only image-based methods are shown in these tables, i.e., no laser
scan data is used. The numbers represent average orientation similarity as
described in [243]. Higher numbers indicate better detection and orientation
estimation. Methods below the horizontal line show older entries for reference.
Accessed on: June 2019.
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Method Moderate Easy Hard Runtime
1. PC-CNN-V2 [181] 90.15 % 90.79 % 87.58 % 0.5 s / GPU
2. F-PointNet [537] 90.00 % 90.78 % 80.80 % 0.17 s / GPU
3. MV3D [117] 89.17 % 90.53 % 80.16 % 0.36 s / GPU
4. MM-MRFC [139] 88.20 % 90.93 % 78.02 % 0.05 s / GPU
5. AVOD [369] 88.08 % 89.73 % 80.14 % 0.08 s / GPU
18. CSoR [529] 26.13 % 35.24 % 22.69 % 3.5 s / 4 cores
19. mBoW [39] 23.76 % 37.63 % 18.44 % 10 s / 1 core

(a) KITTI Car Detection Leaderboard

Method Moderate Easy Hard Runtime
1. F-PointNet [537] 77.25 % 87.81 % 74.46 % 0.17 s / GPU
2. MM-MRFC [139] 69.96 % 82.37 % 64.76 % 0.05 s / GPU
3. AVOD-FPN [369] 58.42 % 67.32 % 57.44 % 0.1 s / GPU
4. MV-RGBD-RF [254] 56.59 % 73.05 % 49.63 % 4 s / 4 cores
5. Vote3Deep [188] 55.38 % 67.94 % 52.62 % 1.5 s / 4 cores
8. AVOD [369] 43.49 % 51.64 % 37.79 % 0.08 s / GPU
9. Vote3D [697] 35.74 % 44.47 % 33.72 % 0.5 s / 4 cores
10. mBoW [39] 31.37 % 44.36 % 30.62 % 10 s / 1 core

(b) KITTI Pedestrian Detection Leaderboard

Method Moderate Easy Hard Runtime
1. F-PointNet [537] 72.25 % 84.90 % 65.14 % 0.17 s / GPU
2. Vote3Deep [188] 67.96 % 76.49 % 62.88 % 1.5 s / 4 cores
3. AVOD-FPN [369] 59.32 % 68.65 % 55.82 % 0.1 s / GPU
4. AVOD [369] 56.01 % 65.72 % 48.89 % 0.08 s / GPU
5. BirdNet [41] 49.04 % 64.88 % 46.61 % 0.11 s / GPU
6. MV-RGBD-RF [254] 42.61 % 51.46 % 37.42 % 4 s / 4 cores
7. Vote3D [697] 31.24 % 41.45 % 28.60 % 0.5 s / 4 cores
8. mBoW [39] 21.62 % 28.19 % 20.93 % 10 s / 1 core

(c) KITTI Cyclist Detection Leaderboard

Table 5.3: KITTI LiDAR Detection Leaderboard. Methods that fo-
cus on LiDAR scans and methods combining LiDAR with RGB images are
presented. The numbers represent average precision at different levels of dif-
ficulty. Higher numbers indicate better performance. Methods below the
horizontal line show older entries for reference. Accessed on: June 2019.
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Figure 5.6: Multi-View 3D Object Detection. The network proposed by
Chen et al. [117] combines region-wise features from the bird’s eye view, the
front view of the LiDAR point cloud as well as the RGB image as input for a
deep fusion network. c© 2017 IEEE. Reprinted, with permission, from Chen
et al. [117].

other 3D-based detectors on the categories pedestrian and cyclist (Tables
5.3b, 5.3c) and even all image-based detectors on pedestrians (Table 5.1b).
Similar to [537], Du et al. [181] leverage 2D detections to obtain accurate 3D
detections. Instead of using PointNets, they propose to fit a generalized 3D
car model to the points corresponding to 2D detections. Finally, they use the
points matching the model in a two-stage refinement CNN to predict the final
3D box and an objectiveness score. The combination of 2D and 3D detection
allows them to outperform all 3D-based detectors on cars (Table 5.3a) while
achieving a performance on par with the best performing 2D-based detector
[551] on the pedestrian category (Table 5.1a).

5.6 Discussion

Object detection has demonstrated impressive performance in case of high res-
olution images with little occlusions. For the easy and moderate cases of the
car detection task (Table 5.1a), many methods provide accurate detections.
The pedestrian and cyclist detection task (Tables 5.1b, 5.1c) is more challeng-
ing, as demonstrated by the overall weaker performance of all methods. One
reason for this is the limited number of training examples and the possibility
of confusing cyclists and pedestrians which differ only via their context and
semantics. Remaining major problems across tasks are the detection of small
objects and highly occluded objects. In the leaderboards, this manifests in
a significant drop in performance when comparing easy, moderate, and hard
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examples. Qualitatively, this can be observed in Figures 5.7, 5.8,5.9 where we
show typical estimation errors of the best-performing methods on the KITTI
dataset. Major sources of errors are crowds of pedestrians, groups of cyclists,
and parked cars that cause occlusions and lead to missing detections for all
methods. Furthermore, distant objects still prove to be challenging for mod-
ern methods due to the low amount of image evidence provided for these
objects.
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(a) Images with Largest Number of True Positive Detections

(b) Images with Largest Number of False Positive Detections

(c) Images with Largest Number of False Negative Detections

Figure 5.7: KITTI Vehicle Detection Analysis. Each figure shows images
with a large number of true positive (TP) detections, false positive (FP) de-
tections and false negative (FN) detections, respectively. If all detectors agree
on TP, FP or FN, the object is marked in red. If only some of the detectors
agree, the object is marked in yellow. The ranking has been established by
considering the 15 leading methods published on the KITTI evaluation server
at time of submission.
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(a) Images with Largest Number of True Positive Detections

(b) Images with Largest Number of False Positive Detections

(c) Images with Largest Number of False Negative Detections

Figure 5.8: KITTI Pedestrian Detection Analysis. Each figure shows
images with a large number of true positive (TP) detections, false positive
(FP) detections and false negative (FN) detections, respectively. If all detec-
tors agree on TP, FP or FN, the object is marked in red. If only some of
the detectors agree, the object is marked in yellow. The ranking has been
established by considering the 15 leading methods published on the KITTI
evaluation server at time of submission.
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(a) Images with Largest Number of True Positive Detections

(b) Images with Largest Number of False Positive Detections

(c) Images with Largest Number of False Negative Detections

Figure 5.9: KITTI Cyclist Detection Analysis. Each figure shows images
with a large number of true positive (TP) detections, false positive (FP) de-
tections and false negative (FN) detections, respectively. If all detectors agree
on TP, FP or FN, the object is marked in red. If only some of the detectors
agree, the object is marked in yellow. The ranking has been established by
considering the 15 leading methods published on the KITTI evaluation server
at time of submission.
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Chapter 6

Object Tracking

6.1 Problem Definition

In tracking, the goal is to estimate the state of one or multiple objects over
time given measurements of a sensor. This is in contrast to object detection
where each frame is typically processed independently and no associations
over time are established. Typically, the state of an object is represented
by its location, velocity and acceleration at a certain time. Tracking of other
traffic participants is a very important task for autonomous driving. Consider
for instance, the braking distance of a vehicle which increases quadratically
with its speed. Because of the braking distance it is necessary to detect pos-
sible collisions with other traffic participants early on. This is only possible
with good predictions of future trajectories. In the case of pedestrians and bi-
cyclists, it is particularly difficult to predict the future behavior because they
can abruptly change the direction of their movements. Therefore, humans
tend to drive more carefully around pedestrians and bicyclists. Similarly,
tracking in combination with the classification of traffic participants allows
adapting the speed of the vehicle accordingly. In addition, tracking of other
cars can be used for automatic distance control and to anticipate possible
driving maneuvers of other traffic participants (such as takeovers) early on.

Tracking systems must cope with a variety of challenges such as cluttered
backgrounds, the variety and complexity of motion, and occlusions. The prob-
lem of associating instances of the same object over time becomes particularly
challenging due to the resemblance of different objects, especially of the same
class. In addition to the lack of discriminative information due to similari-
ties with other objects, instances of the same object might not look similar
enough for association in different time steps. Often objects are partially or
fully occluded by other objects or themselves. The interaction of objects,

69
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Figure 6.1: Graph-based Data Association. Graph-based representa-
tion solved with a multi-cut formulation presented by Tang et al. [654]. The
graph is created from detections in the upper images and the colorization as
well as connections in the graph are obtained by solving the multi-cut prob-
lem. Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature ECCV Workshop, Tang et al. [654], c© 2016.

especially in the case of pedestrians, further increases the amount of occlu-
sions and makes it difficult to track each individual object. Difficult lighting
conditions and reflections in mirrors or windows pose additional challenges.

6.2 Methods

Historically, tracking has been formulated as a Bayesian inference problem
[662] where the goal is to estimate the posterior probability density function of
a state given the current observation and the previous state(s). The posterior
is usually updated in a recursive manner with a prediction step using a motion
model and a correction step using an observation model. In each iteration, the
data association problem is solved to assign new observations to the tracked
objects. Extended Kalman and particle filtering algorithms [250, 72, 120] are
widely used models in this context. Unfortunately, the recursive approach
makes it hard to recover from detection errors and to track through occlusions
because of missing observations. Therefore, non-recursive approaches [12,
13] that optimize a global energy function with respect to all trajectories
in a temporal window, have gained popularity. However, the large number
of possible target trajectories per object and the large number of potential
objects in a scene lead to a very large search space.
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6.2.1 Tracking by Detection

Given the success of static object detectors, a common paradigm often used
in tracking is tracking-by-detection. This approach splits the task into two
steps: first detect the people and second associate detections of the same
person across time. Tracking-by-detection has become very popular since the
tracking problem is reduced to a data association problem. However, the
tracking system still needs to handle and recover from errors of the detection
system, such as false and missing detections.

Tracking on Graphs: Graph representations illustrated in Figure 6.1 are
widely adopted for inferring associations in tracking. In the simplest case,
bipartite matching between the trajectories and the detections can be consid-
ered a graph-based approach with two disjoint sets of nodes. The assignment
between the two sets can be performed either greedily [728, 73, 625] or by
applying the optimal Hungarian algorithm [516, 307, 743, 550, 538] running
in polynomial time.

In network flow approaches [329, 782, 44, 732, 45, 526, 122, 733], a graph is
first constructed with nodes as detections and edges representing spatial and
temporal links between detections. Then, a simple set of constraints is defined
to ensure that produced tracks are valid and continuous between the start
and the end nodes. Typically, these constraints are formulated as an integer
program which is then relaxed to a linear program in order to avoid the NP-
Hardness of the integer program. Various dynamic programming approaches
have been proposed to solve the network flow using linear programming [329,
44], k-shortest paths [45, 526, 122] or set cover [732] for optimization.

Another line of work on graphs phrases tracking as clustering problem.
Minimum Clique [774, 155] and Minimum Cost Multicut approaches [655,
654, 656, 18] find a decomposition of the graph that has the minimal sum of
costs. Maximum-weight independent set formulations [616, 74] first solve the
pairwise (two-frame) association problem independently and link the pairwise
solutions using a learned distance measure. Graphical models [753, 754, 472,
394] minimize a global energy function defined on the nodes with pairwise
and higher-order potentials.

Continuous Optimization: As an alternative to discretization, contin-
uous energy minimization approaches have been proposed. For this highly
non-convex problem, Andriyenko and Schindler [12] use a heuristic energy
minimization scheme with repeated jump moves to prevent poor local min-
ima and better explore the variable-dimensional search space. The effects of
different components of their energy function are illustrated in Figure 6.2.
Milan et al. [469] extend the continuous energy function of [12] to take into
account physical constraints such as target dynamics, mutual exclusion, and
track persistence. Assigning each observation to a certain target in data asso-
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Figure 6.2: Continuous Energy Formulation. Components of the energy
function proposed by Andriyenko and Schindler [12]. The upper and lower
row show a configuration with a higher and smaller energy. The darker grey-
values correspond to higher target likelihoods. c© 2011 IEEE. Reprinted, with
permission, from Andriyenko and Schindler [12].

ciation is intrinsically a discrete optimization problem. Therefore, Andriyenko
et al. [13] argue that a joint discrete and continuous formulation describes the
tracking problem more naturally. Their method alternates between solving
the data association problem using discrete optimization with label costs and
analytically fitting continuous trajectories while disregarding the label costs.
Milan et al. [472] propose a mixed discrete-continuous conditional random
field model that specifically addresses mutual exclusion in the data associa-
tion and the trajectory estimation. During data association, each observation
should be assigned to at most one target while in the trajectory estimation,
two trajectories should always remain spatially separated.

Multiple Cues: For data association, various complementary cues can
be used in combination in order to improve the robustness of tracking sys-
tems. Giebel et al. [250] learn a spatio-temporal shape representation based
on distinct linear subspace models. They handle appearance changes by com-
bining shape, texture, and depth from stereo in the observation model of a
particle filter. Gavrila and Munder [236] employ the same set of cues with
a cascade of modules in a detection and tracking system, namely region of
interest generation, shape-based detection, texture-based classification, and
stereo-based verification. Their system can focus on relevant image regions
inferred by a stereo-based region of interest approach. They propose a novel
mixture-of-experts architecture by weighting texture-based component clas-
sifiers according to the outcome of the shape matching. In their appearance-
based approach, Choi et al. [120] use a combination of detection systems, each
specialized in a different task such as pedestrian and upper body, face, skin
color, depth-based shape, and motion. The response of all detection systems
is combined in the observation likelihood to improve matching.
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6.2.2 Pedestrian Tracking

Tracking of pedestrians is of particular importance for autonomous driving as
mentioned before. However, the identification of pedestrians remains difficult,
especially because of false positives of detection systems. Andriluka et al.
[10] address this problem with a joint detection and articulated human pose
tracking formulation. They extend an existing person detector to a limb-
based structure model and model the dynamics of the detected limbs with a
hierarchical Gaussian process latent variable model (hGPLVM). This allows
them to detect people more reliably than approaches considering only one
frame. Andriluka et al. [11] extend this idea towards 3D pose estimation from
monocular images. In the first stage, they estimate 2D articulation and the
viewpoint of people and associate them across a small number of frames. This
accumulated 2D image evidence is then used to estimate the 3D pose with
a hGPLVM. This approach allows them to accurately estimate the 3D poses
of multiple people from monocular images. In combination with a Hidden
Markov Model (HMM), these approaches can track people over very long
sequences.

6.2.3 Joint Detection and Tracking

While the typical tracking-by-detection approach assumes detections to be
available, Dehghan et al. [156] and Tian et al. [664] propose to solve detection
and association jointly with a network flow approach by learning a model for
each target and modifying the graph to encode the assignment probabilities
between the targets and nodes.

Kang et al. [337, 336] introduce a tubelet proposal module that combines
object detection and tracking for video object detection. A tubelet represents
detections of the same object over consecutive frames. The performance is
improved by first generating static object proposals as spatial anchors (e.g.,
from a Region Proposal Network) and then predicting the relative movements
to adjust the anchors. Instead of propagating bounding boxes, Tang et al.
[653] link objects in the same frame and propagate box scores across frames.
In addition, per-frame proposals in [337, 336] are replaced by spatio-temporal
proposals that are directly generated for video segments.

Another line of work uses optical flow for feature aggregation in videos
[803, 802, 801]. The feature maps of nearby frames are warped according to
the estimated optical flow and aggregated by learning an adaptive weighting.
The motivation is to improve the detection of fast-moving objects which are
hard to detect on some frames due to motion blur. A more efficient version is
proposed by Zhu et al. [801] with key-frame selection, i.e., selecting frames or
parts of the frames to aggregate. Wang et al. [701] also use flow at different
levels, namely at the pixel-level by per-pixel warping and at the instance-
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Figure 6.3: Deep Learning for Tracking. The end-to-end learning method
by Milan et al. [471] uses RNNs [574] for state estimation and LSTMs [298]
for data association. c© 2017 AAAI. Reprinted, with permission, from Milan
et al. [471].

level by predicting instance movements. Then, the two levels are combined
according to the motion pattern observed, e.g., by relying on pixel-level more
in the case of non-rigid motion. To avoid expensive optical flow computation,
Bertasius et al. [46] propose a spatio-temporal sampling mechanism based on
deformable convolutional layers.

6.2.4 Deep Learning for Multi-Object Tracking

Tracking has strongly benefited from the success of deep learning in object de-
tection discussed in Chapter 5.2.3. Moreover, deep learning has been used for
representation learning to verify detections belonging to the same person [395,
654, 656] or more recently, for learning track representations using sequential
models [576, 350, 18]. Learned sequential models combined with a traditional
model for the association have shown to improve performance in comparison
to their predecessors. Examples include the combination of appearance, mo-
tion, and interaction LSTM networks [576] in contrast to Markov decision
process tracking with hand-crafted features [737], a modified bi-linear LSTM
[350] in contrast to the multiple hypothesis tracking model with CNN fea-
tures [349], and a hierarchical clustering method based on tracklet similarity
using an RNN [18] in contrast to the lifted multi-cut approach with Siamese
networks [656]. In these examples, the common approach is to learn a good
track representation and then use an established method for the association.

Recently, several approaches [604, 471, 215] proposed end-to-end learning
of multi-object tracking. The challenges are mainly the scarcity of labeled
data, the structured nature of the problem both in the input and the output
space, and the combinatorial search space. Schulter et al. [604] propose a net-
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Figure 6.4: Object Detections and Segmentations for Tracking. The
detections (left) and corresponding top-down segmentations (right) used by
Leibe et al. [403] to learn an object-specific color model for tracking. c© 2008
IEEE. Reprinted, with permission, from Leibe et al. [403].

work layer to learn the network flow cost functions based on hand-designed
representations of bounding boxes. The first end-to-end learning method for
tracking presented by Milan et al. [471] illustrated in Figure 6.3 uses a RNN to
estimate the states of targets and LSTMs for the association. The model, how-
ever, is trained on synthetic data and lacks an appearance model, which makes
it unable to match the performance of previous approaches. Frossard and Ur-
tasun [215] propose an end-to-end learning method for detection and tracking
of vehicles in 3D using a deep structured loss to backpropagate through the
linear program which solves the association problem. In contrast, Feichten-
hofer et al. [203] present a more general approach for end-to-end learning of
detection and tracking by extending the convolutional object detector pro-
posed in [149] with a tracking loss that regresses object coordinates across
frames. However, they only evaluate on ImageNet VID challenge [575] which
mostly consists of sequences with one or a few objects at the center of the
video.

6.2.5 3D Object Tracking

Some works have investigated a joint formulation for object tracking and
depth estimation to obtain the structure of the scene while estimating the
trajectories of objects in the scene. The structure of the scene allows the
tracking system to focus on more plausible solutions. Different input modali-
ties were considered to estimate or obtain depth information, i.e., monocular
[304] and stereo imagery [250, 401, 403, 194, 476, 438]. A few approaches [480,
165, 104] address the tracking problem solely using LiDAR data. However,
the missing appearance information and decreasing density of the laser range
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information with increasing distance complicate the tracking problem.
Leibe et al. [401, 403] propose an approach integrating scene geometry

estimation, 2D object detection, 3D localization, trajectory estimation, and
tracking. They learn object-specific color models using the detection and top-
down segmentation of objects, as illustrated in Figure 6.4. The structure of
the scene guides the extraction of physically plausible space-time trajectories,
and a final global optimization criterion takes object-object interactions into
account to refine the 3D localization and trajectory estimation results. Ess et
al. [194] jointly estimate the camera position, stereo depth, object detection,
and the pose of all objects over time using a graphical model. Thereby, the
graphical model represents the interplay between the different components
and incorporates object-to-object interactions. Luiten et al. [438] propose a
two-stage approach that first estimates short-term tracks from images and
afterwards fuses these tracks by reconstructing the 3D scene from depth. The
short-term tracking is performed with a segmentation of the images and a
temporal association using optical flow estimates.

In contrast to previous approaches, Hu et al. [304] train a network for 3D
box estimation from monocular images. The network learns to regress the 3D
location, orientation, and dimension of vehicles. The 3D boxes are used as
observation in a tracking formulation and assigned to tracks using a weighted
bipartite matching algorithm, taking into consideration the depth ordering.
In addition, they use LSTMs to learn two motion models, one for predicting
new locations and the other one to update the locations.

Tracking-Before-Detection: In addition to facilitating the tracking prob-
lem, 3D information also allows the segmentation of the scene into different
objects, independently of their class. In tracking-before-detection, these seg-
mented class agnostic objects are directly considered as observations in the
tracking formulation. This way, the tracking system is independent of a clas-
sifier and, thus, is able to track unknown objects which have not been seen
before or for which only a little amount of training data exists. Furthermore,
motion information from the object’s estimated trajectory can be used as an-
other cue to detect a certain class of objects. Mitzel and Leibe [476] extract
observations of objects by segmenting the scene using depth from stereo. With
a compact 3D representation, they can robustly track known and unknown
object categories. This representation also allows them to detect anomalous
shapes such as carried items.

6.3 Datasets

Early datasets for multi-object tracking include independent sequences such
as PETS [206], TUD [10], and ETHZ [195]. The separate evaluation of these
sequences led to tracking algorithms over-fitting to some of these sequences
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Method MOTA IDF1 MT ML IDS FRAG Hz
1. HCC [442] 49.3% 50.7% 17.8 % 39.9% 391 535 0.8
2. eTC [698] 49.2% 56.1% 17.3 % 40.3 % 606 882 0.7
3. AFN [621] 49.0% 48.2% 19.1 % 35.7 % 899 1,383 0.6
4. KCF [124] 48.8% 47.2% 15.8 % 38.1 % 906 1,116 0.1
5. LMP [656] 48.8% 51.3% 18.2 % 40.1 % 481 595 0.5
16. NOMT [121] 46.4% 53.3% 18.3% 41.4% 359 504 2.6
17. JMC [654] 46.3% 46.3% 15.5% 39.7% 657 1,114 0.8
18. STAM [126] 46.0% 50.0% 14.6% 43.6% 473 1,422 0.2
22. MHT DAM [349] 42.9% 46.1% 13.6% 46.9% 499 659 0.8
38. GMMCP [156] 38.1% 35.5% 8.6 % 50.9 % 937 1,669 0.5
44. CEM [469] 33.2% 0.0% 7.8% 54.4% 642 731 0.3
49. DP NMS [526] 32.2% 31.2% 5.4% 62.1% 972 944 5.9

(a) MOT16 Leaderboard using Public DPM detections

Method MOTA IDF1 MT ML IDS FRAG Hz
1. LMP [656] 71.0% 70.1% 46.9 % 21.9 % 434 587 0.5
2. KDNT [765] 68.2% 60.0% 41.0% 9.0% 933 1,093 0.7
3. POI [765] 66.1% 65.1% 34.0% 20.8% 805 3,093 9.9
8. NOMTwSDP16 [121] 62.2% 62.6% 32.5% 31.1% 406 642 3.1
9. DeepSORT 2 [724] 61.4 % 62.2% 32.8 % 18.2% 781 2,008 17.4
10. SORTwHPD16 [50] 59.8% 79.6% 25.4% 22.7% 1,423 1,835 59.5
11. IOU [57] 57.1% 46.9% 23.6% 32.9% 2,167 3,028 3,004.6

(b) MOT16 Leaderboard using a Private Detector

Table 6.1: MOT16 Multi Object Tracking Leaderboard. We report the
Multiple Object Tracking Accuracy (MOTA), F1 score on identified detections
(IDF1), the ratio of mostly tracked (MT) and mostly lost trajectories (ML),
number of ID switches (IDS) and track segmentations (FRAG), and run time.
The metrics are detailed in [470]. Methods below the horizontal line show
older entries for reference. Accessed on: June 2019.

while performing worse on others. The MOT Challenge [396, 470] combines
most of these sequences into one framework by providing a centralized eval-
uation and comparison. While some sequences, e.g., PETS and TUD, are
captured from a static observer, other sequences that are more relevant for
autonomous driving are acquired from a mobile platform. The KITTI dataset
[243, 242] provides tracking data specific to autonomous driving with sepa-
rate evaluations for tracking car and pedestrian classes. Recently, Chang
et al. [104] presented a novel 3D object tracking dataset collected by a fleet
of autonomous vehicles. The dataset consists of 360◦ images, forward-facing
stereo imagery, LiDAR, and 6-DOF pose. The authors provide 290km of lane
markings and 10k human-annotated tracked objects.

The MOT Benchmark published over three consecutive years, MOT15
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Method MOTA IDF1 MT ML IDS FRAG Hz
1. JBNO [295] 52.6% 50.8% 19.7 % 35.8 % 3,050 3,792 5.4
2. FAMNet [125] 52.0% 48.7% 19.1% 33.4 % 3,072 5,318 -
3. eTC [698] 51.9% 58.1% 23.1% 35.5 % 2,288 3,071 0.7
4. eHAF17 [622] 51.8% 54.7% 23.4% 37.9% 1,834 2,739 0.7
5. AFN [621] 51.5% 46.9% 20.6% 35.5% 2,593 4,308 1.8
6. FWT [294] 51.3% 47.6% 21.4% 35.2% 2,648 4,279 0.2
7. jCC [348] 51.2% 54.5% 20.9% 37.0% 1,802 2,984 1.8
9. MHT DAM [349] 50.7% 47.2% 20.8% 36.9% 2,314 2,865 0.9
14. DMAN [799] 48.2% 55.7% 19.3% 38.3% 2,194 5,378 0.3
17. MHT bLSTM [350] 47.5% 51.9% 18.2% 41.7% 2,069 3,124 1.9

Table 6.2: MOT17 Multi Object Tracking Leaderboard using Pro-
vided Detections. We report the Multiple Object Tracking Accuracy
(MOTA), F1 score on identified detections (IDF1), the ratio of mostly tracked
(MT) and mostly lost trajectories (ML), number of ID switches (IDS) and
track segmentations (FRAG), and run time. The metrics are detailed in [470].
Methods below the horizontal line show older entries for reference. Accessed
on: June 2019.

[396], MOT16, and MOT17 [470], consists of sets of sequences with tracking
labels and provides an official evaluation protocol based on CLEAR metrics
[635]. The earliest MOT15 uses a classical object detector based on aggre-
gated channel features (ACF) [173]. In MOT16, detections are obtained using
Deformable Parts Model (DPM) [204] while in MOT17, three different sets
of object detections are provided using DPM [204], Faster R-CNN [552], and
Scale Dependent Pooling (SDP) [755]. Providing sets of detections allows
comparing approaches based on their ability to track objects independent
of errors caused by different detectors. For MOT16, the leaderboard with
methods using the public (DPM) detections is provided in Table 6.1a and
the methods using a private detector are shown in Table 6.1b. For MOT17,
Table 6.2 shows the average results over three provided detectors on the same
set of sequences.

For autonomous driving application specifically, KITTI [243] provides two
benchmarks, one for tracking of cars (KITTI car) in Table 6.3a and the other
for tracking of pedestrians in Table 6.3b. Methods marked with an asterisk
use Regionlet detections [702] for an independent comparison of the tracking
performance. The separate challenges for cars and pedestrians allow focusing
on each class separately and investigating the problems specific to a class
deeply.
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Method MOTA MOTP MT ML IDS FRAG Runtime
1. MOTBeyondPixels [619] 84.24 % 85.73 % 73.23 % 2.77 % 468 944 0.3 s / 1 core
2. IMMDP [737] 83.04 % 82.74 % 60.62 % 11.38 % 172 365 0.19 s / 4 cores
3. JCSTD [663] 80.57 % 81.81 % 56.77 % 7.38 % 61 643 0.07 s / 1 core
4. 3D-CNN/PMBM [595] 80.39 % 81.26 % 62.77 % 6.15 % 121 613 0.01 s / 1 core
7. NOMT* [121] 78.15 % 79.46 % 57.23 % 13.23 % 31 207 0.09 s / 16 cores
10. DSM [215] 76.15 % 83.42 % 60.00 % 8.31 % 296 868 0.1 s / GPU
11. SCEA* [763] 75.58 % 79.39 % 53.08 % 11.54 % 104 448 0.06 s / 1 core
12. CIWT* [505] 75.39 % 79.25 % 49.85 % 10.31 % 165 660 0.28 s / 1 core
14. SSP* [405] 72.72 % 78.55 % 53.85 % 8.00 % 185 932 0.6 s / 1 core
18. RMOT* [764] 65.83 % 75.42 % 40.15 % 9.69 % 209 727 0.02 s / 1 core

(a) KITTI Car Tracking Leaderboard

Method MOTA MOTP MT ML IDS FRAG Runtime
1. IMMDP [737] 47.22 % 70.36 % 24.05 % 27.84 % 87 825 0.9 s / 8 cores
2. NOMT* [121] 46.62 % 71.45 % 26.12 % 34.02 % 63 666 0.09 s / 16 cores
4. JCSTD [663] 44.20 % 72.09 % 16.49 % 33.68 % 53 917 0.07 s / 1 core
5. SCEA* [763] 43.91 % 71.86 % 16.15 % 43.30 % 56 641 0.06 s / 1 core
6. RMOT* [764] 43.77 % 71.02 % 19.59 % 41.24 % 153 748 0.02 s / 1 core
8. CIWT* [505] 43.37 % 71.44 % 13.75 % 34.71 % 112 901 0.28 s / 1 core
10. NOMT [121] 36.93 % 67.75 % 17.87 % 42.61 % 34 789 0.09 s / 16 core
11. RMOT [764] 34.54 % 68.06 % 14.43 % 47.42 % 81 685 0.01 s / 1 core
13. SCEA [763] 33.13 % 68.45 % 9.62 % 46.74 % 16 717 0.05 s / 1 core

(b) KITTI Pedestrian Tracking Leaderboard

Table 6.3: KITTI Tracking Leaderboard. We report the Multiple Object
Tracking Accuracy (MOTA), Multiple Object Tracking Precision (MOTP),
the ratio of mostly tracked (MT) and mostly lost trajectories (ML), number
of ID switches (IDS) and track segmentations (FRAG), and run time. The
metrics are detailed in [243]. Methods below the horizontal line show older
entries for reference. Accessed on: June 2019.

6.4 Metrics

In Tables 6.1a, 6.1b, 6.2, 6.3a, 6.3b, we consider the commonly used tracking
measures, Multiple Object Tracking Accuracy (MOTA) and Multiple Ob-
ject Tracking Precision (MOTP) introduced by [635], the ratio of mostly
tracked (MT) and mostly lost trajectories (ML), number of ID switches (IDS)
and track segmentations (FRAG). For the MOT leaderboards, following the
benchmark page, we show the IDF1 score introduced by [565] instead of
MOTP. The IDF1 score is the F1 score of the identification precision and
recall, i.e., the ratio of correctly identified detections over the average number
of ground truth and computed detections. Mostly tracked and mostly lost
trajectories show the percentage of trajectories that are covered by a hypoth-
esis at least 80% or at most 20% of the time, respectively. For descriptions
of the metrics and the detailed tables with additional metrics such as False
Negatives, False Positives, ID recall, and ID precision, please check the KITTI
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[243] and MOT benchmarks [396, 470] as well as [565].

6.5 State of the Art on MOT & KITTI

MOT16 Benchmark: Classical approaches such as near-online multi-
target tracking approach [121], multiple hypothesis tracking approach [349]
and tracking based on Markov decision processes [737] still perform consis-
tently well on MOT benchmarks in comparison to newly proposed methods.
Their deep learning counterparts with better appearance models that are
learned as explained in Section 6.2.4 perform even better [576, 350]. The
comparison of [576] to [737] can be found on MOT151 due to the date of the
first publication preceding MOT16 and MOT17. The learning-based method
proposed in [350] is trained on ground truth detections and performs worse
compared to [349] on MOT17 (Table 6.2) due to noisy DPM detections, which
affect overall performance as explained in [350].

