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EMPERROR: A Flexible Generative Perception Error Model

for Probing Self-Driving Planners
Niklas Hanselmann1,2,3, Simon Doll1,2, Marius Cordts1, Hendrik P.A. Lensch2 and Andreas Geiger2,3

Abstract—To handle the complexities of real-world traffic,
learning planners for self-driving from data is a promising
direction. While recent approaches have shown great progress,
they typically assume a setting in which the ground-truth world
state is available as input. However, when deployed, planning
needs to be robust to the long-tail of errors incurred by a noisy
perception system, which is often neglected in evaluation. To
address this, previous work has proposed drawing adversarial
samples from a perception error model (PEM) mimicking the
noise characteristics of a target object detector. However, these
methods use simple PEMs that fail to accurately capture all
failure modes of detection. In this paper, we present EMPERROR,
a novel transformer-based generative PEM, apply it to stress-
test an imitation learning (IL)-based planner and show that it
imitates modern detectors more faithfully than previous work.
Furthermore, it is able to produce realistic noisy inputs that
increase the planner’s collision rate by up to 85%, demonstrating
its utility as a valuable tool for a more complete evaluation of
self-driving planners.

Index Terms—Deep Learning Methods; Object Detection, Seg-
mentation and Categorization; Autonomous Agents
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I. INTRODUCTION

AFTER years of progress, autonomous driving systems
are able to handle increasingly complex situations [1].

This is enabled, in part, by solving several aspects of driving
with learned modules, such as perception [2], [3], [4] and
motion forecasting [5], [6]. Recently, there has been increased
interest in managing the complexity of human behavior in
traffic by also learning the planning task [7], [8], which has
been accelerated through the emergence of motion forecasting-
and planning-centric benchmarks and datasets [9], [10]. Most
of this work assumes a simplified setting where the ground-
truth world state is available as input and focuses on accu-
racy of the planned trajectory with respect to human driving
demonstrations. As a result, robustness to the residual risk of
errors in the perception system, which is ultimately just an
imperfect model operating on incomplete observations of the
world, remains underexplored.
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Fig. 1. Method Overview. We propose EMPERROR, a generative model
that imitates a given detector by modeling the distribution of its perception
errors conditioned on a ground-truth state and BEV map as scene context.
Adversarial optimization in the model’s latent space can then produce chal-
lenging yet plausible proxy detections from that distribution which stress-test
the robustness of a given planner, e.g. by inducing collisions.

In this work, we aim to illuminate the susceptibility of
learned planning, which is often brittle in the face of o.o.d
inputs [11], to these errors. Recent seminal studies [12], [13]
have approached this problem from the lens of adversarial
attacks. To this end, they first construct a perception error
model (PEM) [14], [15], which allows sampling multiple noisy
estimates imitating a target 3D object detector given a ground-
truth scene representation as context. Then, by leveraging
the PEM as a proxy of the detector, challenging samples
that stress-test the target planner can be found by employing
an adversarial search strategy. While promising, these works
consider simple, synthetic scenes that do not capture the
complexities of real-world data. Moreover, they employ simple
PEMs that phrase the error modeling task as an isolated, per-
object perturbation of the ground-truth state, rather than jointly
reasoning over the entire scene context. Hence, they cannot
faithfully model the intricacies of the error patterns exhibited
by modern 3D object detectors, such as duplicate detections
resulting in false-positives and correlations in errors for groups
of objects.

Motivated by this, we propose EMPERROR, a novel genera-
tive empirical error model based on the transformer architec-
ture, that can more faithfully capture the error characteristics
of a target detector. Our key idea is to leverage the attention
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mechanism and a flexible set of latent queries to model the
full range of failure modes, including false-positives, in a
scene-consistent manner. Furthermore, EMPERROR provides
a prior over different error patterns for a given scene context,
enabling us to draw adversarial, yet plausible samples to stress-
test a target planner. Building on these advantages, we design
a framework to probe the robustness of learned planners to
noisy perception inputs, which is visualized in Fig. 1. We
then apply the proposed framework to an imitation learning
(IL)-based planner, modeling three different modern camera-
based 3D object detectors, and show learned planning is indeed
vulnerable to plausible noise from the long-tail of perception
errors. We believe EMPERROR can serve as a valuable tool for
data-driven evaluation of self-driving planners.

Contributions: (1) We propose EMPERROR, a novel flexible,
transformer-based, generative PEM for probing planning, that
can more faithfully imitate modern object detectors than
previous work. (2) We propose and integrate EMPERROR into
a framework for probing the robustness of a planner to noise in
its perception system. (3) We demonstrate that this framework
can reveal unsafe behavior in learned planning, even for minor,
plausible detection errors.

