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Figure 1: Comparison of GOOD with different baselines. Images in the first column are from
validation sets of ADE20K [2019). From the second to fourth columns we show the
detection results of three open-world object detection methods: OLN [Kim et al.|(2021), GGN [Wang|
(2022), and our Geometry-guided Open-world Object Detector (GOOD). The shown detection
results are true-positive proposals from the top 100 proposals of each method. The numbers of true
positive proposals or ground truth objects are denoted in parentheses. All models are trained on the
RGB images from the PASCAL-VOC classes of the COCO dataset [2014), which do not
include houses, trees, or kitchen furniture. Both OLN and GGN fail to detect many objects not seen
during training. GOOD generalizes better to unseen categories by exploiting the geometric cues.

ABSTRACT

We address the task of open-world class-agnostic object detection, i.e., detecting
every object in an image by learning from a limited number of base object classes.
State-of-the-art RGB-based models suffer from overfitting the training classes and
often fail at detecting novel-looking objects. This is because RGB-based mod-
els primarily rely on appearance similarity to detect novel objects and are also
prone to overfitting short-cut cues such as textures and discriminative parts. To
address these shortcomings of RGB-based object detectors, we propose incorpo-
rating geometric cues such as depth and normals, predicted by general-purpose
monocular estimators. Specifically, we use the geometric cues to train an ob-
ject proposal network for pseudo-labeling unannotated novel objects in the train-
ing set. Our resulting Geometry-guided Open-world Object Detector (GOOD)
significantly improves detection recall for novel object categories and already
performs well with only a few training classes. Using a single “person” class
for training on the COCO dataset, GOOD surpasses SOTA methods by 5.0%
AR@100, a relative improvement of 24%. The code has been made available
athttps://github.com/autonomousvision/goodk
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Figure 2: Geometry cues are complementary to appearance cues for object localization. The
depth and normal cues of the RGB image are extracted using off-the-shelf general-purpose monoc-
ular predictors. Left: Geometric cues abstract away the appearance details and focus on more holis-
tic information such as object shapes and relative spatial locations (depth) and directional changes
(normals). Right: By incorporating geometric cues, GOODs generalize better than the RGB-based
model OLN @, i.e., much smaller AR gaps between the base and novel classes.

1 INTRODUCTION

The standard object detection task is to detect objects from a predefined class list. However, when
deploying the model in the real world, it is rarely the case that the model will only encounter objects
from its predefined taxonomy. In the open-world setup, object detectors are required to detect all
the objects in the scene even though they have only been trained on objects from a limited num-
ber of classes. Current state-of-the-art object detectors typically struggle in the open-world setup.
As a consequence, open-world object detection has gained increased attention over the last few
years (Jaiswal et all 2021}, [Kim et al 2021} Joseph et al.| 2021} [Wang et all, [2022). In this work,
we specifically address the task of open-world class-agnostic object detection, which is a funda-
mental task for downstream applications like open-world multi-object tracking 2022),

robotics 2019), and autonomous Al agents 2021).

One reason for the failure of current object detectors in the open-world setting is that during training,
they are penalized for detecting unlabeled objects in the background and are thus discouraged from
detecting them. Motivated by this, previous works have designed different architectures
2021}, [Konan et all, [2022) and training pipelines (Saito et al.} 2021} Wang et all, [2022) to avoid
suppressing the unannotated objects in the background, which have led to significant performance
improvements. However, these methods still suffer from overfitting the training classes. Training
only on RGB images, they mainly rely on appearance cues to detect objects of new categories and
have great difficulty generalizing to novel-looking objects. Also, there are known short-cut learning
problems with regard to training on RGB images|Geirhos et al| (2019} [2020); [Sauer & Geiger| (2021)
— there is no constraint for overfitting the textures or the discriminative parts of the known classes
during training. In this work, we propose to tackle this challenge by incorporating geometry cues
extracted by general-purpose monocular estimators from the RGB images. We show that such cues
significantly improve detection recall for novel object categories on challenging benchmarks.

Estimating geometric cues such as depth and normals from a single RGB image has been an active
research area for a long time. Such mid-level representations possess built-in invariance to many
changes (e.g., brightness, color) and are more class-agnostic than RGB signals, see Figure 2] In
other words, there is less discrepancy between known and unknown objects in terms of geometric
cues. In recent years, thanks to stronger architectures and larger datasets (Ranftl et al., [2021b}
2022}, [Eftekhar et all, [2021)), monocular estimators for mid-level representations have significantly
advanced in terms of prediction quality and generalization to novel scenes. These models are able
to compute high-quality geometric cues efficiently when used off-the-shelf as pre-trained models on
new datasets. Therefore, it becomes natural to ask if these models can provide additional knowledge
for current RGB-based open-world object detectors to overcome the generalization problem.

In this paper, we propose to use a pseudo-labeling method for incorporating geometric cues into
open-world object detector training. We first train an object proposal network on the predicted
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depth or normal maps to discover novel unannotated objects in the training set. The top-ranked
novel object predictions are used as pseudo boxes for training the open-world object detector on the
original RGB input. We observe that incorporating the geometry cues can significantly improve the
detection recall of unseen objects, especially those that differ strongly from the training objects, as
shown in Figure 1| and [2l We speculate that this is due to the complementary nature of geometry
cues and the RGB-based detection cues: the geometry cues help discover novel-looking objects that
RGB-based detectors cannot detect, and the RGB-based detectors can make use of more annotations
with their strong representation learning ability to generalize to novel, unseen categories.