The success of single object trackers (SOT) triggered methods that com-
bine several single object detectors for MOT (Tables 6.1a, 6.2) by learning a
tracker for each object [126, 124]. These approaches initialize a new single
object tracker whenever a new object is detected with high confidence. They
assign detections of known objects to each single object tracker by restricting
the search space according to a motion model and choosing the best detection
candidate using a binary classifier. In Chu et al. [126], a spatial-temporal at-
tention mechanism is proposed to handle the drift caused by occlusion and
interactions among targets. Chu et al. [124] encode awareness both within and
between object models and proposes an adaptive model refreshment strategy
to eliminate noise in model initialization.

The customized tracker proposed by Ma et al. [442] is the best-published
method on MOT16 using the provided detections (Table 6.1a). The method is
based on the formulation of tracking as a minimum cost lifted multi-cut prob-
lem similar to [655, 654, 656]. Despite being offline and therefore not directly
applicable to autonomous driving, this type of graph-based clustering formu-
lation performs very well on MOT. In contrast to previous methods, Ma et al.
[442] learn a sequence-specific tracker by fine-tuning a re-identification net-
work using the test sequences. They use the assumption that non-overlapping
tracklets represent different individuals to adapt a generic re-identification
CNN on test sequences.

Comparing public and private detectors on MOT16 (Tables 6.1a, 6.1b)
shows the importance of good object detectors. Tracking algorithms per-
form much better using private (usually better) object detections compared
to public detections, e.g., LMP [656] 71.0% versus 48.8% and NOMT [121]

1https://motchallenge.net/results/2D_MOT_2015/

https://motchallenge.net/results/2D_MOT_2015/
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62.2% versus 46.4% in MOTA. Recent object detectors combined with simple
tracking algorithms perform significantly better than any tracker with pub-
lic detections such as the simple tracker IOU [57] or SORT [50], which are
based on the Hungarian method in combination with Kalman filtering. Wo-
jke et al. [724] improve the performance of SORT further by incorporating
deep features into the pipeline for appearance matching. Similarly, Yu et al.
[765] also use a tracking algorithm based on the Hungarian algorithm and
Kalman filtering in combination with deep features for appearance matching.
However, their detector is trained on additional data including a self-collected
surveillance dataset, which is not public.

MOT17 Benchmark: Top-performing methods on MOT17 (Table 6.2) fol-
low a graph clustering scheme by associating tracklets, i.e., a short sequence of
detections, which can be easily and reliably associated, instead of detections.
Wang et al. [698] first create tracklets based on IOU and epipolar geometry in
the case of a moving camera. Tracklets represent nodes on a graph which are
then clustered based on a greedy search-based clustering method. Shen et al.
[621] incorporate the score of the tracklets into the learning-based network
flow approach proposed in [604]. While these methods have a preprocessing
step to generate tracklets, a more recent approach called FAMNet [125] com-
bines feature extraction, affinity estimation and the assignment problem in a
single network. Furthermore, single object tracking is incorporated into the
tracking system in order to recover from missing detections.

Recently, several approaches [348, 294, 295] propose to use additional cues
such as head detections and motion segmentation to improve tracking. Two of
the best-performing methods on MOT17 (Table 6.2) fuse head, body, and joint
detectors into a tracking system [294, 295]. Keuper et al. [348] address multi-
object tracking with top-down clustering of bounding boxes and bottom-up
motion segmentation by grouping point trajectories.

KITTI Benchmark: In contrast to the MOT Challenge, the KITTI bench-
mark focuses on the challenging scenario of tracking pedestrians (Table 6.3b)
and cars (Table 6.3a) in traffic scenes. Similarly to MOT, classical approaches
perform reasonably well such as tracking based on Markov decision process
(IMMDP) [737], improved min-cost network flow [405], or the near-online
multi-target tracking algorithm (NOMT) [121]. In IMMDP, a policy is learned
using reinforcement learning, which corresponds to learning a similarity func-
tion for data association. An improved version with Region Proposal Network
[552] is the best performing method on the car tracking task. Lenz et al.
[405] propose a computational and memory bounded version of the min-cost
network flow formulation presented in [782]. This approach achieves good
accuracy and precision while being amongst the fastest approaches on KITTI
car. NOMT [121] proposes Aggregated Local Flow Descriptor (ALFD) which
encodes relative motion patterns. Thanks to these features, distant detec-
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Figure 6.5: Tracking with Structural Motion Constraints. Structural
motion constraints introduced by Yoon et al. [763] to resolve errors caused by
false positives. The correct detections are marked with red and yellow boxes.
c© 2016 IEEE. Reprinted, with permission, from Yoon et al. [763].

tions can be robustly matched. Using multiple feature cues, their method
outperforms all the online tracking approaches on KITTI car.

Recent approaches leverage domain-specific information such as the mo-
tion of the car or the structure of the scene. Yoon et al. [764] factor out the
camera motion by constructing a network to describe the relative motion be-
tween objects. They further improve in [763] by exploiting structural motion
constraints defined by the location and velocity difference between two ob-
jects as illustrated in Figure 6.5. Jointly reasoning about the structure allows
them to alleviate problems that are common to 2D trackers (e.g., occlusions)
and outperform them, especially in the car tracking task. Frossard and Urta-
sun [215] propose to learn tracking in a network flow approach based on 3D
detections. The structured hinge loss is adapted to backpropagate through
the Integer Program. Other top-performing 3D algorithms are [505] coupling
image and world-space estimations using a novel 2D-3D Kalman filter and
[595] proposing a Poisson multi-Bernoulli mixture (PMBM) tracker. Sharma
et al. [619] exploit the geometry of urban road scenes to infer 3D cues for
tracking such as 3D pose and shape based on single view reconstruction of
objects. This approach outperforms all others in accuracy (MOTA) and pre-
cision (MOTP) in the KITTI car leaderboard.
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6.6 Discussion

Reliable tracking-by-detection can only be achieved by using very accurate
object detections. The impact of the detection system can be observed when
comparing the methods marked with and without asterisks in the KITTI
leaderboards (Tables 6.3a,6.3b). In the MOT16 leaderboards this can be
observed when comparing the tables for methods using public detections in
Table 6.1a and private object detectors in Table 6.1b. However, we discuss the
problem of object detection in detail in Section 5.6 and focus our attention
in this section on the tracking problem. Similar to the detection, tracking
pedestrians is typically more challenging than cars. The reason is the complex
motion of pedestrians which is hard to predict, in contrast to the rigid motion
of cars which are bound by the road region and follow a less erratic behavior
due to their large mass and dynamical constraints. 3D reasoning can help
to improve tracking performance, especially for cars, by identifying plausible
solutions according to geometric relationships.

In traffic scenes, detectors frequently fail for partially or fully occluded
objects. In these cases, the tracking system needs to re-identify the tracked
objects later in time but this can be difficult due to changes in lighting con-
ditions or similarity to other objects in the proximity. These problems cause
a reinitialization of trajectories, which can be observed in the high number
of fragmentations (FRAG) and ID switches (IDS) in the MOT and KITTI
benchmarks. Furthermore, we note that most tracking systems comprise com-
plex pipelines and very few end-to-end multiple target tracking algorithms
have been proposed in the literature. Bridging this gap from detection to
tracking with the goal of a generic and end-to-end trainable model will be an
important direction for future research in this area.
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Chapter 7

Semantic Segmentation

7.1 Problem Definition

Semantic segmentation is a fundamental problem in computer vision and an
intermediate goal towards solving higher-level tasks such as scene understand-
ing or sensorimotor control. The goal of semantic segmentation is to assign
each pixel in the image a label from a predefined set of categories. The task
is illustrated in Figure 7.1 using an example from the Cityscapes dataset1 by
Cordts et al. [134]. Segmentation of images into semantic regions that are
typically found in street scenes, such as cars, pedestrians, or road allows for
a comprehensive understanding of the surrounding which is essential to au-
tonomous navigation. The task is difficult due to the complexity of the scene,
complicated object boundaries, small objects and the large size of the label
space.

7.2 Methods

The goal of semantic segmentation is to assign a semantically meaningful class
label (e.g., road, sidewalk, pedestrian, sky) to each pixel of an image. Tra-
ditionally, the problem was posed as maximum-a-posteriori (MAP) inference
in a conditional random field (CRF), defined over pixels [287, 684, 623] or
superpixels [288, 359]. Hierarchical [287, 374, 384, 386] and long-range con-
nectivity as well as higher-order potentials defined on image regions [288, 359]
have been exploited to compensate for limitations of CRFs with local con-
nections and to model long-range interactions within the image. Krähenbühl
and Koltun [365] propose a tractable inference algorithm for fully connected

1https://www.cityscapes-dataset.com/
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Figure 7.1: Semantic Segmentation. In semantic segmentation, the goal is
to assign a semantic class label to each pixel in the image. Example from the
Cityscapes dataset by Cordts et al. [134]. Figure courtesy of www.cityscapes-
dataset.com.

CRF models which model pairwise potentials between all pairs of pixels in
the image. While previous methods using fully connected CRFs [542, 227,
359] could only be applied to smaller image regions due to the computational
and memory complexity of these algorithms, [365] allows deploying fully con-
nected CRF models at pixel-level. Figure 7.2 illustrates the results of [365]
and compares them to pixel-wise classification and inference over superpixels
[359].

An alternative to inference in graphical models for the task of semantic
segmentation is presented by Munoz et al. [487]. They train a sequence of
inference models in a hierarchical procedure that captures context over larger
image regions. This allows them to bypass the difficulties of training struc-
tured prediction models when exact inference is intractable and yields a very
efficient and accurate scene labeling algorithm.

While most previous approaches rely on very simple features such as color,
edge and texture information, Shotton et al. [623] observed that more powerful
features have the potential to significantly boost performance. They propose
an approach based on a novel feature type called texture-layout filter that
exploits the textural appearance of objects, its layout as well as textural
context. They combine texture-layout filters with lower-level image features
in a CRF to obtain pixel-level segmentations.
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Figure 7.2: Fully Connected Conditional Random Field. Semantic
segmentation results of a per-pixel classifier [365], a superpixel-based CRF
[359] and a fully connected CRF [365]. c© 2016 NeurIPS. Reprinted, with
permission, from Krähenbühl and Koltun [365].

Co-occurrence of Object Classes: The methods so far consider each
object class independently. However, the co-occurrence of object classes is
typically not random and can thus be an important cue for semantic seg-
mentation, e.g., cars are more likely to occur in a street scene than in an
office scene and co-occur with other street scene objects such as traffic signs.
Ladicky et al. [385] propose to explicitly incorporate object class co-occurrence
as global features into a CRF. They optimize the CRF using graph cuts and
demonstrate better performance compared to pairwise models. Zhang and
Chen [788] extend this idea by encoding spatial arrangements of different ob-
ject categories. Myeong et al. [491] propose a retrieval-based approach which
extracts contextual relationships from annotated region pairs.

7.2.1 Deep Learning for Semantic Segmentation

The success of deep convolutional neural networks for image classification and
object detection has sparked interest in leveraging their potential for solving
pixel-level tasks, in particular semantic segmentation. The fully convolutional
neural network [431] illustrated in Figure 7.3 is one of the earliest works
which applies CNNs to the image segmentation problem. Modern convolu-
tional neural networks for image classification combine multi-scale contextual
information by consecutive pooling and sub-sampling layers that lower the
resolution. However, semantic segmentation requires multi-scale contextual
reasoning together with full-resolution predictions, i.e., dense predictions.
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Figure 7.3: Convolutional Neural Network. Fully convolutional neural
network for semantic segmentation proposed by Long et al. [431]. c© 2015
IEEE. Reprinted, with permission, from Long et al. [431].

Several methods [111, 766, 249, 24] have therefore been proposed to tackle
the opposing needs of multi-scale inference and full-resolution outputs. Di-
lated convolutions [111, 766] enlarge the receptive field of neural networks
without loss of resolution. The dilated convolution operation corresponds to
a regular convolution that skips pixels while applying the filter. This allows
for efficient multi-scale reasoning without increasing the number of model
parameters. Chen et al. [110] extend this idea by using multiple dilated con-
volutions with different sampling rates in parallel.

In contrast, Badrinarayanan et al. [24] propose an encoder-decoder net-
work with skip connections. Each decoder layer maps a low resolution feature
map of an encoder (max-pooling) layer to a higher resolution feature map. In
particular, the decoder in their model takes advantage of the pooling indices
computed in the max-pooling (i.e., downsampling) step of the corresponding
encoder to implement the upsampling process. This eliminates the need to
learn the upsampling and thus results in a smaller number of parameters.
Furthermore, sharper segmentation boundaries can be obtained using this
approach.

While activation maps at lower-levels of the CNN hierarchy lack informa-
tion specific to object categories, they provide information of higher spatial
resolution. Ghiasi and Fowlkes [249] leverage this assumption and propose to
construct a Laplacian pyramid based on a fully convolutional network. Ag-
gregating information at multiple scales allows them to successively refine the
boundary reconstructed from lower-resolution layers. They achieve this by us-



7.2. METHODS 89

ing skip connections from higher resolution feature maps and multiplicative
confidence gating, penalizing noisy high-resolution outputs in regions where
low-resolution predictions have high confidence.

Combining CNNs and CRFs: A different way to address the needs
of multi-scale inference and full resolution prediction is the combination of
CNNs with CRF models. Chen et al. [111] and Chen et al. [110] propose
to refine the label map obtained using a convolutional neural network using
a fully connected CRF model [365]. The CRF allows them to capture fine
details based on the raw RGB input which are missing in the CNN output
due to the limited spatial accuracy of the CNN model. In a similar spirit,
Jampani et al. [320] generalize bilateral filters and backpropagate through the
CRF inference [418] which allows for end-to-end training of the (generalized)
filter parameters from data. This effectively allows for reasoning over larger
spatial regions within one convolutional layer by leveraging input features as
a guiding signal.

Inspired by higher-order CRFs for semantic segmentation, Gadde et al.
[221] propose a new Bilateral Inception module for CNN architectures as an
alternative to structured CNNs and CRF techniques. They use the assump-
tion that pixels which are spatially and photometrically similar are more
likely to have the same label. This allows them to directly learn long-range
interactions, thereby removing the need for post-processing using CRF mod-
els. Specifically, the proposed modules propagate edge-aware information
between distant pixels based on their spatial and color similarity, incorporat-
ing the spatial layout of superpixels. Propagation of information is achieved
by applying bilateral filters with Gaussian kernels at various scales.

Deeper CNNs: Simonyan and Zisserman [627] and Szegedy et al. [651] have
shown that the depth of a CNN is crucial to represent rich features. However,
increasing the depth of a network leads to an increase in complexity as well as
to saturation and degradation in accuracy. He et al. [284] proposed the deep
residual learning framework (ResNet) illustrated in Figure 7.4 to address this
problem. In deep residual networks, each stacked layer learns a residual map-
ping instead of the original mapping. This facilitates the backpropagation of
gradients and thus training and results in higher accuracy in comparison to
regular deep networks. Pohlen et al. [530] present a ResNet-like architecture
which preserves high-resolution information throughout the entire network by
combining two different processing streams. One stream passes through a se-
quence of convolution and pooling layers, whereas the other stream processes
feature maps at full image resolution by adding successive residuals from the
other stream. Both processing streams are connected using full resolution
residual units.

Wu et al. [734] propose a more efficient ResNet architecture by analyzing
the effective depth of residual units. They point out that ResNets behave
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Figure 7.4: Deep Convolutional Neural Networks. Comparison of plain,
Residual[284] and Dense[308] convolutional neural networks. Reprinted, with
permission, from Huang et al. [309].

as linear ensembles of shallow networks. Based on this understanding, they
design a group of relatively shallow convolutional networks for the task of
semantic image segmentation, which performs better. To better incorporate
global context information into the pixel-level prediction task, Zhao et al. [791]
propose a pyramid scene parsing network (PSPNet), illustrated in Figure 7.5.
They apply a pyramid parsing module to the last convolutional layer of a CNN
which fuses features of several pyramid scales to combine local and global
context information. The resulting representation is fed into a convolution
layer to obtain the final per-pixel predictions. Inspired by this work, [112]
revisited the Atrous Spatial Pyramid Pooling (ASPP) [110] by experimenting
with cascading and parallel application of dilated convolutions. This allows
them to improve upon their previous work [110] while achieving comparable
results to PSPNet [791].

Motivated by deeper architectures like ResNet, Huang et al. [308] propose
dense convolutional networks that connect a layer with all preceding layers
by concatenation. This allows maximal information throughput from lower
to higher levels. In Figure 7.4, plain, residual, and dense architectures are
illustrated. Jégou et al. [324] extend dense CNNs to the semantic segmen-
tation problem by constructing a downsampling and upsampling path using
dense modules and connecting them with skip connections [567].
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Figure 7.5: Pyramid Pooling Module. Overview of the method proposed
by Zhao et al. [791]. The pyramid parsing module (c) is applied to the output
of a CNN feature map (b) and fed into a convolutional layer for per-pixel
estimation of semantic class labels (d). c© 2017 IEEE. Reprinted, with per-
mission, from Zhao et al. [791].

7.2.2 Videos

In robotic applications such as autonomous driving we usually have access
to videos rather than single image frames. The temporal correlation between
adjacent frames can be exploited to improve segmentation accuracy, efficiency
and robustness. The scene usually changes only slightly between two adjacent
frames. Thus, given correspondences between two frames, semantic labels can
be propagated in time or corrected using temporal information.

Floros and Leibe [207] propose a graphical model for semantic segmenta-
tion operating on video sequences in order to enforce temporal consistency
between frames. Specifically, they present a CRF where temporal consis-
tency between consecutive video frames is ensured by linking corresponding
image pixels to the inferred 3D scene points obtained by Structure-from-
Motion (SfM). Compared to an image-only baseline, they achieve improved
segmentation performance and observe better generalization to varying image
conditions. 3D reconstruction works relatively well for static scenes but is still
an open problem in dynamic scenes. The presence of both camera and object
motion makes temporal association in videos a challenging task. In case of
significant motion, Euclidean distance in the space-time volume is not a good
measure for finding correspondences. In order to tackle this problem, Kundu
et al. [378] propose a method for optimizing the feature space of a dense CRF
for spatio-temporal regularization. Specifically, the feature space is optimized
such that distances between features associated with corresponding points are
minimized using correspondences from optical flow. The resulting mapping
is exploited by the CRF to achieve long-range regularization over the entire
space-time volume.

Label Propagation: Another way to explore temporal correlations in
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videos for semantic segmentation is label propagation. Creating large scale
image datasets with highly accurate pixel-level annotations is labor-intensive,
and thus obtaining the desired degree of quality is very expensive. Semi-
supervised methods for annotating video sequences can help to reduce this
cost. Compared to annotating individual images, video sequences offer the
advantage of temporal consistency between consecutive frames. Label prop-
agation techniques take advantage of this fact by propagating annotations
from a small set of annotated keyframes to all unlabeled frames of the video
by exploiting color and motion information.

Towards this goal, Badrinarayanan et al. [23] propose a coupled Bayesian
network which employs a propagation scheme based on correspondences ob-
tained from patch-based similarities and semantically consistent regions. This
allows them to transfer label information to unlabeled frames between anno-
tated keyframes. Budvytis et al. [88] extend this approach by proposing a
hybrid model of the generative propagation introduced in [23] as well as a
discriminative classification stage which tackles occlusions and disocclusions,
and allows to propagate over larger time intervals. To correct erroneously
propagated labels, Badrinarayanan et al. [22] propose a superpixel based
mixture-of-tree model for temporal correlation where each component of the
mixture contains a tree-structured temporal linkage between superpixels of
different frames. Vijayanarasimhan and Grauman [687] tackle the problem
of selecting the most promising keyframes for manual labeling such that the
expected propagation error is minimized.

While the aforementioned methods transfer annotations in 2D, Chen et
al. [108] and Xie et al. [742] propose to annotate directly in 3D and then
transfer these annotations into the image domain. Given 3D information (e.g.,
from stereo or LiDAR), these approaches are able to produce time coherent
semantic labels with limited annotation costs. Towards this goal, Chen et al.
[108] use annotations from KITTI [242] and leverage 3D CAD models of cars
to infer separate figure-ground segmentations for all cars in the image. In
contrast, Xie et al. [742] reason jointly about all objects in the scene by also
handling categories for which CAD models or 3D point measurements are not
available. To this end, they propose a non-local CRF model which reasons
jointly about semantic and instance labels of all 3D points and pixels in the
image.

Scene Understanding: Scene understanding approaches such as [196, 241]
discussed in Chapter 14 exploit semantic segmentation as a cue for reasoning
about road topologies and traffic participants. While Ess et al. [196] use se-
mantic information to classify a scene into different road topologies based on a
short video sequence, Geiger et al. [241] formulate a probabilistic model which
explains semantic segmentation together with vehicle trajectories, vanishing
points, scene flow and occupancy information. However, both approaches
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do not leverage temporal correlations to improve the semantic segmentation
itself.

7.2.3 Street Side Views

One specific application scenario of semantic segmentation which has impor-
tant applications for autonomous vehicles is the segmentation of street-side
images (i.e., building facades) into their components (wall, door, window,
vegetation, balcony, store, mailbox, etc.). Such semantic segmentations are
useful for accurate 3D reconstruction [268, 267, 119], memory-efficient 3D
mapping, robust localization [601] as well as path planning. As an example,
in 3D reconstruction applications such side information allows for ignoring
vegetation that is difficult to model and will change over time.

Xiao and Quan [741] propose a multi-view semantic segmentation frame-
work for images captured by a camera mounted on a car driving along the
street. Specifically, they define a pairwise MRF across superpixels in multiple
views, where the unary terms are based on 2D and 3D features. Further-
more, they minimize color differences for spatial smoothness and use dense
correspondences to enforce smoothness across different views. Xiao et al.
[740] go one step further and generate photo-realistic 3D models from im-
ages captured at ground level. In particular, they segment each image into
semantically meaningful areas, such as building, sky, ground, vegetation or
car. Then, they partition buildings into independent blocks exploiting archi-
tectural priors for inference. This allows them to cope with noisy and missing
3D data and produces visually compelling results. While Xiao and Quan
[741] and Xiao et al. [740] represent facades with planes or simple geometric
primitives, Mathias et al. [451] propose a more flexible 3-layered method for
segmentation of building facades. First, the facade is segmented into seman-
tic classes which are combined with the output of detectors for architectural
elements such as windows and door. Finally, weak architectural priors such as
alignment, symmetry and co-occurrence are exploited to encourage the recon-
struction to be architecturally consistent. The complete pipeline is illustrated
in Figure 7.6.

7.2.4 3D Data

While the problem of semantic object labeling has been studied extensively,
most of these algorithms work in the 2D image domain where each pixel in
the image is labeled with a semantic category such as car, road or pavement.
However, 2D images lack important information such as the 3D shape and
scale of objects, which are strong cues for object class segmentation and facili-
tate the detection and separation of individual object instances. Furthermore,
semantic segmentation of 3D data enables autonomous systems to recognize
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Figure 7.6: Facade Parsing. The three-layered approach proposed by Math-
ias et al. [451] for facade parsing. They first segment the facade and as-
sign probability distributions to semantic classes considering extracted visual
features. In the next layer they use detectors for specific objects such as
doors and windows to improve the classifier output. Finally, they incorporate
weak architectural priors and search for the optimal facade labeling using
a sampling-based approach. Reprinted by permission from Springer Nature
Customer Service Centre GmbH: Springer Nature IJCV, Mathias et al. [451],
c© 2016.

their surroundings, identify and interact with objects of interest in physical
3D space.

The problem of 3D semantic segmentation has been addressed using dif-
ferent input modalities, i.e., monocular image sequences [450], stereo image
sequences [682, 610] or 3D point clouds [744, 303, 266, 222]. While Martinović
et al. [450] and Valentin et al. [682] use multi-view reconstruction approaches
which we discuss in Chapter 10 for estimating the 3D structure of the scene
from monocular image sequences, Gadde et al. [222] and Hackel et al. [266]
directly work with 3D point clouds, e.g., from LiDAR. Sengupta et al. [610]
propose to project 2D semantic segmentation into a 3D model obtained from
depth map fusion using ego-motion estimation from visual odometry as illus-
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Figure 7.7: Semantic Segmentation of 3D Data. From a stereo image pair
(a) Sengupta et al. [610] compute the disparity map (b) and track the camera
motion (c). They use both outputs to obtain a volumetric representation (d)
and fuse the semantic segmentation of street images (e) into a 3D semantic
model of the scene (f). c© 2013 IEEE. Reprinted, with permission, from
Sengupta et al. [610].

trated in Figure 7.7. In parallel, the input images are semantically labeled
using a CRF model. The results of this segmentation are then aggregated
across the sequence to generate the final 3D semantic model.

Several approaches [303, 682, 450, 222, 266] tackle the problem of seman-
tic scene reconstruction directly in 3D space as shown in Figure 7.8. Valentin
et al. [682] apply a cascaded classifier to learn geometric cues from the mesh
and appearance cues from images. In contrast, Martinović et al. [450] avoid
time-consuming conversions between 2D and 3D representations by training
Random Forest classifiers on 3D features. Afterwards, they separate individ-
ual facades based on their semantic structure and impose weak architectural
priors. Instead of imposing architectural priors, Gadde et al. [222] implement
a sequence of boosted decision tree classifiers, stacked using auto-context fea-
tures. They demonstrate that the system is fast at inference time and easily
adapts to new datasets. Hackel et al. [266] propose a fast semantic segmen-
tation approach for large 3D point clouds, which can also handle strongly
varying densities. They construct approximate multi-scale neighborhoods by
down-sampling the point cloud in order to generate a pyramid with decreas-
ing density. This scheme allows extracting a rich feature representation that
captures the geometry in a point’s local neighborhood such as roughness, sur-
face orientation, and height over ground. A random forest classifier finally
predicts class-conditional probabilities.

Image-based 3D semantic segmentation approaches like [610] lead to re-
dundant computations due to the overlap of images used for reconstruction
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Figure 7.8: 3D Semantic Segmentation. Semantic segmentation of two
3D scenes using the method of Hackel et al. [266] with facades (gray), ground
(orange), cars (blue), motorcycles (yellow), traffic signs (red), pedestrians (vi-
olet) and vegetation (bordeaux). c© 2016 ISPRS. Reprinted, with permission,
from Hackel et al. [266].

of the 3D model. Therefore, approaches directly working in the 3D space are
usually more efficient. Riemenschneider et al. [564] exploit the inherent redun-
dancy in the labeling of all overlapping images to further increase the efficiency
of image-based 3D semantic segmentation. They propose an approach that
exploits the geometry of a 3D mesh model obtained from multi-view stereo to
predict the best view for each face of the mesh before inferring the semantic
class label. This allows them to accelerate their pipeline by two orders of
magnitude, however, with lower accuracy than Martinović et al. [450].

Online Methods: While all aforementioned methods work in batch mode,
i.e., they process all data at once, online methods allow the flexible incor-
poration of new measurements. This is particularly useful in the context of
autonomous driving where new data arrives continuously. Towards online
3D semantic segmentation, Xiong et al. [744] train a sequence of classifiers
to make predictions on different scales in a coarse-to-fine fashion (from re-
gions to points). Predictions from the preceding scale are used as additional
information for the current scale. They extend this work in [303] with a hier-
archical representation of the 3D data and an improved inference procedure.
Vineet et al. [688] propose an end-to-end system which processes data incre-
mentally while performing real-time dense stereo reconstruction and semantic
segmentation of outdoor environments. They achieve this using voxel hashing
[498], a hash-table-driven 3D volumetric representation that ignores unoccu-
pied space in the target environment. Furthermore, they employ an online
volumetric mean-field inference technique that incrementally refines the voxel
labeling and achieve real-time rates by harnessing the processing power of
modern GPUs. McCormac et al. [458] present a pipeline for dense 3D se-
mantic mapping designed to work online by fusing semantic predictions of
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a CNN with the geometric information from a SLAM system (ElasticFusion
by Whelan et al. [715]). Specifically, ElasticFusion provides correspondences
between 2D frames and a globally consistent map of surface elements or “sur-
fels”. Furthermore, they use a Bayesian update scheme which computes the
class probabilities for each surfel based on the CNN’s predictions.

3D CNN: While convolutional networks have proven very successful in
segmenting 2D images semantically, there exists comparably little work on
labeling 3D data using convolutional networks. Maturana and Scherer [456]
were one of the first to apply 3D Convolutional Neural Network (3D-CNN)
for object recognition of volumetric 3D data. Their VoxNet approach clas-
sifies 323 voxel volumes using a convolutional neural network. In contrast,
Huang and You [310] propose a framework to directly label 3D point cloud
data using a 3D-CNN. Specifically, they compute 3D occupancy grids of size
203 centered at a set of randomly generated keypoints. The occupancy and
the labels form the input to a 3D CNN which is composed of convolutional
layers, max-pooling layers, a fully connected layer and a logistic regression
layer. Towards processing larger volumes, Riegler et al. [563] propose Oct-
Nets, a 3D convolutional network, that allows for training deep architectures
at significantly higher resolutions. They build on the observation that 3D
data (e.g., point clouds, meshes) is often sparse in nature. OctNet exploits
this sparsity property by hierarchically partitioning the 3D space into a set
of octrees and applying pooling in a data-adaptive fashion. This leads to a
reduction in computation and memory requirements as the convolutional net-
work operations are defined on the structure of these trees. Thus, resources
can be allocated dynamically depending on the structure of the input.

7.2.5 Road Segmentation

Segmentation of road scenes is a crucial problem in computer vision for au-
tonomous driving. For instance, in order to navigate, an autonomous vehicle
needs to determine the drivable area ahead and determine its own position
on the road with respect to the lane markings. However, the problem is chal-
lenging due to the presence of a variety of differently shaped objects such as
cars and people, different road types and varying illumination and weather
conditions. Traditionally, the problem of autonomous driving has been tack-
led by detecting lane markings [61, 730, 400, 413]. However, as lane marking
features are often not reliable (bad weather, construction sites, missing lane
markings), more holistic approaches which consider the entire road area have
been explored lately.

Alvarez et al. [4] propose a Bayesian framework to classify road sequences
by combining low-level appearance cues with contextual 3D road cues such
as the horizon, vanishing points, the 3D scene layout and 3D road models. In
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addition, they extract temporal cues for temporally smoothing the results. In
follow-up work, Álvarez and López [6] convert the image into an illumination
invariant feature space to make their method robust to shadows. Mansinghka
et al. [448] propose an inverse-graphics inspired method by employing gener-
ative probabilistic graphics programs (GPGP) to infer roads in images taken
from vehicle-mounted cameras. GPGPs consist of a stochastic scene generator
for generating random samples from a road scene prior, a graphics renderer
for rendering the image segmentation of each sample and a stochastic likeli-
hood model linking the renderer’s output and the data. Kuehnl et al. [371]
present a method to improve appearance-based classification by incorporating
the spatial layout of the scene. Specifically, they suggest a two-stage approach
for road segmentation. First, they represent the road surface and delimiting
elements such as curbstones and lane-markings using confidence maps based
on local visual features. From these confidence maps, they extract SPatial
RAY (SPRAY) features that incorporate global properties of the scene and
train a classifier on those features. Their evaluation shows that spatial lay-
out helps especially in cases where there is a clear structural correspondence
between properties at different spatial locations.

Deep Learning: Recently, the problem of road segmentation has been ad-
dressed using convolutional neural networks [477, 502]. Mohan [477] proposes
a scene parsing system by using deconvolutional networks [776] in combination
with traditional CNNs for feature learning. Deconvolutional networks learn
features that capture mid-level cues such as edge intersections, parallelism
and symmetry in image data and thus obtain a more robust representation.
Oliveira et al. [502] investigate the trade-off between segmentation quality
and runtime using U-Nets [567]. Specifically, they introduce a new mapping
between classes and filters at the up-convolutional part of the network for re-
ducing runtime. They further segment the entire image with a single forward
pass, resulting in a more efficient approach compared to patch-based ones
[477]. However, as road segmentation is a subproblem of semantic segmen-
tation, today most state-of-the-art results on road segmentation are achieved
using generic off-the-shelf semantic segmentation networks.