II. RELATED WORK

Perception Error Models: Accurately modeling the noise
characteristics of a perception module enables an analysis of
typical failure modes and informs the design of downstream
modules. Several works [16], [14], [17] rely on classical statis-
tical models often coupled with elements of manual design to
capture regression errors and false-negatives in detection tasks.
While these approaches yield lightweight, easily interpretable
PEMs, they are limited in the fidelity and complexity of noise
patterns that can be modeled. Recent work addresses this
limitation by instantiating the PEM through a neural network.
In [12], the authors use a feed-forward network to model false-
negative detections. In [15], [13], the authors model spatial
errors and false-negatives using a probabilistic feed-forward
network to enable efficient evaluation of decision making
modules in simulation. In [18], [19], the authors propose
fully-convolutional PEMs that mimic the error characteristics
of LiDAR-based detectors [20], [21]. As they resemble the
overall architecture of a standard convolutional one-stage
detector, they can model regression errors, false-negatives and
false-positives but are not probabilistic and thus do not permit
sampling. In summary, the PEMs proposed in previous work
either do not fully capture the error characteristics of a target
perception system, do not permit sampling, or both. As these
are prerequisites to find plausible worst-case perception errors
for planning, we propose a novel PEM that satisfies these
requirements.

Generating Safety-Critical Scenarios: When deployed, self-
driving systems are required to robustly handle rare and po-
tentially safety-critical scenarios from the long-tail of driving.
Since real-world data collection is limited in scalability and
diversity, there has been increased interest in the automated
generation of safety-critical scenarios in recent years. The

majority of this work focuses on automatically altering the
behavior of other traffic participants to induce failure in the
target autonomy system [22], [23], [24], [25], [26]. Rather than
testing against external long-tail behavior, we instead look in-
ward to examine the effects of long-tail noise in the autonomy
system’s own perception system by sampling from a PEM.
While this high-level idea has been explored before, previous
work [12], [13] uses simple PEMs that do not fully capture all
dependencies and failure modes, and tests in simple, synthetic
scenes that do not reflect the complexity of real-world data.
In contrast, we propose a novel transformer-based PEM that
fully models the false-positive, false-negative and regression
error characteristics of a given 3D-object detector and apply
our framework on challenging real-world data.

III. METHOD

Problem Statement: We are interested in supplementing
offline evaluation by stress-testing modular autonomy systems,
which we will consider to consist of a 3D object detector
as the perception module and a downstream planner in this
study. Let us denote the true world state as a set of vectors
S = {s0, · · · , sN} ∈ Rds describing the position, heading
angle, spatial dimensions, first- and second-order longitudinal-
and angular dynamics in the ego vehicle’s frame as well as the
semantic class for each of N objects in the scene. The object
detector then processes raw sensor observations of the world
into a set of 3D bounding boxes B̂ = {b̂0, · · · , b̂N̂} ∈ Rdb

similar to S, but with the dynamics reduced to a velocity
vector. Based on the 3D bounding boxes, as well as a rasterized
bird’s-eye view (BEV) map M ∈ Rh×w×5 containing infor-
mation on the static scene layout, the planner then computes
a future trajectory τ to be driven.

The detector incurs errors in the form of false-positives,
false-negatives and inaccurate regression of bounding box
parameters when compared to the ground-truth set derived
directly from S. These errors are individual to the specific
model architecture and weights in question, and often depend
on the configuration of the scene, e.g. due to correlations with
the relative object pose, correlations among groups of objects
or correlations between objects and map elements. To probe
the planner’s sensitivity to this imperfect perception, we would
like to find worst-case, but plausible errors for a given scene
that drive the planned trajectory towards violation of safety
constraints. To this end, we learn a conditional generative PEM
as a proxy that imitates the detector given the ground-truth
scene context (S,M) as input. By repeatedly drawing samples
B̃ = {b̃0, · · · , b̃Ñ} ∈ Rdb from this proxy and measuring
the quality of the corresponding planned trajectory, we aim to
gauge the influence of noise patterns and optimize for planning
failures, such as a collision.