Our resulting Geometry-guided Open-world Object Detector (GOOD) surpasses the state-of-the-art
performance on multiple benchmarks for open-world class-agnostic object detection. Thanks to
the rich geometry information, GOOD can generalize to unseen categories with only a few known
classes for training. Particularly, with a single training class “person” on the COCO dataset (Lin
et al.,2014)), GOOD can surpass SOTA methods by 5.0% AR @100 (a relative improvement of 24%)
on detecting objects from non-person classes. With 20 PASCAL-VOC classes for training, GOOD
surpasses SOTA methods even by 6.1% AR@100 in detecting non-VOC classes. Furthermore, we
also analyze the advantages of geometric cues and show that they are less sensitive to semantic shifts
across classes, and are better than other strategies for improving generalization.

2 RELATED WORK

Open-world class-agnostic object detection is the task of localizing all the objects in an image
by learning with only a limited number of object classes (base classes). The core problem with
standard object detection training is that the model is trained to classify the unannotated objects
as background and thus is suppressed to detect them at inference time. To solve this issue, |Kim
et al.| (2021) proposed object localization network (OLN), which replaces the classification heads
of Faster RCNN (Ren et al., 2015) with class-agnostic objectness heads so that the training loss
is only calculated on positive samples, i.e., known objects, and thus not suppressing the detection
of unannotated novel objects. Saito et al.| (2021) synthesized a training set by copy-pasting known
objects onto synthetic backgrounds. However, the model struggles with the synthetic-to-real domain
gap in solving the object detection task. Besides background non-suppression, a more proactive
approach is to exploit unannotated objects for training. Wang et al.| (2022) built upon traditional
learning-free methods and developed a pairwise affinity predictor to discover unannotated objects.
Their object detector, GGN, is then trained using the newly-discovered object masks and ground
truth base class annotations as supervision. Finally, another promising direction is to use open-world
knowledge from large pretrained multi-modal models. Recently, Minderer et al.| (2022); Maaz et al.
(2022) made use of pretrained language-vision model (Radford et al.l |2021) to detect open-world
objects using text queries. Our work is most related to OLN and GGN. We used the OLN architecture
and training loss, but additionally incorporated geometry cues through our pseudo-labeling method.
GGN used the pairwise affinity for pseudo labeling. However, since the pairwise affinity is trained
on RGB inputs using the base class annotations, GGN still suffers from the overfitting problems of
RGB-based methods. Our experiments showed geometric cues as a better source of pseudo boxes.

Incorporating geometric cues for generalization. The estimation of geometric cues has been an
active research area for decades. With the introduction of deep neural networks, the seminal work
by |[Eigen et al.| (2014)); |[Eigen & Fergus| (2015) significantly improved over early works (Hoiem
et al., 2005agbj; 2007; 2008}, Saxena et al., [2005; |2008aib). Recent progress in estimating geomet-
ric cues can be attributed to the use of modern architectures (Ranftl et al.| [2022)), stronger training
strategies (Zamir et al.l 2020) and large-scale datasets (Eftekhar et al., 2021). In particular, Om-
nidata (Eftekhar et al. [2021) has made significant headway in prediction quality and cross-dataset
generalization. Since geometric cues abstract away the appearance details and retain more holistic
information about the objects, such as shapes, they have been incorporated into many applications
for generalization. For example, Xiang et al.[(2022) incorporated them into the 3D shape completion
pipeline to generalize to novel classes. [Yu et al.| (2022)) used them to guide the optimization of neural
implicit surface models for tackling scenes captured from sparse viewpoints. (Chen et al.| (2021} ap-
plied mid-level visual representations to reinforcement training and gained robustness under domain
shifts. In this work, we propose to incorporate geometric cues through pseudo-labeling and also
demonstrate large performance gains on open-world class-agnostic object detection benchmarks.
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Figure 3: Overview of the geometry-guided pseudo labeling method. It consists of two training
phases. Phase I: the RGB input is firstly preprocessed by the off-the-shelf model to extract the ge-
ometry cues, which are then used to train an object proposal network with the base class bounding
box annotations. The proposal networks then pseudo-label the training samples, discovering unan-
notated novel objects. The top-ranked pseudo boxes are added to the annotation pool for Phase II
training, i.e., a class-agnostic object detector is directly trained on the RGB input using both the base
class and pseudo annotations. At inference time, we only need the model from Phase II.

3 METHOD

Our goal is to incorporate geometric cues for an improved open-world class-agnostic object detec-
tion performance. Concretely, we propose a pseudo labeling method, which can effectively utilize
the geometric cues to detect unannotated novel objects in the training set and then use them for
training the object detector. See the overview of our method in Figure 3]

3.1 OPEN-WORLD CLASS-AGNOSTIC OBJECT DETECTION PROBLEM

Current state-of-the-art object detection methods work well under the closed-world assumption.
They are trained with a set of object bounding box annotations {¢;} from a pre-specified list & of
semantic classes, i.e., the base classes. At test time, their generalization is evaluated by detecting
the objects from the known base classes. The standard training loss of object detection for an image
T has two parts: classification loss and bounding box regression loss

Zﬁcls pz;pl N Z ‘Creg tzat (1)
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where ¢ is the index of an anchor from the candidate set BB, {p;,t;} are the predicted label and
bounding box coordinates, and {p}, ¢ } are the corresponding ground truths. N is the total number
of anchors in the candidate set B. [N, is the size of the subset By, which only contains the anchors
with the ground truth label p; = 1. Note p; equals 1 only when the anchor ¢ can be associated to an
annotated object bounding box from the known classes K; otherwise it equals 0 (background).