Data Acquisition: All existing algorithms for labeling road scenes are
based on machine learning where the parameters of the respective model
must be estimated from large annotated datasets. To alleviate the burden of
annotating large datasets manually, Álvarez et al. [5] propose a method for
road segmentation where noisy training labels for road images are generated
using a convolutional neural network trained on a general image database.
Laddha et al. [383] follow a different approach and obtain ground truth labels
by exploiting OpenStreetMap information projected into the image domain
using the vehicle pose provided by the GPS sensor.
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Figure 7.9: Free Space Estimation. Free space and detected obstacles on
the Lost and Found dataset[523]. c© 2016 IEEE. Reprinted, with permission,
from Pinggera et al. [523]

7.2.6 Free Space Estimation

Accurate and reliable estimation of free space and the detection of obstacles
are core problems that need to be solved for enabling autonomous driving.
Free space is defined as the available space on the ground surface where navi-
gation of vehicle is guaranteed without collision. Obstacles refer to structures
that block the path of the vehicle by sticking out of the ground surface. In
contrast to road segmentation approaches, methods estimating free-space in
front of a vehicle often rely on geometric features which can be derived from
a depth map computed from stereo sensors. However, both complementary
approaches can be advantageously combined.

Badino et al. [19] propose a method for free space estimation by comput-
ing stochastic occupancy grids based on stereo information, where cells in
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a stochastic occupancy grid carry information about the likelihood of occu-
pancy. Stereo information is integrated over time in order to reduce depth
uncertainty. The boundary between free space and occupied space is robustly
obtained using dynamic programming on the occupancy grid. This work laid
the foundations for the Stixel representation, see Section 7.2.7 for an in-depth
discussion. While the original method of Badino et al. [19] makes the assump-
tion of a planar road surface, this assumption is often violated in practice.
In order to tackle more complicated road surfaces, Wedel et al. [708] pro-
pose an algorithm which models non-planar road surfaces using B-splines.
The surface parameters are estimated from stereo measurements and tracked
over time using a Kalman filter. In contrast, Suleymanov et al. [641] propose
a complete pipeline to detect and drive on collision-free traversable paths,
based on stereo information using a variational approach. In addition to free
space detection, their approach also establishes a semantic segmentation of
the scene, where labels include ground, sky, obstacles and vegetation.

Fisheye cameras discussed in Section 3.1.1 provide a wider field of view
compared to regular cameras and allow for the detection of obstacles closer
to the car. Häne et al. [272] propose a method for obstacle detection using
monocular fisheye cameras. In order to reduce runtime, they avoid using
visual odometry for accurate vehicle poses and instead, rely on less accurate
pose estimates from wheel odometry. While they show good accuracy in
the estimation of distances between objects, their experiments are limited to
objects in close proximity to the sensor.

Long Range Obstacle Detection: The accuracy of obstacle detection at
long-range is crucial for timely obstacle localization when the observer (i.e.,
the ego-vehicle) moves at high speed, e.g., in highways. Unfortunately, the
error of stereo vision systems increases quadratically with depth in contrast to
laser range sensors or radar sensors. In order to tackle this problem, Pinggera
et al. [522, 523] propose long range obstacle detection algorithms using stereo
vision. They formulate obstacle detection as a statistical hypothesis test, ex-
ploiting geometric constraints on camera motion and planarity. Independent
hypothesis tests are performed on small local patches distributed across the
input images. Detection results for a scene from their dataset are illustrated
in Figure 7.9.

7.2.7 Stixels

Stixels are a compact mid-level representation of 3D traffic scenes with the
goal to bridge the gap between pixels and objects [20]. The so-called “Stixel
World” representation originates from the observation that free space in front
of the vehicle is mostly limited by vertical surfaces. Stixels are represented by
a set of rectangular sticks standing vertically on the ground to approximate



7.2. METHODS 101

Figure 7.10: Multi-layer Stixel World. The multi-layer Stixel World rep-
resentation of Pfeiffer and Franke [519]. The scene is segmented into planar
segments termed “Stixels”. In contrast to the Stixel World of [20], objects are
allowed to be located at multiple depths within a single image column. The
color represents the distance to the obstacle with red being close and green far
away. c© 2016 BMVA. Reprinted, with permission, from Pfeiffer and Franke
[519].

these surfaces. Assuming a constant width, each stixel is defined by its height
and its 3D position relative to the camera. The main goal of stixels is to gain
efficiency through a compact, complete, stable, and robust representation. In
addition, the stixel representation provides an encoding of the free space and
the obstacles in the scene.

Using depth maps from SGM [297] as input, Badino et al. [20] use dynamic
programming based on occupancy grids to compute free space, determining
the stixels’ lower positions. Pfeiffer and Franke [519] extend [20] to a unified
probabilistic scheme. They furthermore lift the constraint on stixels to touch
the ground and allow multiple stixels for each image column, leading to a
more flexible representation as illustrated in Figure 7.10.

In the dynamic stixel world representation introduced by Pfeiffer and
Franke [518] the stixel representation was extended to dynamic scenes by
tracking stixels using 6D Kalman filters based on optical flow. In contrast,
Günyel et al. [263] show that motion estimation for stixels can be reduced
to a 1D problem and can be solved efficiently via 2D dynamic programming,
avoiding costly dense optical flow computation. Based on the dynamic stixel
world representation, Erbs et al. [193, 192] present a CRF framework for
semantically segmenting traffic scenes.

Several approaches proposed to leverage high-level information for infer-
ring stixel representations more robustly. Cordts et al. [135] incorporate top-
down object-level cues into the bottom-up stixel representation using a prob-
abilistic approach. With the success of deep learning, Schneider et al. [596]
present a semantic stixel representation to jointly infer the semantic and geo-
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metric layout of the scene from a dense disparity map and pixel-level semantic
scene labeling. Towards this goal, they used a deep learning-based scene la-
beling approach. In contrast, Levi et al. [407] propose StixelNet to directly
infer the foot point of each stixel from the input image.

7.2.8 Aerial Images

The aim of aerial image parsing is the automated extraction of urban objects
from data acquired by airborne sensors. The need for accurate and detailed
information for urban objects such as roads is rapidly increasing because of its
applications in the navigation of autonomous driving systems. For example,
the output of aerial image parsing can be used to automatically build road
maps (even in remote areas) and keep them up-to-date. Furthermore, infor-
mation from aerial images can be used for localization. However, the problem
is challenging because of the heterogeneous appearance of objects like build-
ings, streets, trees and cars which results in high intra-class variance but low
inter-class variance. Furthermore, the complex structure of road networks and
the difficulty of representing their geometry and topology accurately makes
this problem hard. Roads must form a connected network of thin segments
with slowly changing curvatures which meet at junctions. This type of prior
knowledge is more challenging to formalize and integrate into a structured
prediction formulation than standard smoothness assumptions.

Graphical Models: Graphical models have been a very popular way of
addressing the problem of semantic segmentation in aerial images [711, 712,
479, 685, 454, 455, 710]. Wegner et al. [711] propose a CRF formulation
for road labeling in which the prior is represented by cliques that connect
sets of superpixels along straight line segments. Specifically, they formulate
the constraints as high-order cliques with asymmetric PN -potentials which
express a preference to assign all rather than just a few of their constituent
superpixels to the road class. This allows the road likelihood to be amplified
for thin chains while still being amenable to efficient inference using graph
cuts. Wegner et al. [712] also model the road network using a CRF with long-
range, higher-order cliques. However, unlike [711], they allow for arbitrarily
shaped segments which adapt to more complex road shapes by searching for
putative roads with minimum cost paths based on local features. Montoya et
al. [479] extend this formulation to multi-label classification of aerial images
with class-specific priors for buildings and roads. In addition to the road
network prior of [712], they introduce a second higher-order potential for
cliques specific to buildings. In contrast, Verdie and Lafarge [685] propose the
application of Markov point processes for recovering specific structures from
images, including road networks. Markov point processes are a generalization
of traditional MRFs which can address object recognition problems by directly
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manipulating parametric entities such as line segments. Importantly, they
implicitly solve the model-selection problem, i.e., they allow for an arbitrary
number of variables in the MRF which can be associated with the parameters
of the objects of interest.

Aerial Image Parsing using Maps: Instead of framing the problem
of detecting topologically correct road networks as a semantic segmentation
problem, Mattyus et al. [454] exploit map information from the free and
community-driven mapping project OpenStreetMap (OSM)2. Given a road
map from OSM, Mattyus et al. [454] propose an MRF which reasons about the
location of the road centerline and its width for each road segment in OSM. In
addition, they incorporate smoothness between consecutive line segments by
encouraging their widths to be similar. This formulation has the advantage of
being efficient at inference time due to the restriction of the road topology to
the input maps. However, it cannot recover from errors or missing information
in the original map. Very recently, Facebook has announced a new set of tools3

that leverage AI to help the OSM community to build maps more efficiently.

Fine-grained Image Parsing: While aerial images provide full coverage
of a significant portion of the world, they are of much lower resolution than
ground images. In aerial imagery, the resolution relates to the ground area
covered by one pixel. Whereas 1 meter resolution is already a high resolution
for satellite imagery, the standard resolution for most publicly accessible im-
age databases (e.g., Google Earth4) is 0.30 meter. Resolutions of 0.15 to 0.03
meter are considered high resolutions for aerial imagery and are usually not
made publicly available. This makes fine-grained segmentation from aerial
images a challenging problem. In contrast, ground images provide additional
information which enables fine-grained semantic segmentation. Motivated by
the complementary nature of these cues, several methods [455, 710] for fine-
grained segmentation have been recently proposed which jointly reason about
co-located aerial and ground image pairs.

Mattyus et al. [455] extend their approach [454] by introducing a formu-
lation that reasons about fine-grained road semantics such as lanes and side-
walks. To infer this information, they jointly consider monocular aerial images
and high resolution stereo images captured from ground vehicles. Specifically,
they formulate the problem as energy minimization in a MRF, inferring the
number and location of the lanes for each road segment, all parking spots and
sidewalks as well as the alignment between the ground and aerial images. To-
wards this goal, they exploit deep learning to estimate semantics from aerial
and ground images and define potentials exploiting both cues. Wegner et al.
[710] build a map of trees for urban planning applications from aerial images,

2https://www.openstreetmap.org/
3https://mapwith.ai/
4https://www.google.com/earth/

https://www.openstreetmap.org/
https://mapwith.ai/
https://www.google.com/earth/
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Method Coarse Depth IoU class iIoU class
IoU iIoU

category category
1. DRN CRL Coarse [807] 4 82.8 61.1 91.8 80.7
2. DPC [107] 4 82.7 63.3 92.0 82.5
3. RelationNet Coarse [806] 4 82.4 61.9 91.8 81.4
4. SSMA [680] 4 4 82.3 62.3 91.5 81.7
5. GFF-Net [415] 82.3 62.1 92.0 81.4
10. DeepLabv3 [112] 4 81.3 62.1 91.6 81.7
11. AdapNet++ [680] 4 81.3 59.5 91.0 80.1
12. PSPNet [791] 4 81.2 59.6 91.2 79.2
14. ResNet-38 [734] 4 80.6 57.8 91.0 79.1

Table 7.1: CITYSCAPES Semantic Segmentation Leaderboard. Seg-
mentation performance is measured by class intersection-over-union and
instance-level intersection-over-union. All methods are trained on the dense
dataset consisting of 5000 frames and methods trained on the coarse dataset
consisting of additional 20000 frames are marked in the corresponding column.
Methods below the horizontal line show older entries for reference. Accessed
on: June 2019.

street view images and semantic map data. They train CNN-based object
detection algorithms on human-annotated data.

7.3 Datasets

There exist many large-scale realistic datasets for semantic segmentation as
discussed in Chapter 4. The most popular datasets are PASCAL VOC [197],
Microsoft COCO [425] and Cityscapes [134]. Recently, several companies also
created new datasets which focus on the autonomous driving scenario such
as Mapillary [495], ApolloScape [312] and Berkeley DeepDrive [767]. In ad-
dition, there exist several synthetic datasets for semantic segmentation, e.g.,
SYNTHIA [569] and Playing for data [560]. Here, we focus on the compari-
son of different semantic segmentation approaches on the popular Cityscapes
dataset5 by Cordts et al. [134] as it is most relevant to the autonomous driving
scenario. Cityscapes provides 5,000 images with high-quality dense annota-
tions and 20,000 additional images with coarse labels obtained using a novel
crowdsourcing platform.

In contrast to 2D semantic segmentation, there are only a few datasets
that address the 3D semantic segmentation problem. Furthermore, these
datasets are either very limited in size [488, 40, 265, 785] or in the number of
classes [242]. Recently, Behley et al. [38] presented a large-scale dataset for
3D semantic segmentation.

5https://www.cityscapes-dataset.com/

https://www.cityscapes-dataset.com/
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7.4 Metrics

The performance of methods for semantic segmentation is usually evaluated
using the intersection-over-union metric (IoU) which is defined as the num-
ber of true positive pixels divided by the sum over true positive, false pos-
itive and false negative pixels. As classes with larger segments will have a
larger effect on the IoU score, Cityscapes [134] also report the instance-level
intersection-over-union (iIoU) metric which weights the contribution of each
true positive and false negative pixel by the ratio of the average instance size
of the respective class with respect to the respective ground truth instance
size. Cityscapes [134] report the IoU and iIoU metrics for two semantic gran-
ularities, i.e., classes and categories.

7.5 State of the Art on Cityscapes

Table 7.1 shows the leaderboard of Cityscapes for the pixel-level semantic
labeling task. All methods are trained on the dense dataset comprising
5,000 densely annotated frames. Methods that are additionally trained on
the coarse dataset with additional 20,000 frames are marked in the table.
The state of the art in semantic segmentation shows very similar accuracy
in terms of IoU and iIoU. Li et al. [415] extend the pyramid scene parsing
network (PSPNet) of [791] with an advanced fusion mechanism. They pro-
pose Gated Fully Fusion modules which enable for every pixel to fuse only the
relevant information from different feature maps. This allows better accuracy
on fine-level details than PSPNet[791]. In contrast, Valada et al. [680] present
a multi-modal fusion approach that fuses features extracted from images and
depth. The feature extraction network is based on the full pre-activation
ResNet-50 [285] with multi-scale residual units proposed in [681] as well as
an efficient variant of Atrous Spatial Pyramid Pooling (ASPP) [112]. Zhuang
et al. [806] follow a different approach and introduce a Relation Module that
correlates features with their spatial neighborhood by shifting the features in
four directions (left-right, top-down) using pre-defined offsets while passing
them through Gated Recurrent Units. The features are extracted using a
ResNet-like architecture [734] modified with dilated and deformable convo-
lutions [150]. Zhuang et al. [807] extend this idea by exploiting additional
offsets to correlate features over larger neighborhoods. This allows them to
outperform all other methods on Cityscapes (Table 7.1).

Most existing network architectures for semantic segmentation are de-
signed by the developer. Recently, a new line of work proposes to search for
novel architectures in a properly defined search space. Chen et al. [107] ad-
dress three dense prediction problems, i.e., street scene parsing, person-part
segmentation and semantic image segmentation, with an architecture search.
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They use Xception [123, 150, 113] as the backbone network and build a re-
cursive search space from three popular operators, i.e., 1x1 convolution, 3x3
atrous convolution and average spatial pyramid pooling. Finally, they adapt
a random search algorithm to explore the recursive search space. By evaluat-
ing 28K architectures on 370 GPUs, they find an architecture that achieves
state-of-the-art performance on Cityscapes.

7.6 Discussion

The focus on multi-scale inference has led to impressive results in pixel-level
semantic segmentation on Cityscapes. Today, the top methods on Cityscapes
(Table 8.1) reach an impressive IoU of almost 83% over classes and 92% over
categories. In contrast, the instance-weighted IoU still ranges around 63%
over classes and 82% over categories. This indicates that semantic segmenta-
tion works well for instances covering large image areas but is still challenging
for instances covering smaller regions which provide less information about
the semantic label and require context reasoning. Furthermore, segmenting
small, and possibly occluded objects is a challenging task which might bene-
fit from accurate depth estimation. Recently, multi-modal fusion approaches
leveraging depth data have shown great performance for indoor [282, 145] and
outdoor [680] semantic segmentation, the latter achieving state-of-the-art per-
formance on Cityscapes as discussed in the previous section. Furthermore,
exploiting temporal correlations as in [378] has the promise to further improve
semantic segmentation accuracy and temporal consistency.



Chapter 8

Semantic Instance
Segmentation

8.1 Problem Definition

The goal of semantic instance segmentation is to simultaneously detect, seg-
ment and classify every individual object in an image. Unlike semantic seg-
mentation, a solution to this task provides information about the position,
semantics, shape, and count of individual objects, and therefore has many
applications in autonomous driving.

8.2 Methods

There exist two major lines of research for the task of semantic instance seg-
mentation: Proposal-based and proposal-free instance segmentation. While
proposal-based approaches usually consist of two steps, i.e., proposal extrac-
tion and proposal classification, proposal-free methods predict pixel labels
directly from the image.

8.2.1 Proposal-based Approaches

Proposal-based instance segmentation methods extract class-agnostic propos-
als which are classified as an instance of a semantic class in order to obtain
pixel-level instances. There exist several region proposal methods like Con-
strained Parametric Min-Cut (CMPC) [98], Multiscale Combinatorial Group-
ing (MCG) [16], DeepMask [524], and SharpMask [525] returning generic
class-agnostic region proposals which can be directly used as instance seg-
ments. Several object detection classifiers were proposed which simultane-
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Figure 8.1: Proposal-based Instance Segmentation Networks. Archi-
tectures for proposal-based instance segmentation. Sequential pipelines as
MNC [148] (upper row) use a detection and segmentation network sequen-
tially. In contrast, joint formulations as Mask R-CNN [283] (bottom row)
usually have the two networks in parallel, i.e., an object mask prediction
and bounding box recognition network. c© 2016,2017 IEEE. Reprinted, with
permission, from Dai et al. [148] and He et al. [283].

ously address object detection and semantic segmentation by leveraging re-
gion features from instance segments to improve the detection accuracy, i.e.,
O2P [97], Simultaneous Detection, and Segmentation (SDS) [275], Convolu-
tional Feature Masking (CFM) [147], HyperColumn [274].

Proposal-based algorithms are slow at inference time due to the compu-
tationally expensive proposal generation step. To avoid this bottleneck, Dai
et al. [148] propose Multi-task Network Cascade (MNC) a fully convolutional
network with three stages illustrated in Figure 8.1. They extract box propos-
als, use shared features to refine these to segments, and finally classify them
into semantic categories. The causal relations between the outputs of the
stages complicate training of the multi-task cascade. In order to overcome
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these difficulties, a fully differentiable mask prediction layer is presented to
train the whole model in an end-to-end fashion. Box proposals can also in-
duce errors into the proposal-based instance segmentation method due to
wrongly scaled or shifted bounding boxes. In order to tackle this problem,
Hayder et al. [280] present a shape aware object mask network that predicts
a binary mask for each bounding box proposal, potentially extending beyond
the box itself. They integrate the object mask network into the Multi-task
Network Cascade framework of Dai et al. [148] by replacing the original mask
prediction stage.

While earlier methods address the detection and segmentation problem
with two sub-networks sequentially, recent work [417, 283, 109] propose to
jointly address these problems. We illustrate an example of a sequential and
joint formulation in Figure 8.1. All joint formulations use ResNet-like archi-
tectures [284] for feature extraction. Li et al. [417] propose FCIS, the first fully
convolutional neural network for end-to-end instance semantic segmentation.
They extend the fully convolutional mask proposal network [146] by sharing
the convolutional representation of the proposals with a detection and segmen-
tation sub-network. In contrast to FCIS, Mask R-CNN [283] and MaskLab
[109] both build on Faster R-CNN [552]. He et al. [283] extend Faster R-
CNN [552] by an additional branch for predicting segmentation masks. Chen
et al. [109] combine box predictions from Faster R-CNN with semantic seg-
mentation logits for pixel-wise classification and direction prediction logits
estimating the direction towards instance centers. The direction towards in-
stance centers allows them eventually to separate instances from the same
class.

8.2.2 Proposal-free Approaches

Due to the problem of proposal-based approaches to inherit errors of the
proposal generation, a number of alternative methods have been proposed
recently. These methods jointly infer the segmentation and the semantic
category of individual instances by casting instance segmentation directly as
a pixel labeling task.

Several approaches [790, 789, 674] show how depth information can be
used to identify different object instances. Zhang et al. [790, 789] train a fully
convolutional neural network (FCN) to directly predict pixel-level instance
segmentations of densely sampled image patches while the instance ID encodes
a depth ordering. They improve the predictions and enforce consistency with
a subsequent Markov Random Field. Uhrig et al. [674] propose an FCN to
jointly predict semantic segmentation as well as depth and an instance-based
direction relative to the centroid of each instance. This relative direction
cue is then used for clustering pixels into individual instances. The instance
segmentation pipeline is illustrated in Figure 8.2. However, all [790, 789, 674]
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Figure 8.2: Proposal-free Instance Segmentation Pipeline. Uhrig et
al. [674] predict semantics, depth, and instance center direction from the in-
put image to compute template matching scores for all semantic maps. They
fuse them after generating instance proposals to obtain an instance segmenta-
tion. Reprinted by permission from Springer Nature Customer Service Centre
GmbH: Springer Nature GCPR, Uhrig et al. [674], c© 2016.

require ground-truth depth data for training their model.

Instead of relying on depth information, concurrent work [353, 26, 17]
present proposal-free approaches based on an initial semantic segmentation.
Kirillov et al. [353] combine semantic segmentation and object boundary de-
tection via global reasoning in a multi-cut formulation to infer semantic in-
stance segmentation. Bai and Urtasun [26] combine ideas from classical wa-
tershed transform with deep learning to create an energy map from an initial
semantic segmentation and the input image where the basins correspond to
object instances. This allows them to cut at a single energy level for ob-
taining a pixel-level instance segmentation. Arnab and Torr [17] propose to
refine an initial semantic segmentation using an instance subnetwork. The
initial category-level segmentation is used along cues from the output of an
object detector within an unrolled Conditional Random Field [792] to predict
pixel-level instances.

A new line of work is presented by Liu et al. [428]. They follow a sequen-
tial strategy with increasing semantic complexity. Several neural networks
are applied in sequential order, each grouping pixels with different strategies
starting by finding vertical and horizontal breakpoints, then connecting them
to vertical and horizontal lines, grouping pixels in between these lines, and
finally, extracting instances from the grouped pixels.
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Figure 8.3: Panoptic Segmentation. Difference between semantic (b),
instance (c) and panoptic segmentation (d). c© 2019 IEEE. Reprinted, with
permission, from Kirillov et al. [352].

8.2.3 Panoptic Segmentation

Instance segmentation focuses on instances of objects and usually ignores
classes that are not amendable to this task like sky or road as illustrated in
Figure 8.3. In contrast, panoptic segmentation, first introduced by Kirillov
et al. [352], addresses the dense estimation of a semantic label and instance id.
Several approaches [352, 414, 138, 745, 351] have been proposed to address
the problem.

Proposal-free instance segmentation approaches like [17, 26, 353] can be
used directly to learn panoptic segmentation. However, ground truth for
training them on this problem is very limited. Thus, Li et al. [414] use [17]
in a semi-supervised fashion to learn panoptic segmentation. They use in-
teractive foreground extraction (GrapCut) [571], proposal segmentation [536]
and gradient-based localization of classes [609] to train the network in a semi-
supervised fashion.

In contrast, several approaches [138, 745, 351] address panoptic segmen-
tation with a joint semantic and instance segmentation formulation based on
Mask R-CNN [283]. Costea et al. [138] propose to fuse object detections,
semantic, and instance segmentation. They use semantic segmentation to
distinguish between fore- and background regions. While the semantic class
of background regions is directly obtained from the semantic segmentation,
they use object detection, instance, and semantic segmentation to determine
the class of foreground regions. In contrast, concurrent work [745, 351] ex-



112 CHAPTER 8. SEMANTIC INSTANCE SEGMENTATION

Method Coarse COCO Depth AP AP 50% AP 100m AP 50m
1. PANet [429] 4 36.4 63.1 49.2 51.8
2. UPSNet [745] 33.0 59.6 46.8 50.7
3. Mask R-CNN [283] 4 32.0 58.1 45.8 49.5
4. PANet [429] 31.8 57.1 44.2 46.0
5. Mask R-CNN [283] 26.2 49.9 37.6 40.1
6. PolygonRNN++ [1] 25.5 45.5 39.3 43.4
7. SGN [428] 4 25.0 44.9 38.9 44.5
8. Pixelwise Inst. Seg. with a DIN [17] 4 23.4 45.2 36.8 40.9
9. Multitask Learning [342] 21.6 39.0 35.0 37.0
10. Deep Watershed Transformation [26] 19.4 35.3 31.4 36.8
11. Sem. Inst. Seg. with a DLF [65] 17.5 35.9 27.8 31.0
12. Boundary-aware Inst. Seg. [280] 17.4 36.7 29.3 34.0
13. InstanceCut [353] 4 13.0 27.9 22.1 26.1
14. Foveal Vis. for Inst. Seg. of Road Images [504] 4 12.5 25.2 20.4 22.1
15. Joint Graph Decomp. & Node Labeling [408] 9.8 23.2 16.8 20.3
16. Pixel-level Encoding for Inst. Seg. [674] 4 8.9 21.1 15.3 16.7
17. R-CNN + MCG convex hull [134] 4.6 12.9 7.7 10.3

Table 8.1: CITYSCAPES Instance Segmentation Leaderboard. In-
stance detection performance is measured in terms of several average precision
variants. The coarse annotations only provide rough class-level labels and are
thus only used by a few methods. Since the dense annotations are quite lim-
ited, Microsoft COCO [425] is also sometimes used for training. More details
in [134]. Accessed on: June 2019.

tends Mask R-CNN by an additional semantic segmentation branch removing
the requirement of a heuristic fusion. Xiong et al. [745] combine a semantic
segmentation network based on deformable convolutions with Mask R-CNN.
They predict dense class labels by applying a softmax on concatenated chan-
nels of the semantic and instance segmentation networks. In contrast, Kirillov
et al. [351] train the semantic and instance segmentation networks simulta-
neously without concatenating the channels. They apply non-maximum sup-
pression [352] to avoid overlapping instances.

8.3 Datasets

Only a few datasets for instance segmentation exist. Microsoft COCO [425],
consisting of 328K dense annotations, and Cityscapes [134], consisting of 5K
dense and 25K sparse annotations, are the most popular datasets. While
the KITTI [243] dataset also provides instance-level semantic annotations,
the dataset consists of only 200 training and test scenes. The original PAS-
CAL VOC [197] does not provide instance-aware annotations but Hariharan
et al. [276] extended the dataset by semantic contours which are instance-
aware. Still, the extension of PASCAL VOC is rarely used. The new datasets
Mapillary [495], ApolloScape [312] and Berkeley DeepDrive [767] also provide
instance-level annotations for 25K, 90K, and 10K images, respectively, but
still need to prevail in the community.

Similar to semantic segmentation, we compare different methods on the
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Cityscapes dataset1 by Cordts et al. [134] because of the autonomous driving
context, the online leaderboard and its acceptance in the community.

8.4 Metrics

The performance of instance segmentation methods is typically assessed by
measuring average precision (AP) on instance regions that reach a certain
overlap with ground truth regions. Usually, different thresholds are considered
for the overlap and comparisons are performed according to the average over
these thresholds as well as all classes. Cityscapes [134] use the same metric
reported in Microsoft COCO [425] which considers 10 thresholds between 50%
and 95%. In addition, the AP for an overlap value of 50 % (AP 50%) and for
objects within 100 m and 50 m (AP 100m, AP 50m) are considered separately.

8.5 State of the Art on Cityscapes

In Table 8.1, we show the leaderboard of semantic instance segmentation
methods on the Cityscapes dataset. The state of the art in instance segmen-
tation is dominated by proposal-based approaches [1, 283, 745, 429]. However,
they are closely followed by proposal-free approaches [26, 17, 428] with the
sequential approach from Liu et al. [428] being the best performing proposal-
free approach. While the proposal-based approaches [1, 283, 745] are built
on Faster R-CNN [552], Liu et al. [429] propose a new feature hierarchy to
propagate features from all levels (i.a. accurate localization signals from lower
layers) to proposal sub-networks. They outperform all other methods with
additional training on the Microsoft COCO dataset [425] since the dense anno-
tations of Cityscapes are rather limited. The panoptic segmentation approach
presented by Xiong et al. [745] is the best performing method when training
is restricted to the dense annotations of Cityscapes.

8.6 Discussion

The instance segmentation task is much harder than the semantic segmenta-
tion task. Each instance needs to be carefully labeled separately whereas in
semantic segmentation groups of one semantic class can be labeled together
when they occur next to each other. In addition, the number and size of
instances vary greatly between different images. In the autonomous driving
context, often a wide view is present. Therefore, a large number of instances
appear rather small in the image, making them challenging to detect. In con-
trast to bounding box detections discussed in Section 5.6, the exact shape of

1https://www.cityscapes-dataset.com/

https://www.cityscapes-dataset.com/
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each object instance needs to be inferred in this task. Thus, the state of the
art is still struggling on the Cityscapes dataset (Table 8.1) reaching an aver-
age precision of 36% or less. Proposal-based approaches which jointly address
detection and segmentation with parallel sub-networks are currently the most
promising direction. The joint formulation allows improving the generation
of small instance proposals, which is important for segmenting instances in
the context of autonomous driving.



Chapter 9

Stereo

9.1 Problem Definition

Stereo estimation is the process of extracting 3D information from passive
2D images captured by stereo cameras without the need for dedicated active
light-emitting range measurement devices. In particular, stereo algorithms
estimate depth information by finding correspondences between two images
taken at the same point in time, typically by two cameras mounted next to
each other on a fixed rig. These correspondences are projections of the same
physical surface in the 3D world. Depth information is crucial for applications
in autonomous driving or driver assistance systems. Accurate estimation of
dense depth maps is a necessary step for 3D reconstruction, and many other
problems such as obstacle detection, free space analysis, and tracking benefit
from the availability of accurate depth estimates.

9.2 Methods

In stereo matching, the images from two cameras are usually projected onto
a common parallel during rectification. This reduces the matching problem
to a 1D search along the epipolar line, as illustrated in Figure 9.1, and the
distance on this line is usually referred to as disparity.

The stereo literature can be separated into two groups. Feature-based
methods [652, 594] provide only sparse depth maps, while dense methods
generate dense outputs at the expense of computation time. In our survey,
we focus on dense methods since they are more popular, and with the intro-
duction of deep learning, they also became much more efficient. We further
distinguish between local and global methods. Local methods compute the
disparity by simply selecting the lowest matching cost, which is known as
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Figure 9.1: Stereo Matching Problem. Visualization of the stereo match-
ing problem. Given two rectified images (from KITTI training [243]), stereo
matching reduces to a 1D search problem along the epipolar line (blue rect-
angle).

the winner takes all (WTA) solution [296, 652]. However, they usually result
in very noise estimates caused by ambiguities. In contrast, global methods
formulate disparity computation as an energy-minimization problem integrat-
ing smoothness assumptions between neighboring pixels or regions [297, 245,
231, 269, 71, 379, 545]. Optimization can be carried out using variational
approaches in the continuous domain and discrete approaches such as graph
cuts or believe propagation for discrete label spaces.

9.2.1 Matching Cost

Stereo matching is a correspondence estimation problem where the goal is
to identify the matching points between the left and right image based on
a cost function. The algorithms usually assume rectified images, and the
search space is reduced to a horizontal line (Figure 9.1). The matching cost
computation is the process of computing a cost function at each pixel for
all possible disparities, which is minimal at the true disparity. However,
it is hard to design such a cost function in practice. Therefore stereo algo-
rithms typically use the assumption of constant appearance between matching
points. This assumption is often violated in real-world situations, such as cam-
eras with slightly different settings causing exposure changes, vignetting, im-
age noise, non-Lambertian surfaces, illumination changes, etc. Hirschmüller
and Scharstein [296] systematically investigate the effect of these radiometric
changes on commonly used matching cost functions, namely absolute differ-
ences, filter-based costs (Laplacian of Gaussian, Rank and Mean), hierarchi-
cal mutual information (HMI), and normalized cross-correlation. They found
that the performance of a cost function depends on the stereo method that
uses it. On images with simulated and real radiometric differences, rank filter
performed best for correlation-based methods. For global methods, in tests
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with global radiometric changes or noise, HMI performed best, while in the
presence of local radiometric variations, Rank and Laplacian of Gaussian fil-
ters performed better than HMI. Qualitative results show that filter-based
costs cause blurred object boundaries when used with global methods. None
of the matching costs under consideration could succeed in handling strong
lighting changes.