From the closed-world to the open-world setup, the generalization goal extends to localizing every
object in the image, which can belong to an unknown novel class v € U. Under the training loss
in (I), an unannotated object will be classified as “background”. As a result, the model will treat
similar types of objects as “background” at inference time. To avoid suppressing the detection of
novel objects in the background, proposed to replace the classification loss in (TJ)
by the objectness score prediction loss, yielding

£OLN N Z ['Teg tzatz N Z ‘Cob] 0;, 0 a (2)
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where o; and o] are the predicted objectness score and its ground truth of anchor 4. In doing so, only
the anchors with p; = 1 are involved in training, completely removing any “background” prediction.
At inference time, the objectness score is used to rank the detections. However, since these anchors
only capture the annotated objects from the base classes, this loss modification cannot effectively
mitigate the overfitting to the base classes. We further resort to adding additional “objects” into
training, especially novel ones with very different appearances than objects from the base classes.

3.2 EXPLOITING GEOMETRIC CUES

Models trained on RGB images tend to over-rely on the appearance cues for object detection. There-
fore, it is hard for them to detect novel objects that appear very differently from the base classes.
For instance, a model trained on cars is likely to detect trucks, but unlikely to also detect sand-
wiches. Involving such novel objects, e.g., food, into training is then an effective way to mitigate
the appearance bias towards the base classes, e.g., vehicles. To this end, we exploit two types of
geometric cues, i.e., depth and normals, for detecting unannotated novel objects in the training set,
see some examples in Figure 2] Both of them are common geometric cues that capture local infor-
mation. Depth focuses on the relative spatial difference of objects and abstracts away the details on
the object surfaces. Surface normals focus on the directional difference and remain the same on flat
surfaces. Compared with the original RGB image, they discard most appearance details and focus
on the geometry information such as object shapes and relative spatial locations. Models trained
with them can thus discover many novel-looking objects that RGB-based ones cannot detect.

We use off-the-shelf pretrained models to extract geometric cues. Specifically, we use Omnidata
models (Eftekhar et al., [2021) trained using cross-task consistency (Zamir et al., 2020) and 2D/3D
data augmentations (Kar et al.,[2022). The training dataset for the models is the Omnidata Starter
Dataset (OSD) (Eftekhar et al., [2021) which contains 2200 real and rendered scenes. Despite the
difference between the OSD to the object detection benchmark datasets, the Omnidata model can
produce high-quality results, implying that the invariances behind these geometric cues are robust.

3.3 PSEUDO LABELING METHOD

To use the geometric cues to discover unannotated novel objects in the training set, we first train
an object proposal network on the depth or normal input using the same training loss as in (2),
i.e., Phase-I training in Figure[3] Then, this object proposal network will pseudo-label the training
images using its detected bounding boxes. After filtering out the detected bounding boxes which
overlap with the base class annotations, we then add the remaining top-k boxes to the ground truth
annotations. Here k& € {1, 2,3} is determined for each detector on a small holdout validation set.
Finally, we train a new class-agnostic object detector using the RGB image as input and the extended
bounding box annotation pool as ground truth, i.e., Phase-1II in Figure 3| The training loss is

1
Nreg

Lcoop(I) = Lreg(tist;) +
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Compared with (2)), the anchors that overlap with the pseudo boxes of the detected novel objects,
i.e., @ € By, are also involved in training. The pseudo boxes can be acquired from a single source,
i.e., one of the geometric cues, and from both, i.e., pseudo label ensembling. We name our method
GOOD-X when using a specific geometric cue X as the pseudo labeling source, whereas GOOD-
Both stands for ensembling the pseudo labels from both the depth and normals.

Inspired by previous works in self-training (Xie et al., [2020; Sohn et al.| 2020; Xu et al} [2021)), we
use strong data augmentation during Phase-II to counteract the noise in pseudo boxes and further
boost the performance of GOOD. Specifically, for Phase-II training, we use AutoAugment (Cubuk
et al.| 2019) which includes random resizing, flip, and cropping.

4 EXPERIMENTS

Benchmarks. We target two major challenges of open-world class-agnostic object detection: cross-
category and cross-dataset generalization. For the cross-category evaluation, we follow the common
practice in the literature (Kim et al., 2021; /Wang et al., 2022) to split the class category list into two
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parts. One is used as the base class for training, whereas the other is reserved only for testing cross-
category generalization. Specifically, we adopt two splits of the 80 classes in the COCO dataset (Lin
et al.l2014). The first benchmark splits the COCO classes into a single “person” class and 79 non-
person classes. This is to stress-test the generalization ability of the methods. We follow |[Wang et al.
(2022) to choose the “person” category as the training class because it contains diverse viewpoints
and shapes. The second benchmark splits the COCO classes into 20 PASCAL-VOC (Everingham
et al., |2010) classes for training and the other 60 for testing. For the cross-dataset evaluation, we
use the ADE20K dataset (Zhou et al., 2019) for testing. We compare models trained using only 20
PASCAL-VOC classes or all 80 COCO classes on detecting objects in ADE20K. This is to evaluate
open-world class-agnostic object detectors when used in the wild.

Implementation. We use the same architecture as OLN in (Kim et al.,|2021) for both Phase I and
Phase II training. OLN is built on top of a standard Faster RCNN (Ren et al.|[2015)) architecture with
a ResNet-50 backbone pretrained on ImageNet (Deng et al.,2009). We implement our method using
MMDetection framework (Chen et al.,2019) and use the SGD optimizer with an initial learning rate
of 0.01 and batch size of 16. The models with data augmentation are all trained for 16 epochs. Other
models are trained for 8 epochs. We did not find training for longer epochs beneficial for models
without data augmentation. The optimal number of pseudo boxes, i.e., k € {1, 2,3}, varies across
input types and is determined on a small holdout validation set. See Appendix [A]for further details.