9.2.2 Energy Optimization

The inherent ambiguity in appearance-based matching costs can be overcome
by regularization, i.e., introducing prior knowledge about the expected dis-
parity map into the stereo estimation process. Therefore, an energy consisting
of the matching cost and a smoothness constraint is usually optimized in con-
trast to WTA over the matching costs. The simplest prior favors neighboring
pixels to take on the same disparity value (local smoothness).

Discrete Optimization: Discrete optimization methods optimize an en-
ergy with respect to a discrete set of disparities. While the resulting min-
imization problem is NP-hard, good approximations can be obtained using
belief propagation [205] and graph cuts [64].

Semi-Global Matching (SGM) proposed by Hirschmüller [297] is the most
prominent discrete optimization method for stereo matching. They hierar-
chically compute the matching cost by considering Mutual Information. A
global smooth energy is approximated with cost aggregation by summing
costs along 1D paths from multiple directions towards each pixel using dy-
namic programming. SGM became an influential stereo matching technique
for autonomous driving due to its speed and high accuracy, as evidenced in
various benchmarks such as Middlebury [592] and KITTI [243].

There are a few follow-up works investigating the practical and theoretical
sides of SGM. Gehrig et al. [238] propose a real-time, low-power implemen-
tation of SGM with algorithmic extensions for automotive applications on a
reconfigurable hardware platform. Drory et al. [180] offer a principled expla-
nation for the success of SGM by clarifying its relation to belief propagation
and Tree-Reweighted Message Passing [360]. They show that SGM is equiva-
lent to early stopping for a particular variant of belief propagation, effectively
approximating the solution.

The performance of SGM can be further improved by incorporating a con-
fidence measure. Seki and Pollefeys [608] leverage CNNs to predict confidence
for stereo estimations. Taking into account ideas from conventional methods,
they design a two-channel disparity patch which is used as input to a CNN.
The first channel uses local smoothness, and the second enforces left-right
consistency (disparity estimation using the other image should yield corre-
sponding results). The confidences are incorporated into SGM by weighting
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Figure 9.2: Piecewise Planarity. Gallup et al. [231] enforces piecewise
planarity on planar structures of the scene found with RANSAC and plane
classifiers. Plane candidates obtained with RANSAC (b), planar class prob-
abilities (c), final plane assignment (d) and the 3D model with highlighted
planes (e) are shown. c© 2010 IEEE. Reprinted, with permission, from Gallup
et al. [231].

each pixel according to the estimated confidence.

Continuous Optimization: Variational approaches optimize the energy
function with respect to continuous disparities. Data costs using the image
intensities are usually non-convex and, thus, the global optimum can only be
approximated. Coarse-to-fine approaches are used to handle large disparities
by going from a low to a high resolution solution of the matching problem. For
each resolution, the previous lower resolution solution is used as initialization.
Coarse-to-fine approaches are typically used for optical flow estimation and
will be discussed in detail in Chapter 11.

A commonly used smoothness prior is Total Variation (TV) [573] that
penalizes the absolute difference between neighboring disparities. In the pres-
ence of weak and ambiguous observations, TV does not produce convincing
results since it encourages piecewise constant disparities leading to stair-casing
artifacts.

9.2.3 Higher-Order Models

Pairwise smoothness priors fail to reconstruct poorly-textured and slanted
surfaces, as they favor fronto-parallel planes. A more generic approach to han-
dle arbitrary smoothness priors is to exploit high-order correlations between
pixels. Higher-order priors are able to express more realistic assumptions
about depth images, but usually at additional computational costs.
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Woodford et al. [726] introduce second-order priors for a graph cut stereo
formulation. While incorporating higher-order priors in discrete optimization
has long been considered computationally infeasible, they propose an effi-
cient optimization strategy for inference with triple cliques. In addition, they
present an asymmetrical occlusion model that is combined with the second-
order prior.

For continuous TV formulations, Haene et al. [269] introduce patch-based
priors in the form of small, piecewise planar dictionaries. Total Generalized
Variation (TGV) [71] is argued to be a better prior than TV, since it does not
penalize piecewise affine solutions. However, it is restricted to convex data
terms in contrast to TV, where global solutions can be computed even in the
presence of non-convex data terms. Coarse-to-fine approaches often end up
with a loss of details. In order to preserve fine details, Kuschk and Cremers
[379] integrate an adaptive regularization weight into the TGV framework
by using edge detection and report improved results compared to coarse-to-
fine approaches. Ranftl et al. [545] obtain even better results by proposing a
decomposition of the non-convex functional into two subproblems.

9.2.4 Piecewise Planar Priors

One common way to deal with slanted surfaces in the literature is to assume
piecewise planarity. Geiger et al. [245] build a prior over the disparity space
by forming a triangulation on a set of robustly matched correspondences,
called support points. This reduces matching ambiguities and results in an
efficient algorithm by restricting the search to plausible regions. Gallup et al.
[231], illustrated in Figure 9.2, first train a classifier to segment an image into
piecewise planar and non-planar regions. Afterwards, they enforce a piecewise
planarity prior only on planar regions using plane hypotheses obtained from
RANSAC. Non-planar regions are modeled by the output of a standard multi-
view stereo algorithm.

9.2.5 Segmentation-based Models

An alternative way of modeling piecewise planarity is to explicitly partition
the image into superpixels (groups of pixels) and modeling the surface at each
superpixel as a slanted plane [749, 262]. However, care must be taken to en-
sure that the superpixelization is indeed an oversegmentation of the image
with respect to planarity, i.e., no superpixel contains two surfaces that are
not co-planar. Yamaguchi et al. [749] jointly reason about occlusion bound-
aries and depth in a hybrid MRF composed of both continuous and discrete
random variables. Güney and Geiger [262] use a similar framework to in-
corporate object-category specific 3D shape proposals that regularize over
larger distances. By leveraging semantic segmentation and 3D CAD models,
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Figure 9.3: Stereo Matching using Object Knowledge. Stereo methods
often fail at reflecting, textureless or semi-transparent surfaces (top [775]). By
using object knowledge, Güney and Geiger [262] encourage disparities to agree
with plausible surfaces (center). This improves results both quantitatively and
qualitatively while simultaneously recovering the 3D geometry of the objects
in the scene (bottom). The disparity is illustrated with a color coding shown
on the right side. c© 2015 IEEE. Reprinted, with permission, from Güney
and Geiger [262].

they resolve ambiguities in reflective and textureless regions originating from
highly specular surfaces of cars in the scene, as shown in Figure 9.3.

9.2.6 Deep Learning for Stereo Matching

In the last years, deep learning approaches gained popularity in stereo esti-
mation. While some methods try to learn richer feature representations [775,
439], others learn to directly predict a disparity map from the input stereo
image pair [457, 345, 103].

For richer feature representations, Žbontar and LeCun [775] and Luo et al.
[439] use a Siamese network that consists of two sub-networks with shared
weights and a final score computation layer. The idea is to train the network
for computing the matching cost by learning a similarity measure on small
image patches. Žbontar and LeCun [775] define positive/negative examples
as matching and non-matching patches and use a margin loss to train either
a fast architecture with a simple dot-product layer in the end or a slow but
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Figure 9.4: Deep Learning for Stereo Matching. A Siamese network is
trained to extract marginal distributions over all possible disparities for each
pixel. c© 2016 IEEE. Reprinted, with permission, from Luo et al. [439].

more accurate architecture which learns score computation with a set of fully
connected layers. Luo et al. [439] use a similar architecture, but formulate
the problem as multi-class classification over all possible disparities to capture
correlations between different disparities implicitly, as visualized in Figure 9.4.
Both approaches rely on SGM [297] as a post-processing step to propagate
information to neighboring pixels and estimate the final dense disparity map.

In contrast, Mayer et al. [457] adapt the encoder-decoder architecture
proposed by Dosovitskiy et al. [177] for optical flow estimation (Chapter 11)
to directly learn a model which predicts the entire disparity map at once
without need for additional post-processing. The encoder computes abstract
features while the decoder reestablishes the original resolution with additional
cross-links between the contracting and expanding network parts for preserv-
ing the details. Post-processing and regularization are not necessary since
the encoder-decoder architecture implicitly learns the entire mapping end-to-
end. However, this architecture has to learn the concept of matching from
scratch. Thus, inspired by [177], they also propose an alternative network
(DispNetC) that first process each image independently and finally correlates
extracted features from both images. Kendall et al. [345] combine ideas from
previous methods, i.e., Siamese feature extraction, and cost volume forma-
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tion. More specifically, they propose to extract deep feature representations
using a Siamese network and correlate these features to create a cost volume.
After the cost volume, they use an encoder-decoder architecture to enlarge
the receptive field and apply 3D convolutions on each encoder level. A differ-
entiable soft argmin operation allows them to train the network end-to-end.
Chang and Chen [103] introduce a spatial pyramid pooling and 3D CNN mod-
ule to exploit more context information. Spatial pyramid pooling allows the
extraction of richer features by taking larger regions into account. The 3D
CNN module with multiple stacked encoder-decoder networks enables them to
leverage global context information and achieve state-of-the-art performance.

Recently, it has been demonstrated that semantic information can also
be exploited in the context of deep learning-based stereo estimation. Yang
et al. [756] jointly formulate semantic segmentation and stereo estimation in
one framework. This allows them to learn semantic cues and incorporate
them into the disparity estimate by introducing a semantic softmax loss that
regularizes the disparity with semantic cues. They show the benefit of their
joint formulation in the unsupervised and in the supervised setting.

9.2.7 Variable Baseline

Stereo estimates can be fused to yield a more complete reconstruction of the
static parts of the three-dimensional scene. However, assuming a fixed base-
line, focal length, and field of view might not always be the best strategy.
Gallup et al. [229] point out two problems with traditional stereo methods:
dropping accuracy in the far range and unnecessary computation time spent
in the near range. They, therefore, propose to use a multi-camera rig and to
dynamically select the best cameras with the appropriate baseline for accurate
estimation. In addition, they reduce the resolution to speed up the compu-
tation in the near range. In contrast to traditional fixed-baseline stereo, the
proposed variable baseline stereo algorithm achieves constant accuracy over
the reconstructed volume by evenly spreading the computation throughout
the volume.

9.2.8 Omnidirectional Cameras

Omnidirectional sensors discussed in 3.1.1 allow to significantly increase the
field of view for stereo matching. However, only limited work on stereo es-
timation using omnidirectional sensors exist. Häne et al. [271] extend the
plane-sweeping stereo matching for fisheye cameras by incorporating the uni-
fied projection model for fisheye cameras [248] directly into the plane-sweeping
stereo matching algorithm [230]. This kind of approach allows for produc-
ing dense depth maps directly from fisheye images in real-time using GPUs.
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Schönbein and Geiger [597] consider the stereo matching problem for cata-
dioptric omnidirectional cameras.

9.3 Datasets

The most popular datasets for stereo estimation are the Middlebury [592,
593, 591] and KITTI [243] datasets. The ETH3D [602] also provides a two-
view benchmark but is relatively new and does not focus on the autonomous
driving scenario. Since only the KITTI dataset considers the autonomous
driving context, we focus our attention on the KITTI benchmark.

Larger datasets are necessary for training deep models. In this case,
the community relies on synthetic datasets such as SYNTHIA [569], Vir-
tual KITTI [225], Flying Things [457] and Sintel [92]. However, the models
trained on synthetic datasets are usually not generalizing to real datasets and
need further fine-tuning on real datasets.

9.4 Metrics

Multiple metrics have been proposed to measure the performance of stereo
approaches. The most popular measures are the root-mean-squared error
(RMS) and outlier ratio, i.e., percentage of bad pixels (pixel with an error
larger than a threshold). Typically, the average RMS is reported while the
outlier ratio is often evaluated using several thresholds. Middlebury reports
results for 0.5, 1, 2, and 4 pixels thresholds. In contrast, the KITTI bench-
mark reports the percentage of pixels with an error larger than 3 pixels or
5%. In addition, they separately evaluate the percentage of bad pixels over
background and foreground regions.

9.5 State of the Art on KITTI

In Table 9.1 we show the ranking of stereo methods on the KITTI stereo 2015
benchmark. Tulyakov et al. [672] combine similar to [177, 345, 103] learning
of the feature extraction, correlation, and regularization in an end-to-end
trainable model. They extract deep features with a bottleneck architecture
in contrast to a regular encoder-decoder network and propose a novel sub-
pixel maximum a posteriori (MAP) approximation for inference based on the
weighted mean around the disparity with maximum posterior probability.
While the bottleneck architecture allows reducing the memory footprint, the
sub-pixel MAP approximation enables to handle different disparity ranges
than used for training. They achieve competitive results on KITTI. However,
the spatial pyramid pooling and 3D CNN proposed by Chang and Chen [103],
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Method D1-bg D1-fg D1-all Runtime
1. EdgeStereo-V2 [633] 1.84 % 3.30 % 2.08 % 0.32s / GPU
2. Stereo-fusion-SJTU [633] 1.87 % 3.61 % 2.16 % 0.7 s / GPU
3. SegStereo [756] 1.88 % 4.07 % 2.25 % 0.6 s / GPU
4. PSMNet [103] 1.86 % 4.62 % 2.32 % 0.41 s / GPU
5. PDSNet [672] 2.29 % 4.05 % 2.58 % 0.5 s / 1 core
6. SCV [437] 2.22 % 4.53 % 2.61 % 0.36 s / GPU
7. CRL [508] 2.48 % 3.59 % 2.67 % 0.47 s / GPU
8. GC-NET [345] 2.21 % 6.16 % 2.87 % 0.9 s / GPU
15. Displets v2 [262] 3.00 % 5.56 % 3.43 % 265 s / ¿8 cores
19. MC-CNN-acrt [775] 2.89 % 8.88 % 3.89 % 67 s / GPU
20. PRSM [692] 3.02 % 10.52 % 4.27 % 300 s / 1 core
21. DispNetC [457] 4.32 % 4.41 % 4.34 % 0.06 s / GPU
41. SGM ROB [297] 5.06 % 13.00 % 6.38 % 0.11 s / GPU

Table 9.1: KITTI 2015 Stereo Leaderboard. Numbers correspond to
percentages of bad pixels according to the 3px/5% criterion defined in [462]
in background (bg), foreground (fg) or all regions. The methods below the
horizontal line are older entries, serving as reference. Accessed on: June 2019.

as discussed in Section 9.2.6, is computationally more efficient and improves
significantly in the background regions. Yang et al. [756] jointly address the
semantic segmentation problem to incorporate more contextual information
as discussed in Section 9.2.3. While they reach similar performance on the
background regions, the joint formulation enables to improve also on the fore-
ground regions. The best performance in foreground and background regions
is achieved by Song et al. [633]. Similar to [756], they use a joint formulation,
but instead of semantic segmentation, they jointly learn image edges using
an edge-aware smoothness loss. In combination with a context pyramid to
extract multi-scale features and one-stage residual pyramid returning a full-
size disparity map, they outperform all other methods, as shown in Table 9.1.
However, DispNetC presented by Mayer et al. [457] remains one of the fastest
approaches while achieving competitive results on the foreground.

9.6 Discussion

Stereo estimation has shown great progress in the last years both in terms
of accuracy and efficiency. However, some inherent problems prevent it from
being considered solved. Stereo matching is equivalent to searching for corre-
spondences in two images based on the assumption of constant appearance.
However, appearance frequently changes due to non-rigidity or illumination
changes. Furthermore, saturated pixels, occluded regions, or pixels leaving
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the frame cannot be matched. Therefore, failure in those cases is inevitable
for methods that solely rely on appearance matching without any other prior
assumptions about the geometry. We show the accumulated errors of the top
15 methods on the KITTI stereo benchmark [243] in Figure 9.5. The most
common examples of failure cases in the autonomous driving context are car
surfaces that cause appearance changes due to their shiny and reflective na-
ture. This problem can be addressed by leveraging more context information,
e.g., using joint formulations [756, 633]. Similarly, windows that are reflective
and transparent cannot be matched reliably. Occlusions are another source
of error and require geometric reasoning beyond matching. Other examples
of problematic regions include thin structures like traffic signs or repetitions
as caused by fences. In these cases, continuous disparity estimation and the
incorporation of more context information could be promising future direc-
tions.
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Figure 9.5: KITTI 2015 Stereo Analysis. The averaged errors of the 15
best-performing stereo methods published on the KITTI 2015 Stereo bench-
mark. Red colors correspond to regions where the majority of methods fail
according to the 3px/5% criterion defined in [462]. Yellow colors correspond
to regions where some of the methods fail. Regions that are correctly esti-
mated by all methods are transparent.



Chapter 10

Multi-view 3D
Reconstruction

10.1 Problem Definition

The goal of multi-view 3D reconstruction is to infer 3D geometry from a
set of 2D images by inverting the image formation process using appropriate
prior assumptions. In contrast to two-view stereo, multi-view reconstruction
algorithms recover the complete 3D shape of an object by inferring shape
from many viewpoints.

In this survey, we focus on multi-view reconstruction from an autonomous
driving perspective which mainly concerns the reconstruction of urban ar-
eas. The goal of urban reconstruction algorithms is to produce fully auto-
matic, high-quality, dense reconstructions of urban areas by addressing in-
herent challenges such as lighting conditions, occlusions, appearance changes,
high-resolution inputs, and large scale outputs. In the context of autonomous
driving, 3D reconstructions can be used for static obstacle detection (traffic
lights, road signs, etc.) and avoidance or precise localization as discussed in
Section 13.3.

Musialski et al. [490] provide a survey of urban reconstruction approaches
by following an output-based ordering which considers buildings and seman-
tics, facades and images, and finally, city blocks and cities. They list ground,
aerial, and satellite imagery, as well as Light Detection and Ranging (LiDAR)
scans as the most commonly used sensor modality for urban reconstruction.
Ground-level imagery is the most prevalent one due to its ease of acquisi-
tion, storage, and exchange. However, more and more aerial and satellite
images become available today as well. In contrast to aerial or multi-view
imagery, satellite imagery provides worldwide coverage at low costs, but also
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Figure 10.1: Large-Scale 3D Reconstruction. Upper row: Coarse re-
construction and camera pose estimation (red) from the SfM [599] pipeline of
COLMAP. c© 2016 IEEE. Reprinted, with permission, from Schönberger and
Frahm [599]. Bottom row: Fine reconstruction with the MVS [600] pipeline
of COLMAP. Reprinted by permission from Springer Nature Customer Ser-
vice Centre GmbH: Springer Nature ECCV, Schönberger et al. [600], c© 2016

with low resolution. LiDAR delivers semi-dense 3D point clouds at high pre-
cision, both ground-level and aerial, but the sensor is expensive and the data
is sparse. Some approaches [217, 58] also combine these data types in order to
leverage their complementary strengths. Several methods [693, 264] leverage
additional information, like Digital Surface Models (DSMs), which capture
the Earth’s surface, to deal with challenging outdoor conditions. DSMs are
2.5D representations of an urban scene that provide a height for each surface
point.

10.2 Structure from Motion

In Structure from Motion (SfM), the camera parameters (intrinsic and extrin-
sic) need to be estimated jointly with the 3D structure while in Multi-View
Stereo (MVS), the camera parameters are assumed to be known. Further-
more, while MVS approaches create a dense 3D model of the object or scene of
interest, SfM approaches typically recover a sparse 3D point cloud of the scene.
Solving for the camera parameters and 3D geometry of the scene is equivalent
to solving the correspondence problem based on a photo-consistency function
that measures the agreement between different viewpoints. Typically, 3D
reconstruction pipelines consist of an SfM method to estimate a coarse 3D
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reconstruction while recovering the camera parameters followed by an MVS
method to obtain a finer reconstruction, as illustrated in Figure 10.1 using
COLMAP[599, 600].

Classical SfM pipelines [631, 630, 136, 482, 2, 729, 218, 650] first extract
and match sparse features. Usually, an initial transformation between pairs
of cameras (essential matrix) is estimated with RANSAC. Given the initial
camera transformations, a geometric verification stage evaluates photometric
consistency between re-projected sparse features and excludes outliers. Start-
ing from an initial two-view reconstruction, an incremental reconstruction is
performed based on best view selection, triangulation, and bundle adjust-
ment. Due to this incremental approach, SfM pipelines are usually not very
efficient and need to be applied offline. Simultaneous Localization and Map-
ping (SLAM) methods discussed in Section 13.4.3 also address the problem
of joint camera estimation (ego-motion) and 3D scene reconstruction. How-
ever, SLAM techniques focus primarily on accurate ego-motion estimation
and real-time performance, typically sacrificing geometric accuracy for these
goals.

The web provides large amounts of publicly available imagery from cities
taken by tourists that can be used to reconstruct popular buildings or even
entire cities. This task requires a different approach than the ones mentioned
earlier because of the large amount of images and the unknown geometric
properties of the cameras the images have been taken with. Agarwal et al.
[2] address this problem considering Flickr images of Rome. They use SIFT
feature matching in combination with an efficient image retrieval approach
to reduce the number of comparisons. Afterwards, a fast bundle adjust-
ment method on minimal subsets of images captures the geometry of a scene.
Finally, they optimize the whole pipeline in parallel, which allows them to
reconstruct cities from 150K images in less than a day using 500 computing
nodes. Frahm et al. [208, 209] present a highly efficient system for city-scale
reconstruction from millions of images on a single computer by leveraging the
high parallelization capabilities of graphics hardware. Recently, Schönberger
and Frahm [599] proposed a structure-from-motion pipeline with better com-
pleteness and accuracy while better reducing drift in comparison to previous
methods [631, 630, 2, 208, 209, 729, 218]. They further propose a more ro-
bust best view selection and triangulation method, producing more complete
structures. Finally, a novel iterative Bundle Adjustment, re-triangulation,
and outlier filtering step lead to significantly more complete and accurate 3D
models.
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Figure 10.2: Point Cloud and Surface Representation. The different
steps of Patch-based Multi-View Stereo (PMVS) [220]. The input image,
extracted features, reconstructed patches from the initial matching, recon-
struction after expansion and filtering, and the final polygonal surface rep-
resentation. c© 2010 IEEE. Reprinted, with permission, from Furukawa and
Ponce [220].

10.3 Multi-view Stereo

Multi-view stereo approaches can be classified according to their scene repre-
sentation into depth map-, point cloud-, mesh-, and volumetric-based meth-
ods. We first introduce and discuss classical approaches by grouping them
based on their scene representation (Depth Maps, Point Clouds, Volumetric)
and the final representation of the reconstruction (Mesh or Surfaces).

Depth Map: The depth map representation summarizes a 3D scene using
one 2.5D depth map for each input view. These depth maps can later be
fused into a single coherent 3D reconstruction using 3D fusion techniques
[773, 142, 562]. One strategy which is particularly effective for recovering
depth maps from urban scenes is the Plane Sweeping Stereo algorithm [132].
This algorithm “sweeps” a family of parallel hypothetical planes through the
scene, projects images into each other via the homography induced by these
planes, and evaluates photo-consistency. In very large scenes, one of the
primary challenges is to handle large amounts of data efficiently. Pollefeys
[532] proposes a large scale, real-time MVS system based on the depth map
representation by exploiting the parallel processing capabilities of modern
GPUs.

Point Cloud: The reconstruction problem can also be addressed with a
3D point cloud representation [220, 599]. Patch-based Multi-View Stereo
(PMVS) [220] starts with a feature matching step to generate a sparse set of
patches and then iterates between a greedy expansion step and a filtering step
to make patches dense and remove erroneous matches. The steps of PMVS
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are visualized in Figure 10.2.

Volumetric Representation: Volumetric approaches represent geometry
using a regularly sampled 3D grid, i.e., volume, either as a discrete occupancy
function [380] or a function encoding distance to the closest surface (level-
set) [202]. More recent approaches use a probability map defined at regular
voxel locations to encode the probability of occupancy [52, 531, 677]. The
amount of memory required is the main limitation of volumetric approaches.
There exists a variety of proposals for dealing with this problem, such as
voxel hashing [498], data-adaptive discretization of the space in the form of
Delaunay triangulation [382], or using octrees [268, 563].

Mesh or Surfaces: The final representation of a 3D reconstruction al-
gorithm is typically a triangular mesh-based surface (right image in Fig-
ure 10.2). Volumetric surface extraction techniques can fuse multiple 2.5D
measurements (MVS depth maps or laser scans) into a single, coherent 3D
mesh model. Seminal work by Curless and Levoy [142] proposes an algo-
rithm to accumulate surface evidence into a voxel grid using signed distance
functions. The surface is implicitly represented as the zero crossing of the ag-
gregated signed distance functions and can be extracted using the Marching
Cube algorithm [434] to label each voxel as either interior or exterior. Other
approaches directly start from images [133, 159, 158] and refine a mesh model
using an energy function composed of a data and a regularization term.

10.3.1 Planarity and Primitives

Man-made environments usually consist of regular structures. The intro-
duction of appropriate priors, therefore, allows for more accurate and dense
reconstructions. Micusik and Kosecka [468] present a method exploiting im-
age segmentation cues as well as the presence of dominant scene orientations
and piecewise planar structures. In particular, they adopt a super-pixel-based
dense stereo reconstruction method exploiting the Manhattan world assump-
tion in their MRF formulation. Another way of exploiting piecewise planar
structures and repetitive shapes is to detect primitives such as planes, spheres,
cylinders, cones, and tori [387, 389, 388]. Primitive-based approaches lead to
compact and memory-efficient representations. However, their representa-
tions are often simplistic and fail to model fine details and irregular shapes.
Therefore, Lafarge et al. [388] propose a hybrid approach that is both com-
pact and detailed. Starting from an initial mesh-based reconstruction, they
use primitives for regular structures such as columns and walls, while irregu-
lar elements are described using triangular meshes for preserving architectural
details (Figure 10.3).
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Figure 10.3: Primitive-based Reconstruction. The hybrid reconstruction
approach of Lafarge et al. [388] uses primitives for regular structures (top
right) and meshes for irregular structures (bottom left) to compactly represent
a coarse initial mesh (top left). c© 2013 IEEE. Reprinted, with permission,
from Lafarge et al. [388].

10.3.2 Shape Priors

Advances in sensors to acquire 3D shapes and the performance of object
detection algorithms have encouraged the use of 3D shape priors in multi-
view stereo approaches. Dimensionality reduction is an effective and popu-
lar way of representing shape knowledge. Early approaches [670] use linear
dimensionality reduction such as Principal Component Analysis (PCA) to
capture shape variance in low dimensional latent shape spaces. More recent
approaches, like Dame et al. [153], who investigate the importance of shape
priors in a monocular SLAM approach, use non-linear dimensionality reduc-
tion techniques such as Gaussian Process Latent Variable Models (GP-LVM).
In parallel with depth estimation, they refine an object’s pose, shape, and
scale to match an initial segmentation and depth cues. Their experiments
show improvements on transparent and specular surfaces, and even in unob-
served parts of the scene.

In addition to the mean shape, Bao et al. [34] propose to learn a set of
anchor points to represent object shape across several instances. They first
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Figure 10.4: Joint Reconstruction and Semantic Segmentation. Joint
3D scene reconstruction and segmentation by Kundu et al. [376]. Reprinted by
permission from Springer Nature Customer Service Centre GmbH: Springer
Nature ECCV, Kundu et al. [376], c© 2014.

perform an initial alignment of the mean shape to the point cloud from SfM
using 2D object detectors. Finally, they warp and refine the mean shape to
approximate the actual shape. Their evaluation demonstrates that the model
is general enough to learn semantic priors for different object categories by
handling large shape variations across instances.

An alternative to using latent space representations is to directly leverage
3D CAD models provided by free 3D model repositories. Güney and Geiger
[262] propose a model for jointly inferring disparity maps and the geometry,
pose, and type of 3D car models in urban scenes. Ulusoy et al. [676] extend
this approach to the volumetric multi-view case. While the approaches men-
tioned earlier [153, 34] fit a parametric shape model to input data, Haene et
al. [268, 267] model the local distribution of normals for an object. They also
propose an object class-specific shape prior in the form of spatially varying
anisotropic smoothness terms.

Zhou et al. [796] propose to jointly learn volumetric shape models for 3D
reconstruction of street scenes from a sequence of fisheye cameras. Moti-
vated by recurring objects of similar 3D shapes in outdoor scenes, they first
localize buildings and vehicles using 3D object detectors and then jointly re-
construct them while learning a volumetric model of their shape. This allows
the reduction of noise while completing missing surfaces as objects of simi-
lar shape benefit from all observations of the respective category. Instead of
modeling a semantic prior for each object explicitly, Wei et al. [713] propose
a data-driven regularization to transfer shape information from semantically
matched patches in the training database using the SIFT flow algorithm.
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10.3.3 Semantics

Similar to stereo, semantic information allows multi-view stereo approaches to
recover from potential failures of photo-consistency in case of imperfect and
ambiguous image information, e.g., specularities, lack of texture, repetitive
structures, or strong lighting changes. Semantic labels provide geometric
cues about likely surface orientations at a certain location and help to resolve
inherent ambiguities as illustrated in Figure 10.4 by the joint reconstruction
and semantic segmentation approach of Kundu et al. [376].

Volumetric scene reconstruction typically segments the volume into oc-
cupied and free-space regions. Haene et al. [268] present the mathematical
framework to extend this approach to multi-label volumetric segmentation,
assigning object classes or a free-space label to voxels. They first learn ap-
pearance likelihoods and class-specific geometry priors for surface orientations
from the training data. Afterwards, these data-driven priors are used to de-
fine unary and pairwise potentials in a continuous formulation for volumetric
segmentation.

Haene et al. [268] require dense depth measurements, which can be difficult
to obtain because of textureless regions and low parallax. Thus, Kundu et al.
[376] propose another approach working on sparse 3D point clouds. They
model the problem using a higher-order Conditional Random Field in 3D,
which allows them to impose realistic scene constraints and priors such as 3D
object support. In addition, they explicitly model-free space, which provides
cues to reduce ambiguities, especially along weakly supported surfaces. Their
evaluation on the CamVid and Leuven datasets shows improved 3D structure
compared to traditional SfM and state-of-the-art MVS pipelines as well as
better segmentation quality over video segmentation methods.

Previous works on semantic reconstruction [268, 376] are limited to small
scenes and low resolutions due to their large memory footprint and computa-
tional cost. In order to scale to larger scenes, Blaha et al. [55] note that high
resolution is not required for large regions such as free space, parts under the
ground, or inside the building. They propose an extension of Haene et al. [268]
and employ an adaptive octree data structure with coarse-to-fine optimization
to generate 3D city models from terrestrial and aerial images. Starting from
a coarse voxel grid, they solve a sequence of problems in which the solution is
gradually refined near the predicted surfaces. The adaptive refinement saves
memory and runs much faster while still being as accurate as the fixed voxel
discretization at the highest target resolution, both in terms of geometric re-
construction and semantic labeling. Besides the spatial extent, the number
of different semantic labels is also problematic for scalability due to the in-
creasing memory requirements. Cherabier et al. [118] propose to divide the
scene into blocks in which only a set of relevant labels is active. Thus, the
absence of semantic classes from a specific block can be determined early on.
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Figure 10.5: Deep Learning for Multi-View Stereo. MVSNet by Yao et
al. [760] comprising feature extraction networks and a differentiable homog-
raphy warping stage for constructing cost volumes. The final depth map is
obtained using a refinement network. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature ECCV, Yao et al.
[760], c© 2018.

Accordingly, they deactivate labels from the beginning of the optimization,
which leads to more efficient processing.

10.3.4 Efficient Reconstruction

The extraction of detailed 3D information from video streams leads to high
computational costs for multi-view stereo algorithms. Cornelis et al. [136]
focus on creating compact, memory-efficient 3D city models from a stereo
pair at high frame rates based on simplified geometry assumptions such as
ruled surfaces for building facades. Since objects such as cars violate these
assumptions, they integrate the detection and localization of cars into the
reconstruction. In contrast, Geiger et al. [246] propose an efficient stereo
matching algorithm to generate accurate piece-wise planar 3D reconstructions
in real-time.