Evaluation metrics. Following (Kim et al.l [2021; [Wang et al., 2022), we use Average Recall
(AR @k) over multiple IoU thresholds (0.5:0.95), and set the detection budget k as 100 by default.
All ARs are shown in percentage. AR 4 and ARy respectively denote the AR score on detecting all
classes (including the base and novel ones) and on detecting the novel classes. To evaluate ARy, we
do not count the boxes associated to the base classes into the budget k. The same protocol is applied

when evaluating per-class ARs and ARs for small, medium and large size of objects, i.e., ARY/™/!,

4.1 DETECTING UNKNOWN OBJECTS IN AN OPEN WORLD

Table [Ta] and [Tb] compare open-world class-agnostic object detectors on two cross-category bench-
marks and two cross-dataset benchmarks, respectively. Our method GOOD, which incorporates geo-
metric cues, considerably outperforms state-of-the-art RGB-based open-world class-agnostic object
detection methods, i.e., OLN (Kim et al.,[2021) and GGN (Wang et al.,[2022). OLN did not involve
any novel object into training. Although GGN proposed to use an intermediate pairwise affinity (PA)
representation for pseudo labeling, the PA predictor is still trained on the RGB images, therefore it
still has the bias towards the known classes as other RGB-based methods.

On the cross-category benchmarks shown in Table with a single training class “person” on the
COCO dataset, GOOD can surpass SOTA methods by 5.0% ARy @100 on detecting objects from
non-person classes, a relative improvement of 24%. With 20 PASCAL-VOC classes for training,
GOOD surpasses SOTA methods by 6.1% ARy @100 in detecting non-VOC classes, a relative im-
provement over 18%. On the cross-dataset benchmarks, Table ['1;5] shows that GOOD achieves 2.4%
to 4.7% gain on AR 4 @100 in different setups. We observe that GOOD is particularly strong when
there are fewer training classes, i.e., person — non-person and VOC — ADE20k. For RGB-based
methods, the overfitting problems become more severe as the object diversity from the base classes
reduces. In contrast, the geometric cues can still detect novel-looking objects, which are particularly
helpful to training with only a limited number of base class annotations. Finally, ensembling both
geometric cues offers additional performance gains.

4.2 ADVANTAGES OF GEOMETRIC CUES

Geometric cues are less sensitive to appearance shifts across classes. We first compare per-novel-
class AR@5 of the object proposal network trained on geometric cues with that trained on the RGB
image. Here, AR@S5 is of interest as geometric cues are used to discover novel-looking objects
during Phase-I and no more than five pseudo boxes per image will be used in Phase-II, see Figure[3]

Figure [] shows that geometric cues can achieve much higher per-novel-class AR@5 than RGB in
many categories. An example is the novel supercategory “food”, including classes such as “hot dog”
and “sandwich”. The base classes, belonging to the supercategory “person”, “animal”, “vehicle”,

and “indoor”, have very different appearances to the “food” supercategory. The RGB-based model
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\ Person—Non-Person \ VOC—Non-VOC
Method | AR4 | ARy | ARy | ARY | ARy | ARa | ARy | AR}, | ARY | ARY,
FRCNN (oracle) | 559 | 534 |379 |595 | 73.0 | 559 |526 |37.1 |60.0 |73.1

OLN (Kim et al.[[2021) 309 | 165 | 87 147 | 334 | 475 | 332 | 187 | 393 | 58.6
GGN (Wang et al.[[2022) | 30.3 | 20.7 | 12.0 | 25.6 | 29.6 | 39.8 | 315 | 11.8 | 374 | 63.8

FRCNN (cls-agn) 257 | 122 | 87 124 | 182 | 385 [273 | 108 | 30.2 | 55.8

SelfTrain-RGB 32.5 | 18.7 11.3 18.6 | 32.6 | 48.1 | 374 | 228 |439 | 577
GOOD-Depth 37.0 | 25.6 12.8 | 304 | 424 | 496 | 390 | 21.1 | 475 | 632
GOOD-Normal 35.6 | 23.7 139 | 276 | 36.0 | 49.6 | 389 | 21.2 | 479 | 62.0
GOOD-Both 373 | 259 | 142 | 32,6 | 389 | 495 | 393 |21.6 |48.2 | 624
(a) Cross-category benchmarks
\ VOC—ADE20K \ COCO—ADE20K
Method | AR4 | ARY | AR | ARY | AR4 | ARY | ARY | ARY
FRCNN (cls-agn) 22.6 | 155 | 237 | 265 | 259 | 205 | 285 | 274

OLN (Kim et al.[[2021) 292 | 19.7 | 30.7 | 344 | 329 | 25.1 | 359 | 356
GGN (Wang et al.[[2022) | 27.0 | 169 | 27.5 | 33.6 | 29.8 | 189 | 29.1 | 382

SelfTrain-RGB 27.7 | 184 | 29.7 | 324 | 338 | 265 |37.6 | 354
GOOD-Depth 339 | 21.1 | 359 | 412 | 353 | 257 | 38.0 | 39.6
GOOD-Normal 334 | 220 | 362 | 388 |335 | 257 |37.1 | 355
GOOD-Both 340 | 219 |37.0 | 399 | 353 | 251 |382 | 399

(b) Cross-dataset benchmarks

Table 1: Detecting unknown objects in an open world. FRCNN (oracle) is a standard Faster R-
CNN detector trained on all COCO classes and serves as a performance upper bound on the cross-
category benchmarks. FRCNN (cls-agn) is a Faster R-CNN trained in a class-agnostic manner,
serving as a baseline for comparison. Our geometry-guided methods GOOD-Xs are compared with
SOTA open-world class-agnostic object detectors, i.e., OLN and GGN. SelfTrain-RGB is RGB-
based self-training, i.e., using the RGB image instead of geometric cues for pseudo labeling. We
only report AR 4 in b) as the classes in ADE20K do not exactly match those in COCO.

has difficulty detecting food using appearance cues. In contrast, the geometric cues can generalize
across supercategories. For categories that geometric cues are worse than RGB, we find that they
typically are of small sizes, such as knives, forks, and clocks. This shows that while abstracting
away appearance details, geometric cues may also lose some information about small objects. This
again shows complementariness of RGB and geometric cues.

Geometric cues are better than edges and pairwise affinities. We further compare the geometric
cues with two other mid-level representations: 2D edge and PA. The 2D edge map is extracted using
the Holistically-nested Edge Detection (HED) model (Xie & Tu, 2015), which shows more robust
performance across the datasets than more recent methods. The HED model is trained on the Berke-
ley Segmentation Dataset and Benchmark (BSDS500) dataset (Arbelaez et al.,|2011) which contains
500 images with segmentation annotations. PA can be thought of as a learned object boundary pre-
dictor. [Wang et al.[(2022)) trained it directly on RGB images and then grouped the predictions into
object masks using a combination of traditional grouping methods (Shi & Malik} 2000; |Arbelaez,
20065 |Arbelaez et al., 2014). We compare these four data modalities as the source of pseudo label-
ing. From Table [2| we can see that depth and normals outperform 2D edge and PA on detecting
novel objects. We speculate that this is because 2D edge and PA mainly capture object boundaries,
whereas depth and normals have an extra spatial understanding of the scene and can thus better detect
objects in complex scenes. Owing to their better pseudo labels, GOOD-Depth/Normal outperform
GOOD-Edge/PA on the final ARy @100, i.e., 39.0%/38.9% vs. 38.1%/37.1%, see Appendix@}

Geometric cues are better than adding shape bias and multi-scale augmentation. In the previ-
ous part, we showed that geometric cues can detect novel objects from very different supercategories,
owing to their less sensitivity to detailed appearance changes in objects such as textures. It is thus
natural to compare with RGB-based model with inductive shape bias to counteract the texture bias.
We adopt the stylized ImageNet pretrained ResNet-50 from (Geirhos et al., 2019)) as the backbone
for SelfTrain-RGB. This backbone is trained using heavy style-based augmentation to mitigate the
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Figure 4: Per-novel-class AR@5 difference comparison of pseudo boxes on COCO VOC —
Non-VOC. We train the object proposal network on the geometric cues (Phase-I in Figure [3) and
also directly on the RGB image. We show their per-novel-class AR @5 differences, which is defined
as (ARx — ARgrcB)/ARggp with X € {Depth, Normal}. The geometric cues outperform the RGB
image on those classes above the zero difference line. We also highlight some classes where RGB
and geometric cues have big differences.

Modality | ARy @1 | ARy @5 | ARy, @5 | AR} @5 | AR @5
RGB 4.0 12.6 5.4 16.4 21.8
Depth 4.7 13.2 24 16.0 31.6
Normal 43 12.8 3.0 16.6 277
Edge 32 10.4 35 145 18.5
Pairwise affinity (PA) | 3.2 8.1 0.5 9.1 30.6

Table 2: Comparison on different data modalities for pseudo labeling. We report ARy @k
achieved by the object proposal network trained on different modalities in Phase-I, where the bench-
mark is VOC — Non-VOC. Geometric cues (depth and normal) are stronger in discovering novel
objects than the edge and pairwise affinity (Wang et al.,2022).

texture bias, where texture is one of the most discussed appearance features prone to overfit by
RGB-based models. It showed performance improvements on the COCO object detection bench-
mark under the closed-world assumption (Geirhos et al.,|2019). Moreover, we observe from Fi gureE]
that RGB is relatively stronger in detecting smaller objects. This leads to the question of whether
augmenting SelfTrain-RGB with pseudo boxes extracted at different input scales can already help
this RGB-based method achieve comparable performance to those incorporating geometric cues.

From Table [3] we can see that while the shape bias backbone can improve the AR 4 of SelfTrain-
RGB, it degrades the performance on novel classes, i.e., ARy, indicating that shape bias obtained
from training on ImageNet may not be very helpful in generalizing to novel objects. As for the
multi-scale augmentation, although it can improve the detection recall of medium and large objects,
the overall performance is still worse than our models that incorporate geometry cues. Overall, these
comparisons show that geometry provides strong cues for object localization.

Method | AR4 | ARy | ARY | AR | ARY
SelfTrain-RGB | 48.1 | 37.4 | 22.8 | 439 |57.7
ShapeBias 48.8 | 365 | 214 |425 | 586
ScaleAug 485 | 37.9 | 212 | 447 | 622
GOOD-Both | 49.5 | 39.3 | 21.6 | 48.2 | 62.4

Table 3: Comparison of GOOD and two other strategies on VOC to non-VOC. ShapeBias re-
placed the backbone of SelfTrain-RGB with a stylized ImageNet pre-trained backbone. ScaleAug
applied multi-scale augmentation to the RGB input for collecting pseudo boxes at different scales.
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Figure 5: Ablation studies. (a) and (b) are conducted on COCO VOC to non-VOC benchmark. The
study on the number of base classes (c) uses ADE20K as the evaluation benchmark.