10.3.5 Deep Learning for Multi-View Stereo

Several learning-based approaches have been proposed to address the Multi-
View Stereo problem. In early works, learning was mainly used to obtain
more robust feature representations for establishing better correspondences
[270, 775, 439]. Pairwise similarities obtained from these approaches are
usually averaged in order to match features from multiple images. In contrast,
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Hartmann et al. [279] propose to directly learn a matching function using
multiple images as input.

Recently, several pipelines for end-to-end learning of multi-view recon-
struction [339, 327, 510, 311] have been presented combining learned high-
level information with classical constraints. Kar et al. [339] and Ji et al. [327]
propose to unproject features along the viewing rays onto a 3D feature grid
for matching. Afterwards, both approaches use 3D convolutional networks
to smooth the 3D feature grid. In contrast, Huang et al. [311] propose to
learn disparities by combining a plane-sweep approach with an end-to-end
trained CNN for feature extraction. Considering a reference view, they cre-
ate plane-sweep volumes consisting of neighboring views warped according to
the hypothetical depth. Afterwards, they extract features using a network on
patch pairs (patches from the reference view and plane-sweep volumes). An
encoder-decoder network with skip connections is used to combine features
over larger regions and, eventually, the disparity map is estimated with a
max-pooling layer. While previous approaches leverage physical constraints
by projecting features according to the camera transformation, they do not
model occlusion relationships. Paschalidou et al. [510] combine learning-based
feature extraction with a Markov Random Field that employs high-order ray-
potentials [677] to model the image formation process and occlusions.

Inference with 3D feature grids [339, 327],using a voxel grid [510] or plane-
sweep volumes [311], is computationally expensive. A more efficient MVS
reconstruction approach was presented by Yao et al. [760], see Figure 10.5.
Similar to Huang et al. [311], they decouple the MVS reconstruction problem
into a depth prediction problem for each view. A differentiable homography
warping operation allows them to encode the camera geometry and to build a
3D cost volume. A 3D convolutional network predicts the depth from the 3D
cost volume, and the final reconstruction is obtained with a depth map fu-
sion approach [466] which minimizes depth occlusions and differences between
viewpoints.

10.3.6 Omnidirectional Cameras

While omnidirectional cameras, as discussed in Section 3.1.1, provide a larger
field of view compared to traditional perspective cameras, their special geo-
metric properties need to be addressed during 3D reconstruction. The epipo-
lar geometry of central catadioptric systems was explored by Svoboda and
Pajdla [649], who showed that correspondences lie on epipolar conics and who
proposed a rectification procedure for this setup. In contrast, Bunschoten et
al. [91] and González-Barbosa and Lacroix [255] propose to project the om-
nidirectional image to a panoramic view and use standard stereo matching
methods to search for correspondences. While Bunschoten et al. [91] search
on sinusoidal shaped epipolar curves, González-Barbosa and Lacroix [255]
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rectify the panoramic view to obtain straight epipolar lines. Schönbein and
Geiger [597] propose a method for 3D reconstruction through joint optimiza-
tion of disparity estimates from two temporally and two spatially adjacent
omnidirectional views in a unified omnidirectional space using plane-based
priors.

10.4 Datasets

Several datasets have been proposed to evaluate multi-view stereo algorithms.
Popular datasets include Middlebury [592] and DTU MVS [325]. However,
these datasets provide only a few or no examples for urban reconstruction.
While EPFL Multi-View [638], Restrepo et al. [556], ETH3D [602] and Tanks
and Temples [358] provide urban scenes, they do not focus on the autonomous
driving task.

Large-scale reconstruction methods [2, 208, 209, 599] typically use the
BigSFM dataset 1, a collection of smaller datasets from Cornell University
which consists of Vienna [319], Dubrovnik [416], Rome and Quad datasets
[140]. However, these datasets do not have ground truth data and, therefore,
a quantitative evaluation of methods is not possible.

As ETH3D and Tanks and Temples are the MVS datasets closest to the
autonomous driving scenario and also provide an online evaluation server,
we focus our discussion on these two datasets. As opposed to ETH3D [602],
Tank and Temples [358] does not provide camera poses and thus an additional
structure-from-motion pipeline [630, 729, 482, 218, 650, 599] is necessary to
estimate camera poses.

10.5 Metrics

In MVS, the accuracy and completeness of the output reconstruction are
standard measures for evaluation. Accuracy is defined as the percentage of
estimated points with a distance smaller than a predefined threshold to the
closest ground truth points. Completeness is defined as the percentage of
ground truth points with a distance smaller than a predefined threshold to the
closest estimated points. Some benchmarks also report the mean (Chamfer)
or harmonic mean (F1-measure) of accuracy and completeness.



138 CHAPTER 10. MULTI-VIEW 3D RECONSTRUCTION

Low-Res Many-View High-Res Multi-View
Method All All Indoor Outdoor All Indoor Outdoor

1. ACMM [747] 80.78 79.84 83.58
2. OpenMVS [101] 72.83 56.18 45.66 63.19 79.77 78.33 84.09
3. LTVRE ROB [373] 69.57 53.52 45.46 58.89 76.25 74.54 81.41
4. ACMH [747] 67.68 47.97 38.24 54.45 75.89 73.93 81.77
5. COLMAP ROB [599, 600] 66.92 52.32 42.45 58.89 73.01 70.41 80.81
6. OpenMVS ROB [101] 64.09 48.56 38.68 55.15 70.56 68.19 77.65
7. CMP-MVS [323] 51.72 7.38 0.03 12.27 70.19 68.16 76.28
8. Gipuma [228] 45.18 41.86 55.16
9. PMVS [220] 37.38 21.09 11.49 27.48 44.16 40.28 55.82
10. MVE [218] 26.22 16.26 16.97 15.79 30.37 25.89 43.81

Table 10.1: ETH3D Leaderboard. Evaluation results on two ETH3D [602]
challenges: low-resolution multi-view stereo from video data (many-view) and
high-resolution multi-view stereo on few images recorded with a DSLR. The
average F-measure is reported. Accessed on: May 2019.

10.6 State of the Art on ETH3D & Tanks and
Temples

In Table 10.1, Table 10.2, we show the leaderboards for the intermediate
as well as advanced scenes of ETH3D [602] and Tanks and Temples [358],
respectively. Both benchmarks use the F1-measure for comparison.

COLMAP [600, 599] jointly models pixel-level view selection and depth
estimation using a graphical model. They incorporate geometric as well as
temporal priors for improved view selection and a geometric consistency for
simultaneous depth/normal estimation with a PatchMatch sampling scheme.
COLMAP achieves competitive results on both benchmarks and is considered
one of the leading open MVS methods today, serving as the backbone for sev-
eral other techniques. In contrast to COLMAP, MVSNet [760] discussed in
Section 10.3.5 learns depth map inference with an end-to-end deep learning
architecture. For unstructured image sequences like Tanks and Temples, they
obtain the depth range and camera trajectory using OpenMVG [482]. Yao et
al. [761] extend this work with a recurrent version called R-MVSNet which re-
places 3D convolutions applied on the cost volume for regularization. While
both methods were not evaluated on ETH3D, R-MVSNet improves on the
intermediate and advanced scenes from Tanks and Temples. The best per-
forming reconstruction method, ACMM [747], proposes an adaptive checker-
board sampling scheme and a multi-hypothesis joint view selection approach
(ACMH) for improved propagation of hypotheses and pixel-wise view selec-
tion. In addition, they propose a multi-scale geometric consistency guidance
scheme (ACMM) for improved depth estimation in low textured regions. In
contrast to Yao et al. [760, 761], they use COLMAP’s structure-from-motion

1http://www.cs.cornell.edu/projects/bigsfm/

http://www.cs.cornell.edu/projects/bigsfm/
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Intermediate Advanced
Method Rank F-measure Rank F-measure
ACMM [747] 1. 57.27 1. 34.02
ACMH [747] 2. 54.82 2. 33.73
Dense R-MVSNet [761] 3. 50.55 3. 29.55
R-MVSNet [761] 4. 48.40 5. 24.91
MVSNet [760] 5. 43.48
COLMAP [599, 600] 6. 42.14 4. 27.24
VisualSfM [729] + PMVS [220] 14. 27.80 15. 10.22
VisualSfM [729] + CMP-MVS [323] 18. 22.40 17. 7.57
Bundler [631, 630] + PMVS [220] 19. 12.86 18. 5.61

Table 10.2: Tanks and Temples Leaderboard. Evaluation results for
intermediate and advanced scenes from Tanks and Temples [358]. The rank
and average F-measure are reported. Methods below the horizontal line show
older entries for reference. Accessed on: June 2019.

method [599] to obtain the camera trajectory.
The runtime of methods improved significantly with the introduction of

learning-based methods. MVSNet [760] is currently the fastest approach, with
230 seconds per scan on the DTU MVS evaluation set [325]. The authors
used the DTU dataset to compare the runtime and report a large speedup in
comparison to COLMAP [600, 599]. ACMM [747] compares their runtime to
COLMAP on Tanks and Temples and achieves a 3-fold speed up.

10.7 Discussion

In the last decade, great advances have been made in multi-view reconstruc-
tion, as can be observed from Tables 10.1 and Table 10.2. The current state
of the art significantly improves upon classical approaches like PMVS [220]
and CMP-MVS [323] on all benchmarks. However, the performance on low-
resolution images of ETH3D and all scenes from Tank and Temples is still
far from perfect. While great advances have also been made for large-scale
reconstruction, a unified benchmark that considers the autonomous driv-
ing/mapping task is still missing.

An open question that remains for the autonomous driving problem is
what kind of accuracy and completeness are necessary to realize safe mapping,
localization, and navigation. For localization (Section 13.3) and loop-closure
detection (Section 13.4.2) high accuracy is required. In contrast, for obstacle
avoidance, high completeness is necessary in order not to miss any obstacle.
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Chapter 11

Optical Flow

11.1 Problem Definition

Optical flow is defined as the two-dimensional motion of brightness patterns
between two images. This definition only represents the motion of intensity
patterns in the image plane but not the 3D motion of the objects in the scene.
Recovering the 3D motion itself is the goal in Scene Flow discussed in Chap-
ter 12. Figure 11.1 shows the synthetic Yosemite sequence with the optical
flow ground truth generated by texture mapping aerial images of Yosemite
valley onto an approximate mesh model.

Optical flow provides essential information about the scene and serves as
input for several tasks such as ego-motion estimation (Chapter 13), struc-
ture from motion (Chapter 13), and tracking (Chapter 6). Research on this
problem started several decades ago with the variational formulation by Horn
and Schunck [301], assuming the brightness of a pixel to be constant over
time. Despite the long history of the optical flow problem, occlusions, large
displacement, and fine details are still challenging for modern methods. A
fundamental problem with the optical flow definition is that besides the ac-
tual motion of interest, illumination changes, reflections, and transparency
can also cause intensity changes. In contrast to stereo, the search space for
finding correspondences is two-dimensional in the case of optical flow.

11.2 Methods

Traditionally, the optical flow problem has been approached with a varia-
tional formulation. Variational methods minimize an energy comprising a
data term, assuming little appearance change over time, and a smoothness
term, encouraging similarity between spatial neighbors. Horn and Schunck
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Figure 11.1: Optical Flow Problem. The Yosemite sequence generated by
Quam [540] and the corresponding ground truth flow created by Heeger [289].
The sequence was later incorporated into the Middlebury dataset of Baker
et al. [28]. Reprinted by permission from Springer Nature Customer Service
Centre GmbH: Springer Nature IJCV, Heeger [289], c© 1988.

[301] introduced the brightness constancy assumption which models the in-
tensity value of a pixel as constant over time. Considering a single pixel
in isolation, this assumption yields one equation with two unknowns, which
does not result in a unique solution (known as the aperture problem). Addi-
tional constraints must, therefore, be introduced in order to solve the aperture
problem and estimate optical flow. A common way of regularizing variational
optical flow estimation is to encourage similarity of spatially neighboring flow
vectors. This prior assumption is motivated by the fact that flow fields are
often smooth and discontinuities typically occur only at object boundaries.

The original formulation [301] uses a quadratic penalty function in the
data and smoothness term. However, a quadratic penalty cannot handle
frequent violations of brightness constancy assumption, e.g., due to varying
illumination conditions. One way to alleviate this problem is to use a robust
penalty function, as proposed by Black and Anandan [54]. In addition, several
different data terms have been proposed that are less affected by illumination
changes. Vogel et al. [691] systematically evaluate pixel- and patch-based
data costs on the KITTI dataset [243]. On real data, they found patch-based
terms to perform better than pixel-based terms.

Flow discontinuities frequently occur near motion boundaries caused by
objects moving in front of each other. The original formulation by Horn and
Schunck [301], cannot handle these discontinuities due to a homogeneous, non-
robust smoothness term. Total Variation regularization used in Zach et al.
[771] replaces the quadratic penalization by the L1 norm to preserve discon-
tinuities in the flow field. However, like the original formulation by Horn and
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Figure 11.2: Sparse Matching Guidance. The fast hand motion (left) is an
example where classical warping methods fail (center left), but sparse matches
introduced by Brox and Malik [81] help to estimate the flow (center right).
The color encoding with the hue and intensity representing the orientation and
magnitude of the flow, accordingly, is visualized in the right image. c© 2011
IEEE. Reprinted, with permission, from Brox and Malik [81].

Schunck, this model also biases the solution towards fronto-parallel surfaces
leading to artifacts in the estimation results, in particular in the presence of
strongly slanted planes (e.g., the road surface). Thus, higher-order regulariza-
tions like the Total Generalized Variation (TGV) model have been proposed
[71]. TGV priors can better represent real data as they leverage a piecewise
affine motion model. The non-local Total Generalized Variation [544] is an
extension of this model that enforces the piecewise affine assumption in a lo-
cal neighborhood. This allows them to improve performance in regions where
the data term is ambiguous in comparison to TGV which considers only di-
rect neighbors. Zimmer et al. [811] provide a detailed assessment of image-
and flow-driven regularizers for the variational formulation and discuss the
qualities of different data terms.

Besides the model specifications, the choice of the optimization method
and its implementation are additional factors that influence the performance
of variational optical flow estimation algorithms. A detailed study of optical
flow methods is provided by Sun et al. [642]. They investigate the most
critical factors for the success of optical flow methods and propose an approach
optimizing a classical formulation with modern techniques.

11.2.1 Sparse Matches

Linear approximations that are used to obtain the optical flow equation hold
only for pixel motion. Therefore, variational methods cannot handle large
displacements without an additional strategy. In variational formulations, this
problem is typically addressed with a coarse-to-fine strategy, estimating the
flow on a coarser resolution to initialize the estimation on a finer resolution.
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While this strategy works for large structures of little complexity by capturing
the dominant motion in the scene, fine geometric details are often lost in the
process. Besides, textural details important for correspondence estimation are
lost at coarse resolutions, hence leading the optimizer to a local minimum.
One example of the loss of fine details is illustrated in Figure 11.2, which shows
the optical flow field of a fast-moving hand. These problems can be alleviated
by integrating sparse feature correspondences into the variational formulation,
as proposed by Brox and Malik [81]. The feature matches, obtained from a
nearest neighbor search on a coarse grid, are used as a soft constraint in a
coarse-to-fine optimization. In Figure 11.2, the classical formulation fails to
recover the optical flow for the hand, while integrating feature matches guides
the optimizer to a better solution.

Another solution for large displacements is proposed by Revaud et al.
[557]. They replace the coarse-to-fine strategy with an interpolation of sparse
matches to initialize a dense optimization at full resolution. Sparse matches
are obtained using DeepMatching, a deep neural network matching approach
introduced by Weinzaepfel et al. [714]. In contrast to DeepMatching, Menze et
al. [463] use approximate nearest neighbor search to generate a set of proposals
as candidates to be used in a discrete optimization framework. The inference
is made feasible by restricting the number of matches to the most likely ones
and by exploiting the truncated form of the pairwise potentials. Motivated by
the success of Siamese networks in stereo [775] (Chapter 9), Güney and Geiger
[261] extend this work to learning features for 2D patch matching. They
further investigate the importance of the receptive field size exploiting dilated
convolutions as proposed by Yu and Koltun [766] for semantic segmentation.
Chen and Koltun [114] argue that the heuristic pruning used to make inference
feasible destroys the highly regular structure of the space of mappings and
propose a discrete optimization over the full space. Min-convolutions are used
to reduce the complexity and to effectively optimize the large label space using
a modified version of Tree-Reweighted Message Passing [360].

Wulff and Black [735] present a different approach to obtain dense op-
tical flow from sparse matches. In their approach, the optical flow field is
represented as a weighted sum of basis flow fields learned from reference flow
fields which have been estimated from Hollywood movies. They estimate the
optical flow by finding the weights which minimize the error with respect
to the detected sparse feature correspondences. While this results in overly
smooth flow fields, the so-called PCA Flow approach is very fast compared
to variational and discrete optimization methods. A slower but more accu-
rate version is also proposed to better handle flow discontinuities by using a
layered approach.
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Figure 11.3: Epipolar Flow. The full pipeline of Bai et al. [25] first segments
the scene into dynamic objects (cars) and the static background. Afterwards
the motion is estimated for each object and background, independently, and
finally combined to one flow field. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer Nature ECCV, Bai et al.
[25], c© 2016.

11.2.2 Epipolar Flow

In the context of autonomous driving, application-specific assumptions can
be made to simplify the optical flow estimation. The assumption of a static
scene or the decomposition of a scene into rigidly moving objects allows for
treating optical flow as a matching problem along epipolar lines radiating
from the focus of expansion. Yamaguchi et al. [748] propose a slanted-plane
Markov random field that represents the epipolar flow of each segment with
slanted planes. This formulation needs a time-consuming optimization, which
can be avoided with the joint stereo and flow formulation of Yamaguchi et al.
[750]. They assume the scene to be static and present a new semi-global block
matching algorithm using the joint evidence of stereo and video.

11.2.3 Semantic Segmentation

Scenes in the context of autonomous driving are usually composed of a static
background and dynamically moving traffic participants. This observation
can be exploited by splitting the scene into independently moving objects.
Bai et al. [25] extract traffic participants using instance-level segmentation
and estimate the optical flow independently for different instances. Similar
to [748, 750], they use the slanted plane model but only for background flow
estimation. For each moving object, an independent epipolar flow estima-
tion is performed, as illustrated in Figure 11.3. Sevilla-Lara et al. [615] use
semantic segmentation for optical flow estimation. First, semantics provide
information on object boundaries and spatial relationships between objects
that can be exploited to reason about depth ordering, which in turn deter-
mines occlusion relationships in optical flow. Second, the division of the scene
into semantic units allows them to exploit different motion models according
to the respective object type, similar to [25]. The motion of planar regions
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Figure 11.4: FlowNet Optical Flow Network. The encoder of the
FlowNetSimple and FlowNetCorr architecture proposed by Dosovitskiy et
al. [177]. In FlowNetSimple the images are stacked before the first convolu-
tional layer. In contrast, FlowNetCorr processes both images separately and
correlates the extracted feature maps. The refinement model is a decoder con-
sisting of deconvolutional layers that get informed by the encoder using skip
connections. c© 2015 IEEE. Reprinted, with permission, from Dosovitskiy
et al. [177].

is modeled with homographies, whereas independently moving objects, e.g.,
cars, are modeled by affine motions. Complex objects like vegetation are mod-
eled with a classical spatially varying dense flow field. Finally, the constancy
of object identities over time is used to encourage the temporal consistency
of the optical flow.

11.2.4 Deep Learning for Optical Flow

Most optical flow approaches do not incorporate high-level information mak-
ing it hard to overcome ambiguities that require reasoning about larger image
regions. The recent success of convolutional neural networks has led to an
attempt to use them for the optical flow problem.

Dosovitskiy et al. [177] presented FlowNet to learn optical flow end-to-end
using a CNN. FlowNet consists of a contracting part that extracts important
features and an expanding part that produces the high-resolution optical flow
field as output. They propose two different architectures illustrated in Fig-
ure 11.4: a simple network (FlowNetSimple) stacking the images and a com-



11.2. METHODS 147

Figure 11.5: SpyNet Optical Flow Network. The SpyNet architecture
by Ranjan and Black [546] inspired from classical coarse-to-fine approaches.
An image pyramid is created and for each resolution a network is trained to
predict the residual flow with respect to the previous layer. c© 2017 IEEE.
Reprinted, with permission, from Ranjan and Black [546].

plex network (FlowNetCorr) correlating features of the separately processed
images. One problem in learning optical flow is the limited amount of training
data. KITTI 2012 [243] and KITTI 2015 [462] only provide around 200 train-
ing examples each while Sintel [92] has 1041 training image pairs. Since these
datasets are too small to train large CNNs, Dosovitskiy et al. [177] created
the Flying Chairs dataset by rendering 3D chair models on top of images from
Flickr. This first attempt to end-to-end optical flow learning demonstrated
that it was possible to learn optical flow estimation from data, despite not yet
reaching the performance of state-of-the-art traditional methods on KITTI or
Sintel. However, due to the parallel GPU implementation, FlowNet was able
to run in real-time as opposed to most of the classical algorithms implemented
on the CPU.

In contrast to the contracting and expanding networks of Dosovitskiy et
al. [177], Ranjan and Black [546] present the SpyNet architecture which is
inspired by the coarse-to-fine matching strategy leveraged in traditional op-
tical flow estimation techniques. As shown in Figure 11.5, each layer of the
network represents a different scale and only estimates the residual flow with
respect to the image warped according to the flow of the previous layer. This
formulation allowed them to achieve similar performance as FlowNet while
being faster and 96 % smaller in terms of network weights, making it at-
tractive for embedded systems with limited compute capabilities. Ilg et al.
[317] present FlowNet2, an improved version of FlowNet, by stacking the ar-
chitectures and fusing the stacked network with a subnetwork specialized in
small motions. Similar to SpyNet, they also input the warped image into the
stacked networks. Each stacked network estimates the flow between the orig-
inal frames instead of the residual flow, as in SpyNet. In contrast to FlowNet
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Figure 11.6: PWCNet Optical Flow Network. Sun et al. [644] combine
coarse-to-fine estimation with cost-volume filtering using a Siamese network
for feature extraction. This figure shows one level of the architecture that uses
one level of the feature pyramid and the upsampled flow from the previous
level for residual flow estimation. c© 2018 IEEE. Reprinted, with permission,
from Sun et al. [644].

and SpyNet, they use the FlyingThings3D dataset [457] consisting of 22k
renderings of static 3D scenes with moving 3D models from the ShapeNet
dataset [585]. Recently, PWC-Net [644] illustrated in Figure 11.6 was pro-
posed that combines the classical ideas of coarse-to-fine warping [546] and
cost volume filtering [177] with a Siamese network that proved to learn rich
feature representations [775].

Unsupervised Learning: Because large annotated datasets for supervised
learning of optical flow are rather limited, several recent works [770, 461, 703,
321] address the problem of unsupervised learning of optical flow. Typically,
these approaches train one of the standard networks with a photometric loss
and a smoothness loss. The photometric loss compares the first image with
the second image warped according to the predicted flow. The smoothness
loss encourages a similar motion between neighboring pixels. Recently, several
approaches [461, 703, 321] noticed that occluded regions introduce errors in
the photometric loss that cause misleading gradients during training. They
propose to mask out occluded regions in order to avoid this problem. While
Meister et al. [461] and Wang et al. [703] both rely on heuristics for estimating
occlusions, Janai et al. [321] use a three frame formulation to jointly learn
occlusions and optical flow in an unsupervised fashion. Even though occlusion
handling results in large improvements and performance comparable to the
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Figure 11.7: Accuracy vs Efficiency. The trade-off between performance
and speed on KITTI 2012 [243].

first fully supervised approaches [177, 546], they are not yet able to compete
with the state-of-the-art supervised approaches [317, 644] that dominate the
leaderboards today.

11.2.5 High-Speed Flow

With some exceptions (Wulff and Black [735], Timofte and Gool [666], Wein-
zaepfel et al. [714], Farneback [201], and Zach et al. [771]), most of the classical
optical flow approaches are very inefficient and cannot be applied in real-time
which is necessary for applications in autonomous driving. The trade-off be-
tween accuracy and speed for different algorithms on the KITTI 2012 bench-
mark [243] is illustrated in Figure 11.7. While variational approaches yielded
a good precision, they belonged to the slowest set of methods for motion esti-
mation. The duality-based approach for total variation optical flow proposed
by Zach et al. [771] allows an efficient GPU implementation that performs in
real-time (30 Hz) on a resolution of 320×240. Sparse matching approaches are
usually more efficient than variational formulations but often need variational
refinement as a post-processing step to achieve subpixel precision.

The recent introduction of deep learning to the optical flow problem
yielded several near real-time approaches (Dosovitskiy et al. [177] and Ranjan
and Black [546]) including (Ilg et al. [317] and Sun et al. [644]) which achieve
state-of-the-art performance on popular datasets. The approach proposed by
Kroeger et al. [368] allows to trade-off accuracy and runtime. They obtain
fast patch correspondences with inverse search resulting in a dense flow field
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when aggregating patches across multiple scales. This allows them to estimate
optical flow at up to 600 Hz, but at the cost of accuracy.

11.2.6 Confidences

Considering the remaining challenges in optical flow, a confidence measure
to assess the quality of the estimated flow is desirable. In the autonomous
driving application, for instance, the importance of optical flow estimates can
be adjusted with a good confidence measure. In the case of low confidences,
the system could heighten the attention to other sources of information, e.g.,
other sensors.

Several measures based on spatial and temporal gradients have been pro-
posed [678, 8, 626] to quantify the uncertainty in the optical flow estimate.
In contrast, algorithm-specific measures propose confidence estimates for a
specific group of methods, i.e., variational methods [83] and methods for
pixel-based minimization problems [381]. While Bruhn and Weickert [83]
propose a confidence measure based on the energy function optimized by the
variational method, Kybic and Nieuwenhuis [381] uses bootstrap resampling,
which repeatedly run the optical flow computation while randomly replacing
the contributions of some pixels to the energy.

Learning-based measures [362, 363, 444] learn a model that relates the
success of flow algorithm success to spatio-temporal image data or the com-
puted flow field. Kondermann et al. [362] use linear subspace projection of the
optical flow and define a confidence based on the reconstruction error using
the linear basis. In contrast, Kondermann et al. [362] learn a probabilistic
motion model from annotated training data and use hypothesis testing of flow
estimates based on the derived model to compute confidences. Mac Aodha
et al. [444] learn a classifier to directly measure the quality of the optical
flow predictions based on multiple feature types, such as temporal features,
texture or distance from image edges. In addition, they provide a detailed
evaluation of different confidence measures.

Several approaches [705, 316, 235, 762] proposed to estimate the optical
flow and confidences simultaneously. Wannenwetsch et al. [705] formulate
a probabilistic method based on general energy formulations. The optical
flow is estimated by minimizing the expected loss over the posterior, while
confidences are measured using the marginal entropy of the posterior. They
rely on a mean-field approximation to make inference tractable. Gast and
Roth [235] propose lightweight probabilistic CNNs. Instead of learning a two-
dimensional optical flow field, they learn the mean and standard deviation of
a Gaussian distribution. Furthermore, they suggest to learn the distribution
in each layer and describe how to propagate the probabilistic activations in
forward and backward direction. In concurrent work, Ilg et al. [316] suggest
two approaches for learning uncertainties using CNNs. In a simple approach,
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they train a set of different models and estimate uncertainty empirically. Since
training several models is expensive, they propose an extension of FlowNet
[177] in the spirit of [235] by replacing some optical flow layers by the mean
and standard deviation of a Gaussian. Recently, Yin et al. [762] presented a
probabilistic formulation based on discrete distributions over possible corre-
spondences. With a general model representing the matching probabilities,
they do not need to rely on any parametric distribution assumption. They
decompose the match distribution into multiple scales to make the computa-
tions feasible.

11.3 Datasets

Sintel [92] and KITTI [243, 242] discussed in Chapter 4 are the most popular
datasets for the evaluation of optical flow algorithms. However, in this survey,
we focus on the autonomous driving application. Therefore, we will only refer
to the KITTI leaderboard when comparing methods.

11.4 Metrics

The performance of methods is usually assessed considering the endpoint
error (Euclidean distance) between the estimated flow vectors and the ground
truth. While Sintel reports the average endpoint error for different velocities,
occluded and non-occluded regions, the KITTI dataset uses outliers which
are computed as the percentage of flow vectors with the absolute endpoint
error (EPE) exceeding 3 pixels and 5% of its true values. The percentage
of outliers is averaged over background (Fl-bg), foreground (Fl-fg), and all
regions (Fl-all), resulting in three different evaluation metrics.

11.5 State of the Art on KITTI

In Table 11.1, we show the leaderboard for the KITTI 2015 benchmark. In
addition to the estimation error, the density of the output flow field and the
runtime are also provided.

Bai et al. [25] achieve great accuracy in background regions by leveraging
semantic segmentation and epipolar geometry. However, their performance
drops on foreground regions with dynamic objects that do not follow their
assumptions. Hur and Roth [315] formulate a symmetric optimization prob-
lem to jointly reason about optical flow and occlusions. Using an alternating
optimization of forward-backward flow and occlusions, they obtain similar
results in background regions while improving on foreground regions.
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Method Fl-bg Fl-fg Fl-all Runtime
1. PWC-Net+ [643] 7.69 % 7.88 % 7.72 % 0.03 s / GPU
2. LiteFlowNet [314] 9.66 % 7.99 % 9.38 % 0.0885 s / GPU
3. PWC-Net [644] 9.66 % 9.31 % 9.60 % 0.03 s / GPU
4. ContinualFlow ROB (MF) [493] 8.54 % 17.48 % 10.03 % 0.15 s / GPU
5. MirrorFlow [315] 8.93 % 17.07 % 10.29 % 11 min / 4 core
6. FlowNet2 [317] 10.75 % 8.75 % 10.41 % 0.1 s / GPU
7. SDF [25] 8.61 % 23.01 % 11.01 % TBA / 1 core
8. UnFlow [461] 10.15 % 15.93 % 11.11 % 0.12 s / GPU
26. RicFlow [305] 18.73 % 19.09 % 18.79 % 5 s / 1 core
27. FlowFields+ [27] 19.51 % 21.26 % 19.80 % 28s / 1 core
28. PatchBatch [223] 19.98 % 26.50 % 21.07 % 50 s / GPU
29. DDF [261] 20.36 % 25.19 % 21.17 % 1 min / GPU
36. Back2FutureFlow (MF) [321] 22.67 % 24.27 % 22.94 % 0.12 s / GPU
37. MotionSLIC [748] 14.86 % 64.44 % 23.11 % 30 s / 4 cores
39. FullFlow [114] 23.09 % 24.79 % 23.37 % 4 min / 4 cores
45. EpicFlow [557] 25.81 % 28.69 % 26.29 % 15 s / 1 core
50. SPyNet [546] 33.36 % 43.62 % 35.07 % 0.16 s / 1 core
51. HS [642] 39.90 % 51.39 % 41.81 % 2.6 min / 1 core
52. DB-TV-L1 [772] 47.52 % 48.27 % 47.64 % 16 s / 1 core

Table 11.1: KITTI 2015 Optical Flow Leaderboard. Numbers corre-
spond to percentages of bad pixels according to the 3px/5% criterion de-
fined in [462] averaged over background (bg), foreground (fg), or all regions.
Methods followed by (MF) use multiple frames as input. Methods below the
horizontal line show older entries for reference. Accessed on: June 2019.