+Outdoor, +Accessory, +Kitchen, +Furniture, Electronic,

Supercategories ‘ Person  +Vehicle Animal Sports Food Appliance, Indoor
# Training classes 1 9 24 39 56 80

# Training images 64115 74152 92169 93939 107036 117266

# Training instances | 609666 654460 715582 727207 824535 860001

Table 4: Base class choices for studying the influence of the number of base classes.

4.3 ABLATION STUDIES

In this section, we conduct ablation studies to understand the effectiveness of pseudo-labeling, data
augmentation, and the influence of the number of base classes. Figure [5a) shows the ARy @100
achieved by the object proposal network (Phase-I) and the object detector (Phase-II). The latter
uses the pseudo boxes generated by the former, where the former can be trained with different data
modalities. The RGB-based object proposal network outperforms the depth- and normal-based one
on ARy @100. This indicates that depth and normal maps cannot simply replace RGB image for
object detection. As evidenced in Table [2] and Figure [4] they are competitive on ARy @k with
k < 5, meaning their top predictions are of high quality. Pseudo labeling is thus an effective way
for geometry-guided open-world object detector training.

We further study the effect of AutoAugment (Cubuk et al.l 2019). Using it during Phase-II training,
we achieve higher ARy @100 as shown in Figure [5b). Data augmentation is helpful to counteract
the noise in pseudo labels. However, using AutoAugment to train OLN on the ground truth base
class annotations, we observe only improvement in recalling the base class objects (from 58.4% to
61.7% AR 45 @100), but degradation in novel object detection. This shows that data augmentation
via random resizing, cropping, and flipping cannot improve generalization across categories.

Finally, we study the influence of the number of base classes. As shown in Table ] we split the
COCO dataset based on the supercategories to create six different splits. We then train GOOD and
OLN on these splits and evaluate them on ADE20K. More base classes in training allow object
detectors to learn a more generic sense of objectness so that they can better detect novel objects. As
shown in Figure[5c] both GOOD and OLN achieve better AR y @100 along with the number of base
classes, and their performance gap reduces. However, the annotation cost also grows along with the
number of classes. GOOD can achieve a similar AR ;@100 as OLN with only half the number of
base classes, e.g., 39 vs. 80. This shows that GOOD is more effective at learning a generic sense of
objectness and less prone to overfitting to the base classes.

5 CONCLUSION

In this paper, we proposed a method GOOD for tackling the challenging problem of open-world
class-agnostic object detection. It exploits the easy-to-obtain geometric cues such as depth and
normals for detecting unannotated novel objects in the training set. As the geometric cues focus on
object shapes and relative spatial locations, they can detect novel objects that RGB-based methods
cannot detect. By further involving these novel objects into RGB-based object detector training,
GOOD demonstrates strong generalization performance across categories as well as datasets.
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\ LVIS COCO—Non-COCO \ COCO—UVO
Method | AR4 | ARy | ARy | ARY | ARy | AR4 | AR | AR | ARY
FRCNN (cls-agn) 266 | 21.0 | 149 | 327 | 362 |423 | 222 |383 | 520

OLN (Kim et al.|[2021) 322 | 274 | 179 | 447 | 531 | 492 | 350 | 487 | 55.1
GGN (Wang et al.|2022) | 27.1 | 22.5 | 15.7 | 355 | 384 | 456 | 25.6 | 432 | 549

SelfTrain-RGB 326 | 283 | 19.0 | 457 | 522 | 487 | 358 | 48.8 | 535
GOOD-Depth 32.8 | 283 | 183 | 468 | 541 | 503 | 356 | 499 | 56.4
GOOD-Normal 334 | 292 | 193 | 498 | 533 | 498 | 358 | 500 | 55.0
GOOD-Both 332 | 290 | 19.0 | 47.7 | 530 | 503 | 36.1 | 50.2 | 55.4

Table 5: More benchmarks. The same methods in Table|l|are compared.

A IMPLEMENTATION DETAILS

GOOD uses OLN (Kim et al.,[2021) as the architecture for both Phase-I and Phase-II training. OLN
is built on top of Faster RCNN (Ren et al., 2015). For open-world object detection, the classification
heads are replaced with the objectness score prediction heads, i.e., predicting the centerness and
IoU of each bounding box proposal at the two stages, respectively. We use the objectness score

V/centerness x IoU for ranking the pseudo boxes and selecting the top & pseudo boxes per image.
The optimal % choice for GOOD-Depth and GOOD-Normal is 1 and for SelfTrain-RGB is 3.

For Phase-I training, we trained the proposal network with loss as given in Eq. 2] and used the SGD
optimizer with an initial learning rate of 0.01 and batch size of 16 for 8 epochs. For Phase-II training,
unless otherwise stated, we trained the object detector with loss as given in Eq. [3| and used SGD
optimizer with an initial learning rate of 0.01 and batch size of 16 for 16 epochs with AutoAugment.
For GOOD-Both, we merge the pseudo boxes generated by object proposal networks separately
trained on depth and normal maps by filtering out the overlapping boxes. Specifically, if the IoU
of two pseudo boxes is larger than 0.5, they are seen as overlapping with each other, and the one
with lower objectness score will be filtered out. For other ensembling experiments, if not specified,
pseudo boxes are also merged as described above.

We use the DPT-Hybrid models from Omnidata repository (Eftekhar et al., [2021) for off-the-shelf
inference of geometric cues. The DPT-Hybrid models (Ranftl et al., [2021al) have a hybrid archi-
tecture of attention layers and convolutional layers. They are trained on the Omnidata Starter Dat-
set (Eftekhar et al.| 2021) for one week with 2D and 3D data augmentations (Kar et al., 2022)), and
one week with cross-task consistency (Zamir et al., |2020) on 4 V100 GPUs. To infer on RGB im-
ages, we first pad images to sizes divisible by 32 without resizing, then feed them to the DPT-Hybrid
model. Note although the original models are trained on 384 x384 image patches, we find that in-
ferring on the original resolution of COCO produces better visual results than on the resolution of
384x384.

B MORE BENCHMARKS

We further evaluate our approach on more benchmarks. Specifically, we evaluated the baselines and
GOOD on the cross-category benchmark LVIS COCO to non-COCO and cross-dataset benchmark
COCO to UVO. The results are shown in Table[5] As expected, the performance gains are smaller
than those observsed on benchmarks with smaller number of base classes such as COCO VOC to
non-VOC. But still, GOOD surpasses all the state-of-the-art RGB-based methods. This shows that
even in extreme conditions when the number of base classes is large, GOOD can still be helpful in
improving the open-world performance.
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Figure 6: More ablation studies.

C MORE ABLATION STUDIES

C.1 ENSEMBLING WAYS OF GEOMETRIC CUES

There are two possible ways to ensemble geometric cues: (1) Stack the two geometric cues together
and train a single object proposal network on these stacked inputs in Phase-I; (2) Train two ob-
ject proposal networks and extract pseudo boxes separately, then merge them into a single pseudo
box pool for Phase-II training. The details of the merging process is described in Appendix [A] We
conduct ablation studies on these two methods. From Figure [6a] we demonstrate that empirically,
ensembling pseudo labels is slightly better than using stacked inputs for Phase-I training. Through-
out the paper, we use the pseudo label ensembling for GOOD-Both.

C.2 ON INCORPORATING RGB IN PHASE-I

It is natural to think of incorporating RGB in Phase-1. To do so, we can also consider the two ways
for ensembling geometric cues. If we stack RGB with geometric cues to train the proposal network,
the model will tend to make more use of RGB to optimize the target localization loss. This is because
RGB is a much stronger input signal than geometric cues in the closed-world setup — AR @100 s¢
is 58.3 for RGB inputs alone and 44.9 when stacking depth and normals on COCO VOC classes.
In the extreme case, the model can even completely ignore geometric cues. This reliance on RGB
inputs prevents the model from making the best use of geometric cues to discover novel objects in
Phase-I, which is crucial for open-world object detection. As shown in Figure [6b] stacking RGB
with geometric cues leads to inferior performance across many benchmarks.

Alternatively, we can train a separate object proposal on RGB inputs, extract pseudo boxes, and
merge them with those extracted from models trained on geometric cues. We can name this method
“GOOD-AIl". In Figure [6c} we compare GOOD-AIl with GOOD-Both and find that adding pseudo
boxes from RGB (i.e., GOOD-AIl) either leads to no performance gains or even worsens the per-
formance on benchmarks like VOC to ADE20K. To understand this, we note that object proposal
networks trained on RGB favor smaller detection boxes, as evidenced in our visualizations (Fig-
ure [T0} [TT)) and more quantitatively in histograms (Figure [6d). These smaller detection boxes can
either be small objects or just textures and parts of larger objects, which can potentially hurt the
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| VOC—Non-VOC | VOC—ADE20K
Method | AR4 | ARy | ARy | ARY | ARy | AR | AR | AR | ARY

GOOD-Both | 49.5 | 39.3 | 21.6 | 48.2 | 624 | 340 | 219 | 37.0 | 399
GOOD-All 485 | 39.3 | 22.7 | 476 | 60.8 | 333 | 229 | 36.2 | 38.0

Table 6: More comparison of GOOD-Both and GOOD-AIl. For GOOD-ALIL, the performance
gains in detecting small objects (AR?) are too small to compensate for the losses in detecting larger
objects (AR"* and (ARYY), leading to overall inferior performance.

\ VOC—Non-VOC \ VOC—ADE20K
Method | AR4 | ARy | ARy | ARY | AR} | AR4 | ARY | AR | ARY
FCOS 436 | 293 | 146 | 357 |502 |256 | 172 | 265 | 309
OLN 475 332 | 187 | 393 | 586 | 292 | 197 | 307 | 344

GOOD-Both (FCOS) | 484 | 363 | 184 | 465 | 58.0 | 325 |20.1 | 345 | 395
GOOD-Both (OLN) | 49.5 | 393 | 21.6 | 482 | 624 | 340 | 219 | 370 | 399

Table 7: Architecture choice. FCOS is a single-stage proposal-free object detector, and OLN is a
two-stage proposal-based object detector (modified from Faster R-CNN). GOOD can significantly
improve the open-world performance of both architectures.

performance of the final detector to detect large objects. This is consistent with our observations in
Table @ Compared to GOOD-Both, the gains in AR?V( a) are usually too small to compensate for

the losses in ARéV( A leading to the inferior overall performance of GOOD-ALIL.

C.3 ARCHITECTURE CHOICE

In principle, our approach is model agnostic and is therefore compatible with both proposal-free and
proposal-based object detectors. To demonstrate this, besides the two-stage proposal-based detectors
in the main paper, we also experiment with a more recent single-stage proposal-free object detector
FCOS (Tian et al.| [2019). Specifically, we kept Phase I unchanged, i.e., generating the geometric
cue-based pseudo boxes using OLN as the architecture. In Phase II, we train a class-agnostic FCOS
using the extracted pseudo boxes together with the groundtruth annotations of the base classes. The
experiment results are shown in Table[7] We can see that GOOD can significantly improve FCOS in
terms of detecting novel objects and OLN is a stronger architecture than FCOS to be used in GOOD.