The best performing methods learn optical flow end-to-end [644, 314, 493,
317, 461, 643]. FlowNet2 [317] provides different network variants for the
spectrum between 8fps and 140fps, allowing the trade-off between accuracy
and computation. The most accurate network achieves comparable results
to the state of the art. Neoral et al. [493] use a three frame formulation
to jointly learn optical flow and occlusions. This allows them to perform
well on background regions that are often occluded by foreground objects.
Hui et al. [314] follow a similar approach to PWC-Net by using a Siamese
network, coarse-to-fine warping, and computing correlations. Sun et al. [643]
propose a new learning rate schedule consisting of several disruptions (a strong
increase of the learning rate) and show how this improves the training of
the original PWC-Net. PWC-Net [644] with the adapted training protocol
[643] outperforms all methods on KITTI 2015 (Table 11.1) and Sintel in both
background and foreground objects while being one of the fastest methods on
both benchmarks.
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11.6 Discussion

Robust optical flow methods need to handle intensity changes not caused by
the actual motion of interest but by illumination changes, reflections, and
transparency. In real-world scenes, repetitive patterns, textureless surfaces,
saturated image regions, and occlusions are frequent sources of errors. While
illumination changes have been addressed with novel data terms [54, 691],
the problems caused by reflection, transparency, ambiguities, and occlusions
remain mostly unsolved. In Figure 11.8, we show the accumulated error of
the 15 best-performing methods on KITTI 2015 [462]. The highest error can
be observed for regions moving outside the image domain for which the op-
tical flow has to be guessed, as observations are not available. Untextured,
reflective, and transparent regions also result in large errors in many cases.
A better understanding of the world is necessary to tackle these problems.
Semantics [25] and learned high-capacity models [644, 314, 493, 317, 461,
643] have already proven to improve optical flow estimation by resolving am-
biguities in the data. Joint optical flow and occlusion formulations have also
shown great potential to alleviate these problems for optimization-based [315]
as well as learning-based [461, 703, 321] methods.
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Figure 11.8: KITTI 2015 Optical Flow Analysis. The averaged errors
of the 15 best-performing optical flow methods published on the KITTI 2015
Flow benchmark. Red colors correspond to regions where the majority of
methods fail according to the 3px/5% criterion defined in [462]. Yellow colors
correspond to regions where some of the methods fail. Regions that are
correctly estimated by all methods are transparent.



Chapter 12

3D Scene Flow

12.1 Problem Definition

Humans are able to effortlessly integrate depth and motion cues from ob-
servations over time. That kind of reasoning is essential for many tasks
in autonomous driving, such as segmentation of moving objects in the 3D
world. Scene flow generalizes optical flow to 3D, or equally, dense stereo to
dynamic scenes. Given stereo image sequences, the goal is to estimate the
three-dimensional motion field that is a 3D motion vector for every point on
every visible surface in the scene. The minimal setup for image-based scene
flow estimation is given by two consecutive stereo image pairs, as visualized
in Figure 12.1. Establishing correspondences between the four images re-
sults in the 3D location of the surface point in both frames and hence fully
describes the 3D motion of that surface point. A dense output is preferred, al-
though some early works focused on establishing sparse correspondences [212].
Scene flow shares some of the challenges with stereo and optical flow, such as
matching ambiguities in weakly textured regions and the aperture problem,
but integrating observations from four images and solving both tasks jointly
leads to a better-constrained problem.

12.2 Methods

Following the seminal work by Vedula et al. [683], the problem is traditionally
formulated in a variational setting where optimization proceeds in a coarse-to-
fine manner, and local regularizers are leveraged to encourage spatial smooth-
ness of depth and motion. Wedel et al. [709, 707] propose a variational frame-
work by decoupling the motion estimation from the disparity estimation while
maintaining stereo constraints. Starting from a precomputed disparity map at

155
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Figure 12.1: Scene Flow. The minimal setup for image-based scene flow
estimation is given by two consecutive stereo image pairs. c© 2015 IEEE.
Reprinted, with permission, from Menze and Geiger [462].

each time step, optical flow for the reference frame and disparity for the other
view are estimated. The motivation for this decoupling is mainly computa-
tional efficiency by choosing the optimal technique for each task. In addition,
Wedel et al. [707] propose a solution for varying lighting conditions based on
residual images and provide an uncertainty measure which they showed to be
useful for object segmentation. Rabe et al. [541] integrate a Kalman filter to
the decoupling approach for temporal smoothness and robustness.

12.2.1 Piecewise Rigidity

Similar to stereo and optical flow, prior assumptions about the geometry and
motion can be exploited to better handle the challenges of the scene flow
problem. Vogel et al. [692] and Lv et al. [440] represent the dynamic scene as
a collection of rigidly moving planar regions, as shown in Figure 12.2. Vogel
et al. [692] jointly recover this segmentation while inferring the shape and
motion parameters of each region. They use a discrete optimization frame-
work and incorporate occlusion reasoning as well as other scene priors in the
form of spatial regularization of geometry, motion, and segmentation. In ad-
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Figure 12.2: Piecewise Rigidity. In Vogel et al. [692] the scene is modeled
as a collection of rigidly moving planar segments. Reprinted by permission
from Springer Nature Customer Service Centre GmbH: Springer Nature IJCV,
Vogel et al. [692], c© 2015.

dition, they reason over multiple frames by constraining the segmentation to
remain stable over a temporal window. Their experiments show that their
view-consistent multi-frame approach significantly improves accuracy for chal-
lenging scenarios. Using the same representation, Lv et al. [440] focus on an
efficient solution to the problem. They assume a fixed superpixel segmenta-
tion and perform optimization in the continuous domain for faster inference.
Starting from an initialization based on Deep Matching [714], they indepen-
dently refine the geometry and motion of the scene, and finally perform a
global non-linear refinement using the Levenberg-Marquardt algorithm.

Piecewise Rigidity at the Object Level: Menze and Geiger [462] and
Behl et al. [36] also follow a slanted plane approach, but in addition to pre-
vious methods [692, 440], they model the decomposition of the scene into a
small number of independently moving objects and the background. By con-
ditioning on a superpixelization, they jointly estimate this decomposition as
well as the rigid motion of the objects and the plane parameters of each super-
pixel in a discrete-continuous Conditional Random Field (CRF). Compared
to [692, 440], they leverage a more compact representation, by implicitly reg-
ularizing over larger distances. They also present a new scene flow dataset by
annotating dynamic scenes from the KITTI raw data collection using detailed
3D CAD models. Menze et al. [464] propose an extension of this model where
the pose and 3D shape of the objects are inferred in addition to the rigid
motion and segmentation. In particular, they incorporate a deformable 3D
active shape model of vehicles into the scene flow approach.
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Figure 12.3: Semantic Segmentation for Scene Flow. Behl et al. [36]
leverage instance segmentation and bounding boxes from an instance seg-
mentation pipeline to independently model the motion of each object and the
background. c© 2017 IEEE. Reprinted, with permission, from Behl et al. [36].

12.2.2 Semantic Segmentation

Semantic information allows constraining the space of possible rigid body
motions. For instance, in an autonomous driving scenario, pixels which are
grouped together in the segmentation are likely to move as a single rigid
object in the case of vehicles. Furthermore, a pixel on a vehicle instance in one
frame should be mapped to a vehicle instance in the other frame. Behl et al.
[36] investigate the impact of bounding box detection, instance segmentation,
and 3D object coordinates on scene flow estimations and show which one is
most beneficial for scene flow. They obtain the bounding boxes and instance
segmentation from the proposal-based instance segmentation method MNC
[148] discussed in Chapter 8. 3D object coordinates are predicted with a
CNN trained on the 2D instance segmentations as illustrated in Figure 12.3.
Using a CRF based on [462], they show that semantic cues lead to significant
improvements. However, the benefit of 3D object coordinates over instance
segmentations is negligible. Recently, Ma et al. [443] leverage multiple cues
consisting of CNNs for instance segmentation (Mask R-CNN [283]), optical
flow (PWC-Net [644]) and stereo (PSM-Net [103]) to address the scene flow
problem. They formulate an energy combining all the cues with a photometric
term. By unrolling the optimization as a recurrent network, they are able to
train the whole pipeline end-to-end.

12.2.3 Scene Flow from 3D Point Clouds

The image-based methods discussed earlier estimate scene flow based on two
consecutive image pairs of a calibrated stereo camera rig. However, stereo-
based scene flow methods suffer from the “curse of two-view geometry”, i.e.,
the depth error grows quadratically with the distance to the observer. Fur-
thermore, most modern self-driving car platforms rely on LiDAR technology
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for 3D geometry perception. In contrast to cameras, laser scanners do not
suffer from the quadratic error behavior of stereo cameras. In addition, laser
scanners provide a 360-degree field of view with just one sensor and are gen-
erally unaffected by lighting conditions. Therefore, there have been several
methods proposed recently for estimating 3D scene flow from pairs of un-
structured 3D point clouds. Dewan et al. [166] propose a 3D scene flow
approach where local SHOT descriptors [667] are associated via a CRF that
incorporates local smoothness and rigidity assumptions. However, local shape
representations such as SHOT often fail in the presence of noisy or ambigu-
ous inputs. In contrast, Behl et al. [37] address the scene flow problem using
a generic end-to-end trainable model that is able to learn local and global
statistical relationships directly from data. In order to apply the standard
3D convolution operations, they discretize the point cloud to a grid of voxels.
However, because of the sparse nature of the LiDAR data, most of the space
is empty, which makes the approach computationally and memory inefficient.
To alleviate this problem, Wang et al. [700] propose a novel continuous con-
volution that operates over non-grid structured data.

12.3 Datasets

Only a few datasets exist for scene flow [243, 457, 92]. Similar to flow and
stereo, the KITTI scene flow benchmark [243] is the most popular dataset
allowing the comparison of methods on an online evaluation server. For deep
learning, the Flying Things datasets [457] is often used for pre-training since
KITTI is too small. Recently, MPI Sintel [92] published stereo sequences for
the training dataset1 and is since used to show the generalization of scene
flow approaches to other scenes than street scenes from KITTI.

12.4 Metrics

Scene flow methods are usually evaluated by jointly measuring the accuracy
of the stereo (Section 9.4) and optical flow estimates (Section 11.4). The
KITTI benchmark considers the percentage of erroneous pixels. A pixel is
erroneous if the Euclidean distance to the ground truth exceeds a 3 pixels or
5% threshold. The percentage of stereo disparity outliers in the first frame
(D1), the percentage of stereo disparity outliers in the second frame (D2),
the percentage of optical flow outliers (Fl), and the percentage of scene flow
outliers (SF), i.e., outliers in either D0, D1 or Fl are reported. The outlier ratio
for foreground/background regions can be found separately on the website of

1http://sintel.is.tue.mpg.de/stereo

http://sintel.is.tue.mpg.de/stereo
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Method D1 D2 Fl SF Runtime
1. UberATG-DRISF [443] 2.55 % 4.04 % 4.73 % 6.31 % 0.75 s / CPU+GPU
2. ISF [36] 4.46 % 5.95 % 6.22 % 8.08 % 10 min / 1 core
3. PRSM [692] (MF) 4.27 % 6.79 % 6.68 % 8.97 % 300 s / 1 core
4. OSF+TC [492] (MF) 5.03 % 6.84 % 7.02 % 9.23 % 50 min / 1 core
5. OSF 2018 [465] 5.28 % 7.06 % 7.41 % 9.66 % 390 s / 1 core
6. SSF [555] 4.42 % 7.02 % 7.14 % 10.07 % 5 min / 1 core
7. OSF [462] 5.79 % 7.77 % 7.83 % 10.23 % 50 min / 1 core
8. FSF+MS [658] (MF) 6.74 % 9.85 % 11.30 % 14.96 % 2.7 s / 4 cores
9. PWOC-3D [586] 5.13 % 8.46 % 12.96 % 15.69 % 0.13 s / GPU
18. SGM+C+NL [297] 6.84 % 28.25 % 35.61 % 40.33 % 4.5 min / 1 core
19. SGM+LDOF [297] 6.84 % 28.56 % 39.33 % 43.67 % 86 s / 1 core
20. DWBSF [558] 20.12 % 34.46 % 39.14 % 45.48 % 7 min / 4 cores
21. GCSF [99] 14.21 % 33.41 % 46.40 % 53.54 % 2.4 s / 1 core
22. VSF [313] 26.38 % 57.08 % 49.28 % 66.90 % 125 min / 1 core

Table 12.1: KITTI 2015 Scene Flow Leaderboard. Numbers correspond
to percentages of bad pixels according to the 3px/5% criterion defined in [462]
for disparity in the first frame (D1), disparity in the second frame (D2), optical
flow between both frames (Fl) as well as the combination of all criteria yielding
the final scene flow metric (SF). Approaches using more than 2 frame pairs
are marked by (MF). Methods below the horizontal line show older entries
for reference. Accessed on: June 2019.

the benchmark2, but it is omitted here for space reasons.

12.5 State of the Art on KITTI

Table 12.1 shows the ranking of methods on the KITTI Scene Flow 2015
benchmark [462].

All top-performing methods use either semantic cues [36, 443, 555] or the
assumption of rigidly moving segments [692, 462, 492, 465]. Modeling the
motion of objects using a rigid transformation [462, 464, 465, 492] achieves
impressive results on the KITTI dataset. However, this is a very strong as-
sumption even in street scenes as the non-rigidity of pedestrians cannot be
handled. In contrast, the segmentation of the scene into superpixels [692]
alleviates this problem and allows better performance since non-rigid objects
can be modeled by multiple superpixels. However, the best performance is
achieved by integrating semantic information [36, 443]. While most scene
flow approaches are very inefficient, the method of Ma et al. [443] is a no-
table exception, requiring only 0.75 seconds. They achieve this efficiency by
combining CNNs for instance segmentation (Mask R-CNN [283]), optical flow
(PWC-Net [644]) and stereo (PSM-Net [103]) to address the scene flow prob-

2http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php

http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php
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lem and exploiting a GPU for inference (in contrast to classical scene flow
approaches which typically run on the CPU).

12.6 Discussion

The scene flow problem shares many challenges with stereo and optical flow
while integrating more information than each task alone and consequently
leading to better results. Ideally, methods should exploit depth and motion
cues together to reason about dynamic 3D scenes. However, considering the
optical flow (Table 11.1) and stereo matching leaderboards (Table 9.1), the
joint formulation is more advantageous for the optical flow problem leading
to significant improvements as for instance UberATG-DRISF [443] reaches an
outlier ratio of 4.73% in comparison to PWC-Net+ [643] reaching 7.72 %. In
contrast, the stereo matching performance is comparable with an outlier ratio
of 2.55% (UberATG-DRISF [443]) in comparison to 2.08 % (EdgeStereo-V2
[633]).

We show the accumulated errors of the top 5 methods on the KITTI scene
flow benchmark in Figure 12.4. Car surfaces are the most problematic regions
due to matching problems and the independent motion of cars. Pixels close
to the image boundary are another common source of error, especially on the
road surfaces in front of the car, where large scale changes occur. Although
local planarity and rigidity assumptions alleviate the problem, they are of-
ten violated due to complex geometric objects like vegetation, pedestrians,
or bicycles. Superpixels grouping different surfaces due to wrong estimation
of planes cause additional problems, especially at the boundaries of objects.
Semantic image understanding seems a promising direction [555, 36, 443],
especially at the object level, by segmenting car instances. However, an addi-
tional network has to be trained for obtaining this information, and prediction
errors can lead to irreversible errors in the final scene flow estimation. Lever-
aging temporal information [692, 492] also leads to improvements and should
be exploited whenever possible. Especially, long-term temporal interactions
could allow to alleviate ambiguities and improve. However, obtaining a ro-
bust, accurate, and real-time multi-frame scene flow estimate remains an open
problem that requires further work.
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Figure 12.4: KITTI 2015 Scene Flow Analysis. The averaged errors
of the 15 best-performing scene flow methods published on the KITTI 2015
Scene Flow benchmark. Red colors correspond to regions where the majority
of methods yield bad pixels according to the 3px/5% criterion defined in [462].
Yellow colors correspond to regions where some of the methods fail. Regions
that are correctly estimated by all methods are transparent.



Chapter 13

Mapping, Localization &
Ego-Motion Estimation

13.1 Problem Definition

Navigating a vehicle requires a precise understanding of the position and
orientation of the car. Localization is a well-studied problem in both robotics
and vision, covering a broad range of techniques from indoor localization using
noisy sensory measurements to locating where a picture was taken. From an
autonomous driving perspective, the main task is to localize the vehicle on
a map in order to exploit static features provided by the map. The task
of generating a map of the world is defined as the mapping problem. In
this chapter, we discuss approaches for generating both metric as well as
semantic maps. While metric maps allow for accurate localization, semantic
maps provide problem-specific information such as the location of parking
areas. Maps for localization can be generated offline, exploiting accurate, but
computationally expensive optimization techniques.

In contrast to localization, the ego-motion estimation problem considers
the change in position and orientation of the vehicle. While this problem can
be addressed more efficiently than the localization problem (the previous posi-
tion is assumed to be known), small inaccuracies quickly accumulate to larger
drifts. Approaches for Simultaneous Localization and Mapping (SLAM) ad-
dress this problem by detecting loop closures to correct for drift.

163
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Figure 13.1: Google Street View. Dominant scene surfaces reconstructed
from images and laser range data (left) and a scene from the Google Street
View project [14]. c© 2010 IEEE. Reprinted, with permission, from Anguelov
et al. [14].

13.2 Mapping

Street, aerial, and satellite imagery enable the generation of precise metric
and semantic maps. Depending on the required level of detail, various com-
puter vision techniques, i.e., multi-view reconstruction, scene understanding,
or semantic segmentation, are typically employed for generation maps.

13.2.1 Metric Maps

For autonomous driving, 2D metric maps (i.e., representing information in
bird’s-eye view) are usually sufficient for localization. Methods for scene un-
derstanding, such as [196, 720, 718, 241, 668, 606, 778] discussed in Chapter 14
can also be used to extract road features. 3D information can be obtained
using multi-view reconstruction techniques operating on street-level [2, 208,
209] (Section 10.2) or aerial [217, 58, 182] images.

The Google Street View project [14] is a prominent example of a large
collection of panoramic images that are registered with respect to each other
to form a world map, see Figure 13.1. For registering the dataset, Anguelov
et al. [14] estimate the pose of the vehicle using a Kalman filter, fusing data
from GPS, wheel encoder, and inertial navigation [357]. The pose estimates
are refined with a probabilistic graphical model, and the 3D scene geometry
is recovered by robustly fitting coarse meshes to the 3D measurements.

Levinson et al. [409] propose to construct a map based on aggregated
reflectance measurements from a LiDAR scanner. They exploit these maps
for centimeter-accurate LiDAR-based localization during the DARPA Urban
Challenge. In contrast, Geiger [239] presents an approach for road mosaicing
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Figure 13.2: Appearance Changes in Localization. Examples for differ-
ent weather conditions, seasons, and day times for a scene from the Workshop
organized by Balntas et al. [30]. Reprinted, with permission, from Balntas
et al. [30].

in dynamic environments with the goal of creating obstacle-free bird’s-eye
views. The road surface is extracted using optical flow on Harris corners
and approximated by a plane. Afterwards, multiple road reconstructions are
combined using multi-band blending.

13.2.2 Semantic Maps

Metric maps ignore semantic information, which is important for some tasks
such as automated parking. Semantic maps are necessary to address this
problem. Several approaches address the creation of semantic maps [711,
712, 479, 685, 454, 455, 710, 455] . Scene understanding approaches like
[196, 241] also estimate semantic classes to extract road topologies but do not
create a semantic map.

Sengupta et al. [611] present an approach to generate a semantic overhead
map of an urban scene from street-level images. They formulate the problem
using two CRFs. The first is used for semantic image segmentation of the
street view images treating each image independently. Each street view image
is then projected into an overhead view. These views are then aggregated
over many images to form the input for a second CRF producing a semantic
labeling of the ground plane.

In contrast, Grimmett et al. [257] fuse semantic and metric maps for vision-
only automated parking. They update the map with static and dynamic
labels and use active learning for lane, parking space, and pedestrian crossings
detection.

13.3 Localization

Localization can be performed using either a sensor like GPS or visual in-
formation based on images. Using GPS alone typically provides an accuracy
of around 5 meters. Although centimeter-level precision is possible in unob-
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structed environments using correction signals and a combination of several
sensors as in the KITTI car [243], it is often rendered infeasible in traffic scenes
with several disturbing effects such as occlusions by vegetation and buildings
or multi-path effects due to reflections. Therefore, image-based localization
independent of satellite systems remains highly relevant.

Visual localization techniques are commonly classified into metric and
topological methods. Metric localization [160, 500] is achieved by computing
the 3D pose with respect to a map. Topological localization approaches [419,
793, 281] provide a coarse estimate from a finite set of possible locations
that are represented as nodes in a graph and connected by edges that link
them according to some distance or appearance criteria. Metric localization
can be very accurate, but is usually not suitable for very long sequences,
while topological localization may be more reliable, but only provides rough
estimates.

Metric Localization: The problem of metric map localization has been
traditionally addressed using Monte Carlo methods which recover the proba-
bility distribution over the agent’s pose by drawing a set of samples. Dellaert
et al. [160] define indoor localization in two steps, global position estimation
and tracking of the local position over time. Instead of modeling the probabil-
ity density function itself, they represent uncertainty by a set of samples and
update the representation over time using Monte Carlo methods. This allows
them to model arbitrary multi-modal distributions in a memory-efficient way.

Outdoor localization is, in general, more challenging compared to the in-
door localization task due to its scale and often unreliable sensor information,
e.g., GPS failures. Oh et al. [500] use semantic information available in maps
to compensate for the failure cases of GPS sensors. By exploiting knowledge
about the environment, they assign low probabilities to implausible map lo-
cations, e.g., inside buildings. They incorporate these map-based priors into
their particle filter formulation to bias the motion model towards areas of
higher probability.

Topological Localization: Early image-based techniques [419, 793] ap-
proach the problem of localizing in topological maps as classification into one
of a predefined set of places which are often referred to as “landmarks”. Oth-
ers [281, 141, 512, 669, 15] create a database of images with known locations
and formulate localization as an image retrieval problem. These methods
require a similarity measure to compare images based on local or global ap-
pearance cues. The larger the database, the more difficult the localization task
becomes. Challenges include appearance changes, similar-looking places, and
changes due to viewpoint or position. In Figure 13.2, we show an example for
the appearance change of a scene over different seasons from the Workshop
organized by Balntas et al. [30].

Lowry et al. [436] provide a comprehensive review of visual place recogni-
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tion techniques. Given a map of the environment, the goal of place recognition
is to decide whether the current observation is a place already included in the
map, and if so, which one.

Topometric Localization: In contrast to purely topological methods, the
graph of a topometric localization model is more fine-grained: each node cor-
responds to a metric location without semantic meaning. Towards this goal,
Badino et al. [21] propose to construct a graph using the vehicle’s position
from GPS at fixed distance intervals while associating visual or 3D features to
the corresponding graph node. At runtime, real-time localization is performed
using a Bayes filter to estimate the probability distribution of the vehicle po-
sition along the route by matching features extracted from the sensor data
to the map’s feature database. Brubaker et al. [82] leverage a graph-based
representation. In contrast to traditional localization approaches, however,
they do not require a visual feature database of the environment, but instead,
directly build this graph from road networks extracted from OpenStreetMap.
They further propose a probabilistic model that allows inferring a distribu-
tion over the vehicle location along the edges of this road graph using visual
odometry measurements. For tractability in very large environments, they
leverage several analytic approximations for efficient inference yielding higher
stability compared to particle-based filtering techniques.

Scale and Accuracy: The scale of the target area is a distinctive prop-
erty to compare different approaches and is related to the accuracy achieved.
Both scale and accuracy depend on the methodology used, such as map-based
approaches [82] which cover a large area but might suffer from the errors on
the map compared to descriptor-based approaches [21, 603] on a smaller area.
While the descriptor-based method of Badino et al. [21] achieves an average
localization accuracy of 1 m over an 8 km route, the localization approach
of Brubaker et al. [82] which requires only road networks as input attains an
accuracy of 4 m on a 18 km2 map containing 2,150 km of drivable roads.

Schreiber et al. [603] point out that the required precision for autonomous
driving and future driver assistance systems is in the range of a few centime-
ters and present a feature- and map-matching-based localization algorithm
which can achieve centimeter-level accuracy on approximately 50 km of rural
roads. They approach the problem from the perspective of lane recognition.
First, they create a highly accurate map that contains road markings and
curbs. Then while driving, they detect and match them to the map in order
to determine the position of the vehicle relative to the markings.

13.3.1 Structure-based Localization

While the output of the aforementioned localization approaches is either a
rough camera position or a distribution over positions, another line of work
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Figure 13.3: Structure-based Localization. A query image is matched to
a database of geo-referenced structure-from-motion point clouds assembled
from photos of places around the world (left). In structure-based approaches,
the goal is to compute the geo-referenced pose of new query images by match-
ing to a large database of feature descriptors (right). Reprinted by permis-
sion from Springer Nature Customer Service Centre GmbH: Springer Nature
ECCV, Li et al. [420], c© 2012.

which is known as “structure-based localization”, aims to estimate all camera
matrix parameters, including position, orientation, and sometimes also cam-
era intrinsics. Estimating the intrinsics usually enables more accurate results.
Localization is realized as a 2D-to-3D matching problem where the 2D points
on the images are matched to a large, geo-registered 3D point cloud, and the
pose is estimated with respect to correspondences as shown in Figure 13.3.

Direct matching by approximate nearest neighbor search using SIFT fea-
tures usually results in many incorrect matches. Therefore, many approaches
rely on the SIFT ratio test [435] to detect and reject ambiguous matches.
This works well on small to medium scale scenes. However, with growing
model size, the discriminative power of the descriptors decreases, and many
matches will be rejected by the ratio test. On the other hand, relaxing the
ratio test leads to many ambiguous and wrong matches.

Several approaches [319, 579, 420, 648, 777] address this problem by re-
stricting the search space. Irschara et al. [319] and Sarlin et al. [579] use
image retrieval techniques to identify parts of the scene which likely include
the query image. Afterwards, 2D-3D matching is performed to 3D points
visible in the retrieved images. In contrast, Li et al. [420] find statistical co-
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occurrences of 3D model points in images and then use them as a sampling
prior for RANSAC to exploit co-visibility relations. In addition, they employ
a bidirectional matching scheme, forward from features in the image to points
in the database and inverse from points to image features. They show that
the bidirectional approach performs better than forward or inverse matching
alone. Svärm et al. [648] and Zeisl et al. [777] propose to use geometric cues
to obtain matches that are likely to be inliers. They also exploit the gravity
direction obtained from gravitational sensors and an approximation of the
camera height to reduce the search space.

Besides ambiguities, the efficiency of the matching stage and memory re-
quirements to store the large number of descriptors contained in the model
are also problems related to large scale. Therefore, several approaches use
only a subset of the 3D points [441] or present compression schemes for the
descriptors [441, 581, 580, 426, 95] for more efficient matching or memory
reduction. Sattler et al. [581] and Sattler et al. [580] use quantization into a
fine vocabulary to accelerate the matching stage where each descriptor is rep-
resented by its word ID. Sattler et al. [581] separate the difficult problem of
finding a unique 2D-3D matching into two simpler ones. They first establish
locally unique 2D-3D matches using a fine visual vocabulary and a visibility
graph which encodes the visibility relation between 3D points and cameras.
Then, they disambiguate these matches by using a simple voting scheme to
enforce the co-visibility of the selected 3D points. Their experiments show
that matching based on a visual vocabulary leads to state-of-the-art results.
Sattler et al. [580] propose a prioritized matching scheme based on quantiza-
tion, focusing on efficiency. They significantly accelerate 2D-to-3D matching
by considering more likely features first and terminating the correspondence
search as soon as enough matches are found. A hybrid approach combining
the idea of working on a subset of 3D points and the compression of the
descriptors is presented by Camposeco et al. [95]. For a small subset of 3D
points, they keep the full appearance information, while for a larger set of
points, they store a compressed descriptor. This enables them to obtain a
more complete representation of the scene with a memory consumption sim-
ilar to the previous approaches.

Deep Learning:

The motivation for using CNNs for structure-based localization is to learn
high-level information which might help to handle problems like textureless
areas, motion blur, and illumination changes. In contrast to classical lo-
calization approaches whose runtime depends on several factors such as the
number of features found in a query image or the number of 3D points in the
model, the runtime of CNN-based approaches only depends on the size of the
network.

Kendall et al. [343] and Walch et al. [694] use a convolutional neural
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Figure 13.4: Learning Structure-based Localization. MapNet proposed
by Brahmbhatt et al. [66] learns a map representation from images, visual
odometry, and GPS (left). During inference (right) visual odometry is used
to update the maps in a self-supervised fashion and pose graph optimiza-
tion (GPO) allows for further refinement. c© 2018 IEEE. Reprinted, with
permission, from Brahmbhatt et al. [66].

network to regress the camera pose from a single RGB image in an end-to-end
manner. Kendall et al. [343] modify GoogLeNet [651] by replacing the softmax
classifiers with affine regressors and inserting another fully connected layer
before the final regressor, which can be used as a localization feature vector
for further analysis. The final architecture, dubbed PoseNet, is initialized by
using the weights of classification networks trained on giant datasets such as
ImageNet [162] and Places [794]. The network is further fine-tuned on a new
pose dataset which was automatically created using SfM to generate camera
poses from a video of the scene. Walch et al. [694] use a similar approach,
but in addition, they spatially correlate each element of the output of the
CNN using Long Short-Term Memory (LTSM) units. This way, the network
is able to capture more contextual information and outperform PoseNet in
different localization tasks, including large-scale outdoor, small-scale indoor,
and a newly proposed large-scale indoor localization benchmark.

Recently, Brahmbhatt et al. [66] proposed MapNet for representing maps
as deep neural networks. They exploit visual odometry and GPS in addition
to images for image-based localization and formulate geometric constraints as
additional loss terms. Thus, the model can be updated in a self-supervised
fashion using unlabeled data. This allows them to significantly improve in
comparison to PoseNet-based approaches. The model is illustrated in Fig-
ure 13.4.

While previous methods [343, 694, 66] regress the absolute pose in a given
scene, another line of work [577, 31] proposes to learn the relative pose with
respect to an image retrieved from a database. Eventually, the absolute pose



13.3. LOCALIZATION 171

Figure 13.5: Aerial to Street-View Matching. Repeating patterns of
buildings are exploited by regularity-driven approaches for aerial to street-
view matching. c© 2016 IEEE. Reprinted, with permission, from Wolff et al.
[725].

is obtained from the known pose of the retrieved image and the relative pose.
Sattler et al. [583] notice that PoseNet-based approaches [343, 694] are

not able to outperform simple image retrieval approaches [669] and learning-
based approaches are in general still inferior to structure-based approaches
such as [647].

13.3.2 Cross-view Localization

It is a very difficult endeavor to keep an up-to-date repository of ground-level
imagery around the world. In contrast, establishing live maps from aerial
and satellite images is comparably easier. This motivated the development of
geo-localization approaches that try to register ground-level images to aerial
imagery. The underlying idea is to learn a mapping between ground-level and
aerial image viewpoints to localize a ground-level query in an aerial reference
image database.

Lin et al. [422] match ground-level queries to other ground-level reference
photos as in traditional geo-localization, but then use the overhead appear-
ance and land cover attributes of those ground-level matches to build sliding-
window classifiers in the aerial and land cover domain. In contrast to previous
methods, they are able to localize a query even if it has no corresponding
ground-level image in the database by learning the co-occurrence of features
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in different views. Inspired by the success of face verification algorithms using
deep learning, Lin et al. [423] train a Siamese network to match cross-view
pairs of the same location. Towards this goal, they collect a cross-view patch
dataset using range data and camera parameters from Google Street View.
Finally, they warp the dominant building surface plane to appear approxi-
mately as a 45% aerial view. In contrast, Workman et al. [727] use CNNs for
extracting ground-level image features and predict these features from aerial
images of the same location. This way, the CNN is able to extract seman-
tically meaningful features from aerial images without manually specifying
semantic labels. They conclude that the cross-view localization approach can
obtain a precise estimate of the geographic locations which are distinctive
from above. Otherwise, it can be used as a pre-processing step to a more
expensive matching process.