D MORE DISCUSSION ON DIFFERENT MODALITIES FOR GOOD

In this section, we further discuss how different modalities behave and can be further ensembled to
boost the performance. We first compare different modalities used for Phase-I training and pseudo
labeling in GOOD on the COCO VOC to non-VOC benchmark. In Table [§] we show that pseudo-
labeling using the geometric cues leads to stronger performances. This agrees with our study in
Table 2] where we found that pseudo boxes from proposal networks trained on geometric cues have
higher AR ; @5, indicating that they are of higher quality.

D.1 COMPLEMENTARINESS OF DIFFERENT MODALITIES

In the main paper, we have combined the pseudo boxes only from the geometric cues, i.e., depth
and normals. GOOD-Both provides additional performance gains over GOOD-Depth and GOOD-
Normal. As we have more than two sources of pseudo labeling, it is natural to examine further if
they are complementary and thus can be jointly exploited. We first evaluate the overlap of their
top-1 ranked pseudo boxes. Their most confident novel object detections best convey their bias in
generalization. We can observe from Figure [7a] that the overlap is low across all the input types. Ta-
ble2]and Table 8] further reveal their complementariness in detecting different sizes of objects. Both
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Modality | ARy | ARy | AR | ARY,

SelfTrain-RGB | 374 | 22.8 | 43.9 | 57.7
GOOD-Edge 38.1 21.8 | 457 | 60.2
GOOD-PA 37.1 18.6 | 439 | 65.3
GOOD-Depth 39.0 | 21.1 | 475 | 632
GOOD-Normal | 38.9 214 | 479 | 624

Table 8: Comparison of GOOD using different modalities on COCO VOC to non-VOC bench-
mark.
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(a) Overlap of top1 pseudo boxes. (b) Influence of top-k when ensembling.
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Figure 7: Complementariness of different representations. In (b), Self Train-RGB is using the
top-k pseudo boxes from a single RGB-based object proposal netowrk for retraining, and SelfTrain-
RGB (ens) is using pseudo boxes merged from k independently trained RGB-based object proposal
netowrks for retraining.

observations motivate us to ensemble different sources of pseudo boxes, exploiting their diversity
for training the object detector.

To decide which modality to ensemble first, we designed a simple greedy algorithm based on the
overlap of pseudo boxes and the potential performance gain of adding the modality to the ensemble.
Specifically, starting with the best-performing modality (depth), we incrementally ensemble more
sources of pseudo boxes by selecting the source with the highest Utility * Uniqueness score,
where Utility is the performance gain against a vanilla OLN, and Uniqueness is the overlap of the
pseudo boxes with the current ensemble pseudo boxes. The performance is evaluated on a holdout
validation set. The chosen ensemble order for the COCO VOC to non-VOC benchmark is: depth,
normal, PA, edge, RGB.

We show the ensembling results in Figure [7b] Two baselines for using multiple pseudo boxes from
RGB are considered: SelfTrain-RGB is using the top-k pseudo boxes from a single RGB-based
object proposal netowrk for retraining, and SelfTrain-RGB (ens) is using pseudo boxes extracted
and merged from k independently trained RGB-based object proposal networks for retraining. We
can see that ensembling pseudo sources from multiple modalities is better than adding more pseudo
boxes from a single source (RGB).

E MORE VISUALIZATION

E.1 VISUALIZATION OF GEOMETRIC CUES

We visualize more examples of geometric cues in Figure [§] and Figure 9] We demonstrate that the
inferred geometric cues are of high quality in diverse scenes.

17



Published as a conference paper at ICLR 2023

E.2 VISUALIZATION OF PSEUDO BOXES FROM PHASE-I

We also provide visualization of pseudo boxes in Figure |10 and Figure The pseudo boxes are
generated from OLNS trained on RGB, depth, and normals, respectively. We find that pseudo boxes
from RGB-based models generally tend to target small objects, textures, and parts of objects. This
again shows that RGB-based models over-rely on appearance cues and can overfit to textures and
discriminative parts of the training classes.

E.3 VISUALIZATION OF GOOD DETECTIONS ON NOVEL OBJECTS

We further added more visualization examples of GOOD detection results in Figure [I2] The test
images contain objects that are seen neither in the GOOD training set (COCO) nor the Omnidata
model training set. The presented examples include new technology devices, spaceships, dinosaurs,
aliens, and sea scenes. We can see that GOOD can still make reasonable object bounding box
predictions even though these objects have never appeared in the training set.
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Figure 8: Visualization of geometric cues. From left to right: RGB, depth, normals.
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Figure 9: Visualization of geometric cues. From left to right: RGB, depth, normals.
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Figure 10: Top3 pseudo boxes after filtering out those that overlap with known (VOC) class
bounding boxes. The pseudo boxes are generated from OLNs trained on RGB, depth, and normals,
respectively. OLN trained on RGB tends to detect small objects and parts of objects.
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Figure 11: Top3 pseudo boxes after filtering out those that overlap with known (VOC) class
bounding boxes. The pseudo boxes are generated from OLNS trained on RGB, depth, and normals,
respectively. OLN trained on RGB often detect textures or small parts of the objects.
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Figure 12: GOOD detections on novel objects. Only top 20 detection boxes are shown with the
images. The novel objects are seen neither in GOOD training, nor in Omnidata training set.
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