Buildings Facades: Several methods have been developed which specialize
in building facades from cross-view matching. The repeating patterns yield
valuable matching cues, as illustrated in Figure 13.5. By combining satellite
and oblique bird’s-eye views, Bansal et al. [33] first extract building outlines
as well as facades and then match the ground image to oblique aerial images
based on a statistical description of the facade pattern. Wolff et al. [725] define
a matching cost function to compare street-view motifs to aerial view motifs
based on the similarity of color, texture, and edge-based context features.

Geo-Referenced Reconstruction: Another line of work addresses the
problem of geo-referencing a reconstruction by automatic alignment with a
satellite image, floor plan, map, or other overhead views. Kaminsky et al.
[335] compute the optimal alignment between SfM reconstructions and over-
head images using an objective function that matches 3D points to image
edges and imposes free space constraints based on the visibility of points
in each camera. Matching ground and aerial images directly is a difficult
endeavor due to the large differences in camera viewpoints, occlusions, and
imaging conditions. Instead of seeking invariant feature detections, Shan et
al. [617] propose a viewpoint-dependent matching technique by exploiting
approximate alignment information and the underlying 3D geometry.

13.3.3 Semantic Alignment from LiDAR

Several companies acquire LiDAR data from scanners mounted on cars driv-
ing through cities to acquire 3D models of real-world urban environments.
However, the accuracy of the 3D point positions acquired by the 3D scan-
ners depends on the scanner poses predicted by GPS, inertial sensors, and
structure-from-motion, which often fail in urban environments. These mis-
alignments cause problems for point cloud registration methods. Yu et al.
[769] propose to align semantic features that can be matched robustly at dif-
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Figure 13.6: Visual Odometry. Illustration of the incremental visual odom-
etry approach by Scaramuzza and Fraundorfer [588]. The transformation
Tk,k−1 between two adjacent camera systems is obtained using visual fea-
tures. The accumulation of all transformations yields the absolute pose Ck

with respect to the initial coordinate frame k = 0. c© 2011 IEEE. Reprinted,
with permission, from Scaramuzza and Fraundorfer [588].

ferent scales. By following a coarse-to-fine approach, they first successively
align roads, facades, and poles which can be matched robustly. Afterwards,
they match cars and other small objects which require better initial align-
ments to find correct correspondences. The use of semantic features provides
a globally consistent alignment of LiDAR scans, and their evaluation shows
improvement over the initial alignments.

13.4 Ego-Motion Estimation

One of the simplest ways of estimating the ego-motion of a vehicle is to use
the wheel angle in combination with the output of wheel encoders which
measure the rotation of the wheel. These methods suffer from wheel slip
in uneven terrain or adverse conditions and can not recover from errors in
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the measurements. Visual odometry and LiDAR-based odometry techniques
that estimate ego-motion from visual observations (images or laser range mea-
surements) are more robust in many situations and can correct for drift by
loop closure detection, i.e., by recognizing re-visited places (Section 13.4.2).
In this section, we provide a summary of the most relevant visual odome-
try techniques for autonomous driving. For a more detailed survey on visual
odometry techniques, we refer the reader to Scaramuzza and Fraundorfer [588]
and Fraundorfer and Scaramuzza [213].

In visual odometry, the goal is to recover a trajectory (i.e., a sequence of
poses) of one camera or a camera system comprising multiple cameras from
images. Most approaches incrementally estimate the relative transformation
between two frames and integrate this information over time to recover the full
trajectory. The incremental approach is illustrated in Figure 13.6. Methods
on visual odometry can be roughly divided into two main categories: feature-
based methods [432, 499, 589, 397, 354, 489] that extract features from key
points to optimize a geometric error, and direct formulations [497, 346, 184,
186, 198, 200, 800, 757, 185] which directly operate on raw measurements by
optimizing the photometric error.

Feature-based methods typically detect corners in the image and match
the corresponding feature descriptors across different images. While these ap-
proaches are very efficient, they discard valuable information, e.g., straight or
curved edges, that are very common in man-made environments. In contrast,
direct methods leverage structural information in the entire image. There-
fore, these methods usually achieve higher accuracy and robustness in envi-
ronments with fewer key points. In addition, they allow to simultaneously
estimate semi-dense [184, 186] and even dense depth maps [639, 497], as il-
lustrated in Figure 13.7. However, direct methods suffer more from local
minima in the optimization problem compared to feature-based methods, in
particular when the pose initialization is far from the true solution. Initially,
the field was dominated by feature-based methods since they are typically
more efficient, but direct formulations have recently grown in popularity due
to their increased accuracy [497, 639, 346, 184, 186, 198, 200, 800, 757, 185].

Feature-based Methods

2D-to-2D Matching: Depending on how corresponding points between
two time steps are represented (2D or 3D), different methods must be used to
obtain the camera transformation. The essential matrix (or fundamental ma-
trix), which represents the epipolar geometry between the two cameras and
contains relative pose information, can be recovered from 2D feature matches
(2D-to-2D). One of the most popular algorithms for estimating the essential
or fundamental matrix is the eight-point algorithm [277]. The five-point algo-



13.4. EGO-MOTION ESTIMATION 175

Figure 13.7: Semi-Dense Depth Maps. The semi-dense depth map repre-
sentation of Engel et al. [184] (top right) in comparison to key points [355]
(bottom left), a dense depth [453] (bottom middle), and the output of a ded-
icated RGB-D camera [639] (bottom right). c© 2013 IEEE. Reprinted, with
permission, from Engel et al. [184].

rithm [499] is a minimal solution that only applies to the scenario of calibrated
cameras. Scaramuzza et al. [589] estimate the essential matrix from monoc-
ular images with only one 2D feature correspondence using non-holonomic
constraints of wheeled vehicles imposing a restrictive motion model.

In general, visual odometry with monocular images cannot recover the
metric scale due to the inherent scale ambiguity. Lee et al. [397] extend [589]
to a novel two-point minimal solution that is able to obtain the metric scale
using a multi-camera system. In contrast to the non-holonomic constraints,
Lee et al. [399] assume the vertical directions to be known (from an Inertial
Measurement Unit) and propose a minimal four-point and linear eight-point
algorithm for a multi-camera system. Kitt et al. [354] estimate the ego-motion
using trifocal geometry, which relates features between three images. Most
algorithms employ RANSAC for robust estimation. The number of iterations
necessary to guarantee that a correct solution is found with RANSAC depends
on the number of points from which the model can be instantiated. Minimal
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solvers allow to the reduction of the number correspondences leading to a
reduced number of iterations and runtime of the approach.

Omnidirectional cameras discussed in Section 3.1.1 enable feature-based
approaches that extract and match interest points from all around the car.
The increased field of view makes the visual odometry problem more con-
strained and consequently allows for more accurate visual odometry. Scara-
muzza and Siegwart [587] exploit this observation and estimate the ego-motion
of the vehicle relative to the road from a single, central omnidirectional camera
using a homography-based tracker for the ground plane and an appearance-
based tracker for the rotation of the vehicle.

3D-to-2D Matching: If stereo or RGB-D information is available, a sim-
ple solution to the visual odometry problem is to project 3D features from
one image into the other view and optimize for the pose by minimizing re-
projection errors. Following this idea, Geiger et al. [246] present a real-time
visual odometry and sparse 3D reconstruction method. They detect sparse
features in stereo images using blob and corner detectors and estimate the
vehicle’s ego-motion by minimizing the reprojection error of the projected 3D
features. In addition, they propose a real-time stereo reconstruction algo-
rithm [245] and fuse disparity maps over time into a coherent city-scale 3D
reconstruction.

3D-to-3D Matching: When dealing with 3D correspondences (3D-to-3D),
the relative transformation between two time steps can be obtained by align-
ing the two sets of 3D features, for instance, using the iterative closest point
(ICP) algorithm [49]. In visual odometry, the features extracted from im-
ages are projected into 3D using depth, whereas LiDAR-based approaches
such as Zhang and Singh [780, 781] directly obtain the 3D points from the
sensor. However, the triangulated 3D points from stereo will exhibit a large
anisotropic uncertainty due to the small baseline and the quadratic increase
of errors with respect to distance. Thus it is more natural to minimize re-
projection errors in the images where error statistics can be approximated
more easily. Laser-based approaches do not suffer from this problem and thus
typically optimize in 3D space.

Direct Methods

In contrast to feature-based methods that optimize reprojection errors, di-
rect approaches optimize the photometric error for estimating motion. Engel
et al. [184] estimate a semi-dense inverse depth map for whole-image align-
ment of monocular images. Depth is estimated using multi-view stereo for
pixels with non-negligible gradients and is represented by a Gaussian prob-
ability distribution. They propagate depth information from frame to frame
and obtain camera poses by minimizing the photometric error. With this
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semi-dense formulation, they achieve comparable performance to fully dense
methods [497] while not requiring a depth sensor [346]. Engel et al. [185]
present a direct sparse approach for monocular visual odometry. They use a
probabilistic model and jointly optimize all model parameters (camera poses,
camera intrinsics, and inverse depth) in real-time.

13.4.1 Drift

The incremental approach to ego-motion estimation greatly suffers from drift
caused by the accumulation of estimation errors of the individual transforma-
tions. One way of alleviating the drift problem is to use an iterative refine-
ment over several images that are observed most recently. In feature-based
approaches, this is done by reprojecting image points into 3D by triangula-
tion and minimizing the sum of squared reprojection errors (sliding window
bundle adjustment or windowed bundle adjustment). However, simpler tech-
niques such as a proper selection of the extracted features can also reduce
drift. Kitt et al. [354] use bucketing to obtain well distributed corner-like
feature matches, whereas Deigmoeller and Eggert [157] use various heuristics
on flow and depth estimation to reject non-stable features.

The drift problem can also be addressed with simultaneous localization
and mapping (SLAM) discussed in Section 13.4.3, which jointly estimates
the location and a map of the environment to recognize places that have
been visited before. The detection of already mapped places is also known as
“loop closure detection”. If a loop has been detected, additional constraints
can be added to the bundle adjustment problem, which leads to globally
consistent maps and vehicle poses. However, poses are only corrected in
hindsight, and thus, the drift problem persists during longer periods in which
no loop closure can be detected. Furthermore, as loop closure detection is
computationally expensive and computation increases with the length of the
trajectory, such techniques are often only executed sporadically and not with
every new incoming frame.

13.4.2 Loop Closure Detection

The relocalization in already mapped areas is an important subproblem of
SLAM, known as loop closure detection. Relocalization is used to correct
drift in the trajectory and inaccuracies in the map caused by drift.

Cummins and Newman [141] present a probabilistic approach for the
recognition of places based on their appearance. They learn a generative
model of appearances using a bag-of-words model as distinctive combinations
of visual words will often arise from common objects. The generative model is
robust and works even in visually repetitive environments. The performance
of the approach is demonstrated on a self-recorded dataset and visualized in
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Figure 13.8: Loop Closure Detection. Loop closure with appearance-
based matching overlaid on an aerial image by Cummins and Newman [141].
Images that are matched with a probability larger than 99% are marked in
red. Reprinted by Permission of SAGE Publications, Inc: IJRR, Cummins
and Newman [141], c© 2008.

Figure 13.8. Paul and Newman [512] extend this idea by incorporating pair-
wise distances between words coupled to the observation of visual words using
a random graph. The random graph models the pairwise distance between
words besides their distribution of occurrences. In contrast, Lee et al. [398]
consider a pose graph with vertices representing camera poses and edges rep-
resenting constraints between the poses. They show that the relative pose
with metric scale between two loop-closing vertices can be obtained from the
epipolar geometry of a multi-camera system with overlapping views.

Image-based loop closure detection can become unreliable in case of strong
illumination or viewpoint changes. In contrast, LiDAR-based localization is
not affected by changes in illumination and does not suffer as much from
changes in viewpoint due to the captured 3D geometry and the large field
of view. Dubé et al. [183] propose a loop closure detection algorithm based
on matching 3D segments. Segments from the point cloud are extracted
and described using a combination of descriptors. Matching of segments is
performed by obtaining candidates with k-d tree search in feature space and
estimating matching scores using a random forest.
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13.4.3 Simultaneous Localization and Mapping (SLAM)

A detailed map of the environment simplifies planning and navigation in au-
tonomous vehicles. However, in places for which no map is provided or the
map is outdated or incomplete, the autonomous car must locate itself while
generating the map. Further, the map needs to be updated continuously to
reflect environmental changes over time. In this context, SLAM refers to the
task of simultaneous estimation of the location of an agent while continu-
ously constructing a map of the environment. While SLAM addresses a sim-
ilar problem as structure-from-motion techniques discussed in Section 10.2,
SLAM approaches focus particularly on large-scale environments, loop-closure
detection, and real-time performance.

Traditionally, a map is represented by a set of landmarks that may cor-
respond to semantically meaningful parts or detected image features. Early
approaches to SLAM have addressed the problem with Bayesian formulations
using extended Kalman filters [629] or particle filters [478]. Given the last
state and new observations, the current state, represented by pose, velocity,
and the locations of the landmarks is recursively updated. However, this for-
mulation is not applicable to large environments since the belief state and
time complexity of the filter update grow quadratically with the number of
landmarks in the map (n).

One solution for reducing complexity is to leverage filtering techniques
that maintain a tractable approximation of the belief state as proposed by
Paskin [511]. However, filtering may lead to inconsistent maps when applied
to non-linear SLAM problems [331]. In contrast, full SLAM approaches, such
as graph-based or least-squares formulations, provide more accurate solutions
as they consider all poses at once. Kaess et al. [334] propose an incremental
smoothing and mapping approach based on fast incremental matrix factor-
ization. They extend their earlier work [161] on factorizing the matrix of a
non-linear least-squares problem to an incremental approach that only recal-
culates entries which change in the matrix. Kaess et al. [333] introduce the
Bayes tree, a novel data structure, which allows for a better understanding of
the connection between inference in graphical models and sparse matrix fac-
torization. Factored probability densities are encoded in the Bayes tree which
naturally maps to a sparse matrix. Recently, Lenac et al. [404] proposed a
filtering-based SLAM method that is able to compete with graph-based opti-
mization techniques.

Stereo SLAM: Stereo cameras are a popular choice for tackling the SLAM
problem since they allow to estimate the depth while simultaneously pro-
viding detailed information of an objects’ appearance (in contrast to LiDAR
sensors). Lategahn et al. [391] propose a dense stereo visual SLAM method
that estimates a dense 3D map. Using a sparse visual SLAM system, they ob-
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Figure 13.9: Stereo LSD-SLAM. Engel et al. [187] compute accurate cam-
era movement as well as semi-dense probabilistic depth maps in real-time.
The depth visualization uses blue for far away scene points and red for close
objects. c© 2015 IEEE. Reprinted, with permission, from Engel et al. [187].

tain the pose and a sparse map. For the dense 3D map, they compute a dense
representation from stereo in a local coordinate system and continuously up-
date the map by tracking the local coordinate systems with the sparse SLAM
system. Engel et al. [187] propose LSD-SLAM, a real-time large-scale direct
SLAM algorithm that couples static stereo from a camera setup with tempo-
ral multi-view stereo (Figure 13.9). This allows them to estimate the depth
of pixels that are under-constrained in static stereo while avoiding scale-drift
that occurs using multi-view stereo. The images are directly aligned based on
the photoconsistency of high contrast pixels. Mur-Artal et al. [489] use the
ORB features proposed by Rublee et al. [572] for tracking, mapping, relocal-



13.5. DATASETS 181

ization, and loop closure. They combine methods from loop detection [232],
loop closing [637, 636], and pose graph optimization [375] into a single system
which they call ORB-SLAM and which became one of the most widely used
SLAM systems today.

A fusion approach is proposed by Leutenegger et al. [406] in order to take
advantage of the complementary nature of visual and inertial cues. They use
a non-linear optimization approach and integrate IMU measurements with
reprojection errors into a joint cost function. Similarly, Usenko et al. [679]
also propose a joint visual-inertial SLAM method. However, they present a
fully direct method based on [187] that estimates geometry from semi-dense
depth maps in contrast to sparse key points.

Environmental Changes: Changes in the environment that might not
be represented in the map are a major challenge in SLAM. Levinson et al.
[409] alleviate this problem by creating a map comprising of features that
are very likely to be static over time. Using 3D LiDAR, they retain only
flat surfaces and obtain an infrared reflectivity map of overhead views of the
road surface. The map is then used to locate a vehicle with a particle filter
in real-time. Levinson and Thrun [410] extend this work considering maps
as probability distributions over environment properties instead of a fixed
representation. Specifically, every cell of the probabilistic map is represented
as its own Gaussian distribution. This allows them to represent the world
more accurately and localize with fewer errors. In addition, they use offline
SLAM to align multiple passes of the same environment at different times to
establish an increasingly robust understanding of the world.

13.5 Datasets

Several datasets have been considered in the localization and ego-motion es-
timation literature. The popular dataset 7 Scenes from Shotton et al. [624]
focuses only on indoor scenes. Large-scale reconstruction datasets such as
Vienna [319], Dubrovnik [416], Rome [140] are very popular in particular for
structure-based localization methods. With the introduction of deep learning
to structure-based localization, [343] presented a new outdoor localization
dataset (Cambridge Landmarks dataset), which became popular for CNN-
based approaches. Most of the aforementioned datasets are limited in their
variety in terms of weather conditions and seasons, which are important fac-
tors for evaluating the robustness of localization systems. To address this
issue, Carlevaris-Bianco et al. [96] proposed a new long-term vision and Li-
DAR dataset created on the campus of the University of Michigan comprising
27 sessions. Recently, Sattler et al. [582] presented three datasets for the same
problem: Aachen Day-Night, RobotCar Seasons, and CMU Seasons. [21] also



182 CHAPTER 13. MAPPING, LOCALIZATION & EGO-MOTION

recorded a dataset in different weather conditions, seasons, and during the
night as well as day.

Only few datasets exist which particularly address the visual odometry
problem. Most of these datasets are either small [628, 507, 56], provide only
low-quality images [260], or are not yet established [445, 312]. A notable ex-
ception is the KITTI benchmark [243] discussed in Chapter 4, which provides
a large dataset of challenging sequences and evaluation metrics as well as an
online evaluation server. We list the current leading monocular, stereo, and
LiDAR methods on the KITTI benchmark in Table 13.1, Table 13.2, and
Table 13.3, respectively.

13.6 Metrics

For image-retrieval approaches, a popular metric is the percentage of recog-
nized queries (Recall at N). A place is considered recognized if at least one
of the top N retrievals are within 25 meters from the query. For autonomous
driving, this precision is not satisfactory since a higher accuracy is necessary
to navigate through the environment. Consequently, localization approaches
for loop closure detection [141, 512, 398] strive for higher accuracy and typi-
cally consider the precision-recall metric.

Structure-based localization approaches consider the position error (Eu-
clidean distance between the estimated pose and the ground truth pose) as
well as the orientation error. Sattler et al. [582] report the percentage of local-
ized query images that differ from the ground truth pose using high (0.25m,
2deg), medium (0.5, 5deg), and low (5m, 10deg) accuracy thresholds.

The performance of methods for visual odometry is often measured using
the Absolute Trajectory Error (ATE) or Relative Pose Error (RPE). The
APE estimates the absolute distance between the estimated and ground truth
trajectory. The RPE considers a fixed time interval and measures the local
accuracy of the translational and rotational component. The KITTI dataset
reports the average translational and rotational error measured for all possible
subsequences of length (100, 200, . . . , 800) meters.

13.7 State of the Art on KITTI

Localization: A unified and established benchmark for localization methods
is still missing which makes the comparison of different approaches difficult.
However, several newly introduced datasets [96, 582], reveal open challenges
to the community. Sattler et al. [582] compare two structure-based meth-
ods [580, 647] and three image retrieval approaches [669, 15, 141] on their
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Method Translation Rotation Runtime
1. DVSO [757] 0.90 % 0.0021 [deg/m] 0.1 s / GPU
2. BVO [515] 1.76 % 0.0036 [deg/m] 0.1 s / 1 core
3. PMO / PbT-M2 [200] 2.05 % 0.0051 [deg/m] 1 s / 1 core
4. FTMVO [473] 2.24 % 0.0049 [deg/m] 0.11 s / 1 core
5. PbT-M1 [198, 199] 2.38 % 0.0053 [deg/m] 1 s / 1 core
6. MLM-SFM [632] 2.54 % 0.0057 [deg/m] 0.03 s / 5 cores
7. RMCPE+GP [474] 2.55 % 0.0086 [deg/m] 0.39 s / 1 core
8. EB3DTE+RJMCM [63] 5.45 % 0.0274 [deg/m] 1 s / 1 core
9. VISO2-M + GP [632] 7.46 % 0.0245 [deg/m] 0.15 s / 1 core
10. VISO2-M [246] 11.94 % 0.0234 [deg/m] 0.1 s / 1 core
11. OABA [216] 20.95 % 0.0135 [deg/m] 0.5 s / 1 core

Table 13.1: KITTI Monocular Odometry Leaderboard. The numbers
show relative translational errors and relative rotational errors, averaged over
all subsequences of length 100 meters to 800 meters. Accessed on: April 2019.

dataset. While the structure-based methods significantly outperform the im-
age retrieval approaches and show better robustness, all methods fail in more
challenging conditions, particularly at night, when foliage changes as well as
in suburban and park regions.

Monocular Visual Odometry: Monocular visual odometry methods are
able to recover motion only up to a scale factor. The absolute scale can
be determined by computing the size of objects in the scene, from motion
constraints, or by integrating other sensors.

Fanani et al. [198] follow a direct approach and propagate 3D key points
into the next frame using relative pose predictions. Combined with the scale
estimation method proposed in [199] which uses dense and sparse ground
plane estimates for scale correction, they achieve competitive results in Ta-
ble 13.1. However, their approach is not applicable in real-time. In contrast,
Mirabdollah and Mertsching [473] follow a robust feature-based monocular
visual odometry approach capable of real-time estimation using the iterative
five-point method. They obtain the location of landmarks using a probabilis-
tic triangulation method and estimate the scale of the motion from sparse
low-quality features on the ground plane. Fanani et al. [200] improve the
scale correction of [199] by utilizing street pixels detected with a convolu-
tional neural network for ground plane pose estimation. Furthermore, they
extend the keypoint propagation method presented in [198] which allows them
to improve on previous work.

In contrast to other approaches, Pereira et al. [515] consider backward mo-
tion with a backward-facing camera or by processing the images of a forward
facing-camera in reverse order. They argue that initial depth estimation of
sparse feature matching approaches is not very accurate since usually, new
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Method Translation Rotation Runtime
1. SOFT2 [143] 0.65 % 0.0014 [deg/m] 0.1 s / 2 cores
2. LG-SLAM [404] 0.82 % 0.0020 [deg/m] 0.2 s / 4 cores
3. RotRocc+ [84, 87] 0.83 % 0.0026 [deg/m] 0.25 s / 2 cores
4. GDVO [800] 0.86 % 0.0031 [deg/m] 0.09 s / 1 core
5. SOFT [144] 0.88 % 0.0022 [deg/m] 0.1 s / 2 cores
6. RotRocc [84] 0.88 % 0.0025 [deg/m] 0.3 s / 2 cores
7. Stereo DSO [699] 0.93 % 0.0020 [deg/m] 0.1 s / 1 core
8. ROCC [85] 0.98 % 0.0028 [deg/m] 0.3 s / 2 cores
9. cv4xv1-sc [517] 1.09 % 0.0029 [deg/m] 0.145 s / GPU
10. MonoROCC [86] 1.11 % 0.0028 [deg/m] 1 s / 2 cores
31. VISO2-S [246] 2.44 % 0.0114 [deg/m] 0.05 s / 1 core

Table 13.2: KITTI Odometry Stereo Leaderboard. The numbers show
relative translational errors and relative rotational errors, averaged over all
subsequences of length 100 meters to 800 meters. Methods below the hori-
zontal line show older entries for reference. Accessed on: April 2019.

features are initialized the first time they have been observed in the far dis-
tance. By considering the reverse order for a forward-facing camera, new
features will be detected in the nearest frame, which allows more accurate
depth estimates in case of forward motion.

Recently, Yang et al. [757] propose to use deep monocular depth predic-
tions for monocular visual odometry by incorporating depth predictions into
a windowed direct bundle adjustment. With this direct approach, they out-
perform all monocular visual odometry methods in Table 13.1. However, we
remark that the KITTI dataset requires metric output, thus scale drift and
scale estimation have a strong impact on the performance of the approaches.

Stereo Visual Odometry: Stereo visual odometry methods exploit the
known baseline between the cameras of the stereo camera rig for estimating
scale. Therefore, stereo methods are typically able to outperform monocular
methods on the KITTI dataset (see Table 13.1 and Table 13.2).

Cvisic and Petrovic [144] decouple estimation of rotation and translation
as translation is dependent on the scene depth while rotation is not. They
estimate rotation using the five-point algorithm [499] and translation using
the three-point method. Buczko and Willert [84] exploit the same idea and
propose to use an initial rotation estimation to decouple rotational and trans-
lational optical flow. In contrast, Wang et al. [699] tackle the visual odome-
try problem with a direct method by combining static stereo with multi-view
stereo as in [186, 187]. In contrast to [186, 187], they extend the energy func-
tion instead of relying on filtering approaches to update the geometry and
provide an efficient bundle adjustment procedure for real-time optimization.
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Method Translation Rotation Runtime
1. V-LOAM [781] 0.56 % 0.0013 [deg/m] 0.1 s / 2 cores
2. LOAM [780] 0.59 % 0.0014 [deg/m] 0.1 s / 2 cores
3. IMLS-SLAM [164] 0.69 % 0.0018 [deg/m] 1.25 s / 1 core
4. MC2SLAM [494] 0.69 % 0.0016 [deg/m] 0.1 s / 4 cores
5. LIMO2 GP [256] 0.84 % 0.0022 [deg/m] 0.2 s / 2 cores
6. LIMO2 [256] 0.86 % 0.0022 [deg/m] 0.2 s / 2 cores
7. CPFG-slam [326] 0.87 % 0.0025 [deg/m] 0.03 s / 4 cores
8. LIMO [256] 0.93 % 0.0026 [deg/m] 0.2 s / 2 cores
9. DEMO [779] 1.14 % 0.0049 [deg/m] 0.1 s / 2 cores
10. STEAM-L WNOJ [657] 1.22 % 0.0058 [deg/m] 0.2 s / 1 core

Table 13.3: KITTI Odometry LiDAR Leaderboard. The numbers show
relative translational errors and relative rotational errors, averaged over all
subsequences of length 100 meters to 800 meters. Accessed on: April 2019.

One weakness of direct methods is that they often get stuck in local optima,
especially in case of large motions. Zhu [800] addresses this problem with a
dual Jacobian scheme for multi-scale pyramid optimization. This allows them
to avoid local optima and obtain more accurate camera pose estimations that
are closer to the optimal solution. In addition, they introduce a gradient-
based feature representation, which improves robustness against illumination
changes.

Lenac et al. [404] propose a filtering-based SLAM approach that leverages
a novel filtering solution on Lie groups. Combined with the visual odometry
method proposed in [144], they are ranked second in stereo visual odome-
try. Cvǐsic et al. [143] improve the feature selection approach suggested in
[144] with an age-based weighting factor suggested in [246] that gives higher
weight to features that are horizontally closer to the image center. This al-
lows them to better handle calibration errors and outperform all stereo-based
methods (Table 13.2) while obtaining results competitive with LiDAR-based
techniques.

Krešo and Šegvić [366] observed that camera calibration is critical for
visual odometry and that the remaining calibration errors in pre-calibrated
systems like KITTI have adversarial effects on the estimation results. They,
therefore, propose to explicitly correct the calibration of the camera by ex-
ploiting ground truth motion which they use to recover a deformation field by
optimizing the reprojection error of point feature correspondences in neigh-
boring stereo frames.

LiDAR-based Odometry: Motivated by the impact of small calibration
errors on the depth estimation of stereo-based methods [366], Gräter et al.
[256] leverages depth information obtained from LiDAR for monocular visual
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Figure 13.10: LOAM by [780] matches two consecutive LiDAR scans (LiDAR
Odometry) and registers the new scan to a map (LiDAR Mapping). c© 2014
RSS. Reprinted, with permission, from Zhang and Singh [780].

odometry. Rejecting outliers based on a local plane assumption and fusing
depth similar to [144, 85], they obtain competitive results (Table 13.3).

In contrast, Neuhaus et al. [494] directly address the SLAM problem by
integrating LiDAR data with inertial measurements. The integration of IMU
data allows them to cope with high-frequency motion, e.g., in off-road envi-
ronments.

Inspired by RGB-D methods [496], Deschaud [164] uses an implicit surface
representation [142] of the map for aligning new scans in a LiDAR SLAM
approach. In combination with a specific sampling strategy based on LiDAR
scans, they achieve results similar to [494].

The best performing methods on KITTI use 3D point clouds from Li-
DAR for ego-motion estimation (Table 13.3). Zhang and Singh [780] split the
SLAM problem into LiDAR-based odometry at high frequency with low accu-
racy and LiDAR-mapping at low frequency with high accuracy, as illustrated
in Figure 13.10. Their LiDAR-based odometry approach matches two consec-
utive LiDAR scans, whereas their LiDAR-based mapping approach matches
and registers the new scan to a map, resulting in low drift and low compu-
tational complexity at the same time. Zhang and Singh [781] extend this
work by combining visual odometry at high frequency with LiDAR-mapping
at low frequency, which allows them to further improve upon their results
(Table 13.3).
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13.8 Discussion

While localization approaches are still missing an established unified bench-
mark for fair comparison and evaluation of methods, a new benchmark 1

based on multiple diverse datasets has recently been proposed by Sattler et
al. [582]. Based on these results, it can be concluded that current techniques
still fail to perform well in challenging real-world conditions, as identified in
[96, 582]. One possible direction towards higher recall and more robustness
is to incorporate deep CNN features encoding high-level information. For
instance, Schönberger et al. [601] and Radwan et al. [543] demonstrate that
localization accuracy in challenging conditions can benefit from a semantic
understanding of the environment.

In ego-motion estimation, monocular visual odometry methods can not yet
compete with approaches using 3D information on the KITTI dataset. While
LiDAR provides the richest source of information, stereo-based methods also
achieve competitive results. In Figure 13.11, we visualize the average transla-
tional and rotational errors of the best performing visual odometry methods
on the KITTI benchmark. The second row shows the translational error, and
the third row shows the rotational error while the last row shows the speed.
The highest translational and rotational errors are usually observed in case of
strong turns. Furthermore, the error is correlated with speed and the amount
of independently moving objects in the scene, which causes a decrease in the
number of matched features in the background. While large errors can be
observed for crowded highway scenes (second from right), only moderate er-
rors occur when the highway is empty (right and second from left). Larger
errors can also be observed in very narrow environments (fourth from right)
where feature displacements are large. Overall, the most accurate motion
estimation is achieved using 3D information. However, it is remarkable that
state-of-the-art stereo-based methods achieve competitive results using cheap
passive stereo sensors in comparison to more expensive LiDAR scanners.

1https://www.visuallocalization.net

https://www.visuallocalization.net
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Figure 13.11: KITTI Odometry. From top-to-bottom: example image from
the sequence, average translational error, average rotational error and speed.
Averages are computed over 400 meter long trajectories and for the 15 best
performing methods published on the KITTI website. Darker colors (i.e., red)
indicate larger errors or higher speed.



Chapter 14

Scene Understanding

14.1 Problem Definition

One of the basic requirements of autonomous driving is to fully understand
the surrounding area, such as a complex traffic scene. The complex task of
outdoor scene understanding involves several sub-tasks such as depth estima-
tion, scene categorization, object detection and tracking, event categorization,
and more. Each of these tasks describes a particular aspect of a scene. It can
be beneficial to model some of these aspects jointly in order to exploit the
complementary nature of the different cues in the scene and to obtain a more
holistic understanding. The goal of most scene understanding models is to
obtain a rich but compact representation of the scene including its elements,
e.g., layout, traffic participants, and their relation with each other.

In contrast to modeling these problems in 2D, 3D reasoning allows geo-
metric scene understanding and results in a more informative representation
of the scene in the form of 3D object models, layout elements, and occlusion
relationships. In this section, we will focus on a subset of 3D scene understand-
ing techniques that are particularly relevant to the autonomous driving task,
excluding works on scene graph estimation or image tagging. One specific
challenge in this context is the interpretation of urban and sub-urban traffic
scenarios. Compared to highways and rural roads, urban scenarios comprise
dynamic objects, a large degree of variability in the geometric layout of roads
and crossroads, and an increased level of difficulty due to ambiguous visual
features, occlusions, and challenging illumination conditions.
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Figure 14.1: Scene Understanding using Traffic Patterns. Zhang et
al. [778] propose to explicitly account for traffic patterns to improve scene
layout and activity estimation results (right, correct situation marked in red).
c© 2013 IEEE. Reprinted, with permission, from Zhang et al. [778].

14.2 Methods

While early work in computer vision [566, 273, 80, 501] already tackled the
scene understanding problem from various perspectives, e.g., using a block
world assumption [566] or via bottom-up top-down inference [501], most ap-
proaches relied on heuristics rather than learning and were not able to general-
ize to complex real-world scenes. In contrast, modern approaches try to learn
complex relationships directly from data. In their pioneering work, Hoiem
et al. [300] infer the overall 3D structure of an outdoor scene from a single
image. The surface layout is represented as a set of coarse geometric classes
with certain orientations such as support, vertical, and sky. These elements
are inferred by learning an appearance-based model for each class. Oliveira
et al. [503] propose a time-varying 3D representation using a set of planar
polygons as primitives. Given 3D LiDAR point clouds, they find the support
plane using RANSAC followed by a clustering of inliers to separate instances.

14.2.1 Road Topology and Traffic Participants

For autonomous driving, understanding the road topology and other traffic
participants in the scene is of utmost importance. Ess et al. [196] use semantic
segmentation as an intermediate representation to extract the road topology
and to detect crosswalks and other traffic participants. In addition, their
intermediate representation simultaneously encodes the spatial layout of the
scene. Wojek and Schiele [720] detect vehicles and track them with a temporal
filter based on a linear motion model. They also estimate the camera motion
and propagate it to the next frame using a dynamic Conditional Random
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Field model for joint labeling of object and scene classes. However, [196, 720]
only infer a topological model of the scene and not a geometric model.

Wojek et al. [718] extend [720] to a probabilistic 3D scene model that en-
compasses multi-class object detection, object tracking, scene labeling, and
reasoning about geometric relations. Geiger et al. [241] jointly reason about
the 3D scene layout of intersections as well as the location and orientation of
vehicles in the scene. They present a probabilistic generative model captur-
ing the scene topology, geometry, and traffic activities by leveraging vehicle
tracks, semantic labels, scene flow and occupancy grids.

Apart from 3D primitive-based representations, there exist other ways of
representing a street scene. A more fine-grained model of the road is proposed
by Topfer et al. [668]. The complex road scene is hierarchically decomposed
into roads, lanes, and finally road-edges and lane-markings. This allows them
to infer a more expressive model of the road compared to [241]. Seff and
Xiao [606] define a list of road layout attributes such as the number of lanes,
drivable directions, distance to intersections, etc. They first automatically
collect a large-scale dataset for these attributes by leveraging existing street
view image databases and online navigation maps (e.g., OpenStreetMap).
Based on this dataset, they train a deep convolutional network to predict
each attribute from a single street view image.

14.2.2 Physical and Temporal Relationships

While the detection of traffic participants is addressed in our review on ob-
ject detection (Chapter 5) and object tracking (Chapter 6) approaches, scene
understanding systems aim at integrating object detection and tracking with
physical constraints and model the temporal behavior and relationship be-
tween traffic participants and the scene. Pellegrini et al. [513] model inter-
actions between pedestrians (social behavior) and the scene (collisions) in a
multi-target tracking formulation. Kuettel et al. [372] model spatio-temporal
dependencies of moving agents in complex dynamic scenes by learning co-
occurring activities and temporal rules between them. However, both ap-
proaches assume a static observer and a long observation period, i.e., the
scene must be observed for a significant period of time before making a deci-
sion, therefore it is not applicable to autonomous systems.

In contrast, [722, 723, 778] consider a moving vehicle as observer and
construct expressive 3D scene models by reasoning about occlusions and traffic
patterns. Wojek et al. [722, 723] integrate multiple object part detectors
[718] into the 3D scene model for explicit object-object occlusion reasoning
(Figure 14.2). In addition, they enforce physically plausible trajectories by
pruning geometrically infeasible detections. Zhang et al. [778] propose a more
expressive generative model of 3D urban scenes similar to [241]. While the
independent tracklets in [241] can lead to implausible inference results, they
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Figure 14.2: Physical Relationships for Scene Understanding.
Overview of combined object detection and tracking system with explicit
occlusion reasoning by Wojek et al. [723]. c© 2013 IEEE. Reprinted, with
permission, from Wojek et al. [723].

reason about high-level semantics in the form of traffic patterns to avoid
this problem (Figure 14.1) and force the solution to conform to traffic rules.
This allows them to significantly improve scene estimation and vehicle-to-lane
association results. Wang et al. [704] propose a top-view representation for
complex road scenes that can be inferred from a single camera using a deep
neural network.

14.3 Discussion

While early work on scene understanding struggled to infer expressive models
of the real world, learning-based approaches led to models with increasing
expressivity, ranging from simple 2D models to represent road topologies and
objects [196, 720], to more complex 3D models [503, 241] which also incorpo-
rate physical [723, 704] and temporal [722, 723, 778] constraints. As motivated
in [606], more expressive models can reduce the dependency on high definition
maps. However, the level of expressiveness needed in autonomous driving re-



14.3. DISCUSSION 193

mains an open question and the accuracy achieved by state-of-the-art scene
understanding models is still limited. In addition, a unified evaluation of
scene understanding approaches is difficult due to the varying complexity of
models and the different challenges they tackle.
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Chapter 15

End-to-End Learning for
Autonomous Driving

15.1 Problem Definition

Current state-of-the-art autonomous driving systems in industry are com-
posed of numerous modules, e.g., detection (of traffic signs, lights, cars, pedes-
trians), segmentation (of lanes, facades), motion estimation, tracking of traffic
participants, reconstruction etc. The results from these components are then
typically combined in a planning module that feeds the control. However,
this requires robust solutions to many open challenges in scene understand-
ing in order to solve the problem of manipulating the car direction and speed.
Furthermore, auxiliary loss functions are required to train each module (e.g.,
object detection, semantic segmentation) independently, hence ignoring the
actual goals of the driving task which include travel time, safety, and comfort.

As an alternative, several methods consider autonomous driving as an
end-to-end learning problem. In these approaches, the tasks of perception,
planning, and control are combined, and a single model is trained end-to-end
using a deep neural network. Most end-to-end autonomous driving systems
map from sensory inputs, such as front-facing camera images, directly to
driving actions such as steering angle.

15.2 Methods

End-to-end driving methods are typically trained from expert demonstrations
to learn a driving policy that imitates the behavior of an expert or using
reinforcement learning to explore the environment by trial and error (often
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Figure 15.1: End-to-end Learning for Lane Following. A block diagram
of an end-to-end model for lane following proposed by Bojarski et al. [60].
Conditioned on the image, a CNN estimates a steering command which is
compared to the expert command for tuning the CNN weights in order to
bring the CNN output closer to the desired output. Reprinted, with permis-
sion, from Bojarski et al. [60]

in simulation). In the following sections, we first introduce the most relevant
approaches proposed in the literature. We then discuss methods that combine
ideas from behavior cloning and reinforcement learning. Finally, we discuss
approaches that propose intermediate representations and demonstrate how
driving models can be transferred from simulation to the real-world.

15.2.1 Behavior Cloning

Behavior cloning approaches learn to map sensor observations, such as RGB
images, to desired driving behavior by learning to clone the behavior of an
expert. Thus, these approaches fall into the category of supervised learning
techniques. Most commonly, a deep neural network is employed to represent
the mapping from observations to expert actions. In the 1980s, Pomerleau
[534] propose ALVINN, the first demonstration of imitation learning for self-
driving vehicles using a small fully connected neural network. 30 years later,
Bojarski et al. [60] propose a deeper end-to-end deep convolutional neural
network for lane following, illustrated in Figure 15.1, that maps images from
the front-facing camera of a car to steering angles, given expert data. Xu et al.
[746] propose an alternative approach and exploit large scale online datasets
from uncalibrated sources to learn a driving model. Specifically, they formu-
late autonomous driving as a future ego-motion prediction problem. They
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claim that predicting ego-motion instead of vehicle control allows their ap-
proach to generalize better to new platforms. Their deep learning architecture
combines FCNs and LSTMs, and learns to predict the motion path given the
current state of the agent.

Another problem with behavior cloning approach is that the training data
is collected using an off-policy expert teacher, i.e., the training data is collected
by rolling out the expert policy, which is different from the policy being
learned. As collecting expert demonstrations for all possible situations is
not practical, the training trajectories do not cover all possible states. At
test time, the rollout of the behavior cloning policy thus causes it to move
to a different distribution of states compared to the one it was trained on.
Due to this covariate shift between the training and test time trajectories,
the behavior cloning agent’s errors compound when drifting away from the
expert demonstrations. In other words, the vehicle is likely to encounter new
situations it has not been trained for and therefore acts wrongly.

In contrast, in on-policy rollout, training data is collected using the cur-
rent policy being learned. Ross and Bagnell [570] propose DAgger to alleviate
covariate shift by iteratively collecting corrective expert actions for the states
visited by rolling out the currently learned driving policy. The driving pol-
icy parameters are then trained using the data collected on-policy. However,
doing on-policy rollouts with an imperfect policy has the disadvantage of
drifting and potentially reaching dangerous states, thus requiring a simulator
for safe training. Laskey et al. [390] claim to provide a safer way of gener-
ating training data using expert policy with small amounts of noise injected
to approximate the errors of on-policy rollout. They achieve this by iterat-
ing between learning a noise model that minimizes the covariate shift and
generating data for training the behavior cloning agent.

Besides the drifting problem during test time, behavior cloning-based driv-
ing systems have other limitations. Sensor input alone is often not sufficient
to uniquely infer control. Consider intersections, for example, where multiple
possible actions are valid (left, right, straight). Without conditioning on the
goal, all three options are acceptable. Thus, some of the behavior cloning
agents, such as the one by Bojarski et al. [60], require human intervention
for lane changes or turns. To alleviate this limitation, Codevilla et al. [130]
propose a conditional imitation learning framework to learn a driving pol-
icy for steering and throttle control from a high-level navigational input in
addition to the observations from the camera (Figure 15.2). The high-level
navigational input represents the driver’s intention, such as the direction to
take at the next intersection, which cannot be recovered from sensory input
alone.

Codevilla et al. [131] identify other limitations of behavior cloning ap-
proaches related to generalization performance. They observe that in con-
trast to typical supervised learning tasks, the generalization performance for
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Figure 15.2: Goal-conditional Behavior Cloning. Architecture of goal-
conditional end-to-end behavior cloning for autonomous driving proposed by
Codevilla et al. [130]. The goal command acts as a switch that selects be-
tween specialized sub-policies that correspond to different commands such as
lane following, turning left or turning right. c© 2018 IEEE. Reprinted, with
permission, from Codevilla et al. [130].

behavior cloning does not scale with training data. Moreover, they identify
significant variance in performance when varying the model initialization or
the order in which training examples are sampled from the dataset.

Chen et al. [106] show that imitation learning can be simplified by decom-
posing it into two stages, as illustrated in Figure 15.3. They first train an
agent that has access to privileged information. This privileged agent cheats
by observing the ground-truth layout of the environment and the positions
of all traffic participants. In the second stage, the privileged agent acts as a
teacher that trains a purely vision-based sensorimotor agent. The resulting
sensorimotor agent does not have access to any privileged information and
does not cheat. They demonstrate that this approach substantially outper-
forms the state of the art on the CARLA benchmark and the recent NoCrash
benchmark, attaining the best performance to date.

15.2.2 Reinforcement Learning

Approaches based on reinforcement learning (RL) learn to drive by training
an agent that tries to maximize a user defined reward which the agent receives
while interacting with the environment. In the autonomous driving applica-
tion, the reward is defined by specifying the driving agent’s preferences and
goals. Dosovitskiy et al. [179] propose a reinforcement learning method that
trains a deep network based on a reward function provided by the CARLA
simulator which combines speed, distance traveled towards the goal, colli-
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Figure 15.3: Learning by Cheating. Chen et al. [106] propose to first
learn an agent with privileged information (a) which afterwards teaches an
agent without access to to privileged information (b) that learns to imitate
the privileged agent. c© 2019 CoRL. Reprinted, with permission, from Chen
et al. [106]

sion damage, overlap with sidewalk and overlap with the opposite lane. For
training the agent, they use the asynchronous advantage actor-critic (A3C)
algorithm [361] which uses the value function learned by the critic to update
the actor’s policy. Dosovitskiy et al. [179] observe that the RL agent per-
forms significantly worse compared to a behavior cloning agent trained using
conditional imitation learning [179] despite the fact that the RL agent was
trained on a significantly larger set of visual observations. Recently, Kendall
et al. [344] showed first promise in learning to drive in the real-world using a
reinforcement learning agent (Figure 15.4). They use the deep deterministic
policy gradients algorithm for training the RL agent and define the reward as
the distance traveled by the vehicle without the safety driver taking control.

The aforementioned methods are trained using model-free reinforcement
learning. The disadvantage of model-free methods is that they are often data
inefficient and require a large number of interactions with the environment.
In contrast, model-based reinforcement learning approaches learn a model
of the environment dynamics from observational data and then exploit this
model for training a driving policy. Model-based methods have been shown
to significantly reduce the number of environment interactions required to
learn an effective policy. However, model-based methods also typically require
an interactive environment as a dynamics model trained on a fixed set of
demonstrations may make incorrect predictions outside the training domain.
The interactive training environment is however not practical in the real-
world where such interactions are expensive and dangerous. To alleviate this
problem, Henaff et al. [291] propose to train a model-based policy which is
encouraged to produce actions which the forward dynamics model is confident
about. They achieve this by training the policy network to minimize an
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Figure 15.4: Reinforcement Learning. Block diagram of the autonomous
system proposed by Kendall et al. [344]. The system is trained end-to-end
using only the reward from the environment. The value function learned by
the critic network is used to update the actor’s policy network parameters to
increase the reward and improve the policy’s performance. Reprinted, with
permission, from Kendall et al. [344].

uncertainty cost which represents the mismatch between the states it induces
and the states in the trained data.

15.2.3 Combined Methods

Behavior cloning methods are easy to train in a supervised fashion. However,
they are poor at exploring the environment and therefore require extensive on-
policy data augmentation using methods like DAgger [570]. RL approaches, in
contrast, do not require per-frame supervision and are better at exploration.
However, they are inefficient to train and require a simulator or non-practical
trial and error runs in a real environment as well as careful design of the
reward function. Therefore, several methods have been proposed to combine
the strengths of both approaches.

Liang et al. [421] propose an approach to alleviate the low exploration
efficiency of RL for large action space. They achieve this by constraining the
policy search space by initializing the weights of the policy network of an RL
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Figure 15.5: Conditional Affordance Learning. The input video and the
high-level directional commands are fed into a neural network which predicts
a set of affordances such as presence of red traffic lights or distance to the
lane center. These affordances are used by a controller to compute the control
output. c© 2018 CoRL. Reprinted, with permission, from Sauer et al. [584].

algorithm by a network trained to clone the expert behavior. They observe
significant improvements on the CARLA benchmark over agents trained us-
ing RL from scratch. Li et al. [412] propose an approach that learns to clone
only the best behaviors of several sub-optimal teachers. They estimate the
best teacher by estimating the value function of each sub-optimal teacher.
The sub-optimal teachers are defined using several simple controllers over the
planner output. Therefore, they do not require expert teachers for labeling
data and allow for better exploration compared to learning from a single ex-
pert teacher. In addition, learning from multiple sub-optimal teachers leads
to faster training compared to pure RL agents as exploration only happens
from feasible states. The requirement to specify the reward function limits
the practical use of Reinforcement Learning. An accurate specification of the
reward requires tedious and computationally inefficient hyper-parameter tun-
ing. Sharifzadeh et al. [618] propose to learn the unknown reward function
of the driving behavior from expert demonstrations by applying Inverse Re-
inforcement Learning (IRL). In contrast to behavior cloning approaches that
directly learn the observation-control mapping in a supervised fashion, In-
verse Reinforcement Learning approaches claim to offer better generalization
by learning a reward function that explains the expert behavior.

15.2.4 Intermediate Representations

Instead of directly learning a mapping from pixels to actions, Chen et al.
[105] present an approach which first estimates a small number of human
interpretable, pre-defined affordance measures such as the angle of the car
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relative to the road, the distance to the lane markings, and the distance to
cars in the current and adjacent lane. These predicted affordances are then
mapped to car actions using a rule-based controller to enable autonomous
driving in the TORCS car racing simulation [736]. The advantage of mid-level
representations is that the network predicting the mid-level representations
can be trained and validated before deploying them. In addition, the mid-
level representations are more interpretable compared to traditional behavior
cloning approaches. Similarly, Sauer et al. [584] estimate several affordances
from sensor inputs in order to drive a car, as illustrated in Figure 15.5. In
contrast to Chen et al. [105], they consider the more challenging scenario
of urban driving using the CARLA simulator [179]. In CARLA, the agent
needs to obey traffic rules such as speed limits, red lights, avoid colliding with
obstacles on the road and navigate at junctions with multiple possible driving
directions. Sauer et al. [584] realize their driving agent by expanding the set
of affordances to cover the most important aspects of urban environments.
Similar to Chen et al. [105], they use a rule-based controller to map affordances
to vehicle controls.

Recently, Zhou et al. [795] studied the significance of using intermediate
representations pursued in computer vision research such as depth, segmen-
tation, optical flow for improving several sensorimotor tasks such as urban
driving. They observed that an agent that takes as input one or more of
these intermediate representations along with the image learns significantly
better sensorimotor control than an agent which uses just the raw image as
input. They observed significant improvements even when the intermediate
representations were noisy predictions by a simple deep network. Bansal et al.
[32] propose a perception module that translates raw sensor observations to a
mid-level representation. Their representation includes a top-down rendering
of the environment where 2D boxes of vehicles are drawn along with a render-
ing of the road information and traffic light states. They use this mid-level
representation as input to a recurrent neural network (RNN) which outputs
the control command. Similarly, Wang et al. [696] infer the depth and poses of
the objects present in the scene from front-facing camera images and project
the objects into an overhead view. They train a behavior cloning agent over
the concatenation of front-facing and overhead images and observe improved
performance over an agent trained only on front-facing images. In the same
spirit, Müller et al. [486] train a driving policy in CARLA with mid-level rep-
resentations as input. Specifically, they used binary segmentation estimated
from a scene segmentation network as input to the driving policy network
and observed improvements over an agent trained on raw camera images.

Similar to the aforementioned methods, Mehta et al. [459] also propose
to use intermediate visual affordances such as “distance to intersection”, and
action primitives such as “slow down” as input to the driving policy network.
However, in contrast to the aforementioned works, they predict visual affor-
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Figure 15.6: From Simulation to the Real World. Bewley et al. [51]
proposed a model for end-to-end driving by learning to translate between
simulated and real-world images, jointly learning a control policy from the
common latent space Z using expert labels in simulation. Their method does
not require real-world control labels and is able to learn a policy which can
be transferred with improved generalization to real-world driving. Reprinted,
with permission, from Bewley et al. [51]

dances and action primitives as an auxiliary task to the driving control task.
They claim that predicting representations which are crucial for the driving
decision allow the policy network to learn superior internal representations
leading to more efficient training and better generalization. Kendall et al.
[344] studied the importance of using an intermediate representation for state
representation instead of raw pixels for learning a reinforcement learning-
based driving policy. They observed significant improvements in data effi-
ciency in training the driving policy using a compressed representation of the
raw image, obtained using a Variational Autoencoder (VAE)

15.2.5 Transferring from Simulation to the Real World

One major limitation of reinforcement learning is the necessity of a simulation
environment for trial and error. Thus, during training only synthetic data is
considered and the models usually do not generalize to real data. To address
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Figure 15.7: Sensor Modalities in CARLA. From left to right: RGB
image, ground-truth depth and ground-truth semantic segmentation. Addi-
tional sensor models can be plugged in via the provided API. c© 2017 CoRL.
Reprinted, with permission, from Dosovitskiy et al. [179].

this problem, Pan et al. [506] propose to transfer a reinforcement learning
agent trained in a virtual environment to the real-world. More specifically,
they learn an image translation network to translate non-realistic simulated
images to realistic images. Their translation network is composed of two con-
ditional GANs, the first for segmenting virtual images from the simulator,
and the second for translating the segmented images to their realistic coun-
terparts. In the same spirit, Bewley et al. [51] propose to train an image-to-
image translation network for transferring a driving policy from simulation to
real-world without any real-world control labels (Figure 15.6). In contrast to
Pan et al. [506], which uses an explicit semantic segmentation as intermediate
representation, they use an implicit latent structure as intermediate represen-
tation. They propose two autoencoder-like networks for translating between
domains where a common latent space is learned through direct and cyclic
losses. Their control network is trained using behavior cloning by passing the
latent code as input to the control network.

15.3 Datasets

As behavior cloning approaches can be trained on offline expert demonstra-
tions, several public datasets have been introduced in the last few years to
train and evaluate such methods. The comma.ai dataset [578] provides 7.25
hours of driving data with a camera in the windshield, capturing images of
the road at 20Hz. The dataset also provides observations from several other
sensors such as car speed, steering angle, GPS, gyroscope, and IMU. How-
ever, the dataset only contains training examples for highway scenarios, and
is therefore not suitable for learning a driving policy which operates in more
challenging situations such as in cities. The Berkeley DeepDrive Video dataset
[746] comprises 10,000 hours of driving in cities, on highways, in towns, and in
rural areas. The dataset has been recorded using forward-facing dash cameras
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along with observations from sensors such as GPS, IMU, gyroscope, and mag-
netometer. As discussed in the previous section, online rollouts of the driving
policy is an important requirement for training and evaluation of most end-
to-end learning methods. However, deploying a partially trained model in a
real environment to collect training data is both dangerous and impractical.
Therefore, realistic driving simulators are a key requirement for training and
evaluating these models.

As one of the first open-source simulators, the TORCS racing car simulator
[736] has been used for learning and evaluation of road lane following by
Chen et al. [105]. However, the TORCS environments is simplistic, lacking
complexities such as traffic participants, junctions, etc.

In contrast, CARLA [179] provides a more realistic, complex and flexi-
ble open-source simulator for autonomous driving that enables training and
validation in urban driving conditions. It provides high quality images along
with ground-truth depth and semantic segmentation as pseudo-sensors, as il-
lustrated in Figure 15.7. In order to replicate the complex nature of urban
driving, the environments in CARLA exhibit realistic urban street layouts
with traffic rules, intersections, buildings, pedestrians, street signs and other
traffic participants. The simulator also provides different weather and light-
ing conditions in order to evaluate the generalization ability of the driving
agent. CARLA also provides a benchmark based on four increasingly difficult
driving tasks and is actively expanded in terms of the environments, assets
and agents it provides.

However, existing real-world datasets and synthetic simulators often fail
to capture the long tail of the distribution which covers important but rare
situations. These rare events can only be effectively captured with a large fleet
of vehicles that log these situations in real-world driving. Tesla’s Autopilot
system [659] is a dormant logging-only mode that can be queried for multiple
instances of rare failure situations so that the model can be trained to avoid
such failures. In addition, Shadow Mode allows Tesla to validate the Autopilot
system running in the background in real situations. However, data from Tesla
vehicles are proprietary and hence not released to other companies or public
research institutions.

15.4 Metrics

There are no standard metrics and benchmarks for autonomous driving and
thus most methods usually evaluate on their own set of metrics and datasets.
The most popular benchmark CARLA [179] evaluates on two metrics. First,
the percentage of successfully completed episodes under the four different
conditions provided by CARLA. And second, the average distance (in kilo-
meters) driven between two infractions. Infractions include driving on the
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opposite lane, driving on the sidewalk, colliding with other vehicles, colliding
with pedestrians, and hitting static objects. Codevilla et al. [129] use CARLA
to analyze the correlation between offline and online metrics for evaluation
of autonomous driving agents. They observe that offline metrics such as the
squared or absolute error of the steering angle are poorly correlated with
online metrics such as the success rate of reaching the goal. Their work
highlights the tension between imitation learning and reinforcement learning.
While reinforcement learning allows to train for the desired goal, training an
imitation learning agent is significantly easier and does not require potentially
unsafe exploration.

15.5 Discussion

A common characteristic of most end-to-end driving methods is the need to
collect online training data. While behavior cloning methods have shown
promising results by learning purely from expert demonstrations, minimizing
the covariate shift between the expert trajectories and the agent’s policy is
still an open problem. Similarly, reinforcement learning approaches require
millions of trial and error runs and thus can only be safely applied in simu-
lation environments. Moreover, as shown by [129], offline evaluation metrics
are poorly correlated with online driving performance. Therefore, safe train-
ing and validation of end-to-end learning models require further development
of realistic simulators such as CARLA [179] on which these methods can be
trained before transferring the resulting policies to the real-world. Flexibility
is another desirable characteristic when developing simulators: the resulting
simulations should allow for highly diverse and complex scenarios, yet also
model the long tail of the data distribution to capture rare events. While
realistic simulation environments are important, there will likely remain a
domain gap between simulated and real data. Therefore, another critical di-
rection of future research is the design of end-to-end learning methods which
can be robustly transferred from simulated environments to the real-world.
Furthermore, the lack of interpretability of end-to-end driving networks pre-
vents deeper insights into the modes of operation (in particular legal relevant
failure cases) and thus requires further investigation.
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Conclusion

This book provides a comprehensive survey on problems, datasets, and meth-
ods in computer vision for autonomous vehicles. Towards this goal, we con-
sidered the historically most relevant literature as well as the state of the
art on several relevant topics, including recognition, reconstruction, motion
estimation, tracking, scene understanding, and end-to-end learning. We dis-
cussed open problems and current research challenges in each of these areas
and also provided a novel in-depth analysis of the KITTI benchmark.

While self-driving vehicles have a long history, it remains difficult to make
predictions when self-driving vehicles will hit the consumer market. Tradi-
tionally, the problems involved in achieving or surpassing human-level perfor-
mance on this task have been underestimated. Difficulties include the high ac-
curacy that needs to be attained, the robustness required for safe self-driving
as well as adverse weather conditions (snow, rain, night). Furthermore, most
self-driving systems rely on accurate HD maps for localization and detection
of static infrastructure, which are hard to create and to maintain up-to-date.
In addition, some of the most challenging scenarios are less structured (park-
ing areas, complex roundabouts) and thus need to be mastered without HD
maps. Pedestrians pose another challenge to self-driving vehicles as their be-
havior is often erratic, and communication with them can be key for making
a driving decision. Other challenges include complex planning tasks such as
merging into traffic and negotiating with other vehicles. Further, several eth-
ical and legal questions need to be addressed before self-driving vehicles can
be deployed in large numbers on public roads.

From a technical perspective, modular pipelines offer the advantage of par-
allelization, interpretability, and ease of introducing prior knowledge. How-
ever, human-engineered modules often rely on heuristics or intuitions, which
may be inaccurate or wrong. Learning driving policies from data is an at-
tractive alternative, however bridging the gap to modular and interpretable
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systems as well as attaining human-level performance remain unsolved prob-
lems to date. A particularly challenging problem is generalization to unseen
environments and to handle rare events for which little data is available.

We are at an exciting time where self-driving technology receives con-
siderable attention and progress is fast. At the same time, it is of prime
importance that we stay objective and cautious with the claims that we make
in order not to gamble people’s trust in this new technology or put people’s
lives at stake. Writing a survey on this rapidly evolving field was a major
tour de force. We are well aware that some of the approaches surveyed in
this work might be outdated in the near future. However, some of the works
presented in this survey will stand the test of time and will be remembered
as landmarks in the development of autonomous vehicles. We hope that this
survey, in combination with our online navigation tool1, will become useful
references, encourage new research, and ease the entry for beginners starting
in this exciting field.
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Soria-Morillo. “Evaluation of deep neural networks for traffic sign de-
tection systems”. In: Neurocomputing 316 (2018), pp. 332–344.

[234] Alberto Garcia-Garcia, Francisco Gomez-Donoso, José Garćıa Rodŕıguez,
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[321] Joel Janai, Fatma Güney, Anurag Ranjan, Michael Black, and An-
dreas Geiger. “Unsupervised Learning of Multi-Frame Optical Flow
with Occlusions”. In: Proc. of the European Conf. on Computer Vi-
sion (ECCV). 2018.
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[699] Rui Wang, Martin Schwörer, and Daniel Cremers. “Stereo DSO: Large-
Scale Direct Sparse Visual Odometry with Stereo Cameras”. In: Proc.
of the IEEE International Conf. on Computer Vision (ICCV). 2017,
pp. 3923–3931.



BIBLIOGRAPHY 273

[700] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and
Raquel Urtasun. “Deep Parametric Continuous Convolutional Neural
Networks”. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). June 2018.

[701] Shiyao Wang, Yucong Zhou, Junjie Yan, and Zhidong Deng. “Fully
Motion-Aware Network for Video Object Detection”. In: Proc. of the
European Conf. on Computer Vision (ECCV). 2018.

[702] Xiaoyu Wang, Ming Yang, Shenghuo Zhu, and Yuanqing Lin. “Re-
gionlets for Generic Object Detection”. In: IEEE Trans. on Pattern
Analysis and Machine Intelligence (PAMI) 37.10 (2015), pp. 2071–
2084.

[703] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng Wang, and
Wei Xu. “Occlusion Aware Unsupervised Learning of Optical Flow”.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2018.

[704] Ziyan Wang, Buyu Liu, Samuel Schulter, and Manmohan Chandraker.
“A Parametric Top-View Representation of Complex Road Scenes”.
In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR). 2019.

[705] Anne S. Wannenwetsch, Margret Keuper, and Stefan Roth. “ProbFlow:
Joint Optical Flow and Uncertainty Estimation”. In: Proc. of the IEEE
International Conf. on Computer Vision (ICCV). 2017, pp. 1182–1191.

[706] Waymo. Be an early rider. https://waymo.com/apply. Online: ac-
cessed 18-October-2019. 2019.

[707] A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, and D. Cremers.
“Stereoscopic scene flow computation for 3D motion understanding”.
In: International Journal of Computer Vision (IJCV) 95.1 (2011),
pp. 29–51.

[708] A. Wedel, C. Rabe, H. Badino, H. Loose, U. Franke, and D. Cre-
mers. “B-Spline Modeling of Road Surfaces with an Application to
Free Space Estimation”. In: IEEE Trans. on Intelligent Transporta-
tion Systems (T-ITS) 10.4 (2009), pp. 572–583.

[709] Andreas Wedel, Clemens Rabe, Tobi Vaudrey, Thomas Brox, Uwe
Franke, and Daniel Cremers. “Efficient Dense Scene Flow from Sparse
or Dense Stereo Data”. In: Proc. of the European Conf. on Computer
Vision (ECCV). 2008.

[710] Jan D. Wegner, Steven Branson, David Hall, Konrad Schindler, and
Pietro Perona. “Cataloging Public Objects Using Aerial and Street-
Level Images - Urban Trees”. In: Proc. IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR). June 2016.

https://waymo.com/apply


274 BIBLIOGRAPHY

[711] Jan Dirk Wegner, Javier A. Montoya-Zegarra, and Konrad Schindler.
“A Higher-Order CRF Model for Road Network Extraction”. In: Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
2013.

[712] Jan Dirk Wegner, Javier Alexander Montoya-Zegarra, and Konrad
Schindler. “Road networks as collections of minimum cost paths”.
In: ISPRS Journal of Photogrammetry and Remote Sensing (JPRS)
108.Complete (2015), pp. 128–137.

[713] D. Wei, C. Liu, and W.T. Freeman. “A Data-driven Regularization
Model for Stereo and Flow”. In: Proc. of the International Conf. on
3D Vision (3DV). 2014.
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