A. Conditional Generative PEM

We cast the imitation of perception errors given a ground-
truth scene state as a set-to-set modeling problem, for which
the transformer architecture is a natural choice due to its
permutation-invariant modeling of relationships among set
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Fig. 2. Generative Perception Error Model (PEM). We propose a PEM based on the conditional variational autoencoder (CVAE) framework to model the
error characteristics of a target detector. It consists of a prior encoder, inferring a distribution over the latent variable Z given a ground-truth state S and
BEV map M as scene context at test-time, and a deterministic decoder, which produces a set of proxy detections B̃ given Z. At training-time, a posterior
encoder with a similar architecture as the prior encoder is used to encode and sample from the latent distribution. In contrast to the prior encoder, it also has
access to privileged information in the form of the detector outputs B̂ to be reconstructed. Privileged components are shown in faint coloring.

elements. We propose a conditional generative model building
on a transformer encoder-decoder architecture [27] under the
framework of CVAEs [28]. Specifically, we aim to construct
a latent variable model capturing

P
(
B̂ | S,M

)
=

∫
P
(
B̂ | S,M,Z

)
P (Z | S,M) dZ

(1)
where Z = {z0, · · · , zN̂} ∈ Rdz is a set of per-object latent
variables of dimensionality dz explaining the stochasticity of
the target detector’s perception errors by capturing different
noise patterns. This allows sampling multiple plausible sets
of detections B̃ ∼ pθ(B̂ | S,M) by applying different
latent error characteristics sampled from a learned conditional
Gaussian prior modeling Z ∼ pθ(Z | S,M) to a given
scene context (S,M). This is done via a deterministic de-
coder B̂ = fθ(Z,S,M). As evaluating the integral in (1)
is intractable, learning under the CVAE framework utilizes a
learned approximation to the posterior qϕ(Z | S,M, B̂) to
maximize the evidence lower bound (ELBO) [29], [28]:

logP
(
B̂ | S,M

)
≥ Eqϕ(Z|S,M,B̂)

[
log pθ

(
B̂ | S,M,Z

)]
−DKL

(
qϕ

(
Z | S,M, B̂

)
|| pθ (Z | S,M)

)
(2)

Although both the prior and the posterior distribution are fac-
torized over objects, the distribution over each latent variable
zn ∈ Z is computed from the full set of ground-truth states
S (and detector outputs B̂ for the posterior). Similarly, the
decoder considers the joint sets of per-object latent variables
Z and states S to output individual detections b̃n ∈ B̃. This
enables our model to generate realistic, scene-consistent noise
patterns by allowing it to capture higher-order relationships.
In the following, we briefly describe the main components in
our architecture, as depicted in Fig. 2.

Initial Hypotheses: Both the probabilistic encoders mod-
eling pθ and qϕ as well as the deterministic decoder
fθ are transformers operating on a shared set of queries
QH = {q0

H , · · · ,qNq

H } ∈ Rdh representing detection hypothe-
ses. Specifically, to model true-positives and false-negatives,

we initialize a subset Qgt
H of Ngt

q queries by projecting the
ground-truth state of the scene to the feature dimensionality
dh of the model via a multilayer perceptron (MLP), which
implies that Ngt

q is variable depending on the number of
objects in the scene. Under the assumption that for any
reasonable detector the majority of ground-truth objects will
have a corresponding detector output, this provides the model
with a sensible first initialization and simplifies its task to
the estimation of a residual to the ground-truth regression
parameters and semantic class scores. To model false-positives,
a second subset Qfp

H comprised of a fixed number of Nfp
q

constant learnable embeddings of dimensionality dh capturing
dataset-level statistics is used as these can not be trivially
initialized from the scene context.

Prior Encoder: The prior encoder refines the initial hy-
potheses QH while considering the context of the scene
layout provided by the map M through a series of
Le transformer layers to estimate the parameters of the
prior distribution pθ(Z | S,M) = N (µp

θ(S,M),σp
θ(S,M)).

The map is represented by a set of feature vectors
QM = {q0

M, · · · ,qh×w
M } ∈ Rdh obtained as the cells of the

feature grid of a convolutional map encoder, to which we add
sinusoidal positional embeddings to retain spatial information.
Through repeated blocks of self-attention among the detection
hypotheses and cross-attention to the map features, the initial
hypotheses are iteratively adjusted towards representing noisy
detections for the current scene context. This allows the model
to capture crucial relationships, such as occlusion between
objects or duplicate detection hypothesis for the same ground-
truth object, for example of different semantic classes or at
various depths along the viewing ray, a characteristic pattern
in camera-based 3D detectors. The residual between the initial
and refined hypotheses, which captures possible error patterns,
is then input to an MLP estimating the mean vectors and di-
agonal covariance matrices of the factorized prior distribution.

Posterior Encoder: The posterior encoder estimates the
parameters of the approximate posterior qϕ(Z | S,M, B̂) =
N (µq

ϕ(S,M, B̂),σq
ϕ(S,M, B̂)), which is analogous to the

prior, and largely follows the same architecture. However, we
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incorporate the detector outputs B̂ via an additional cross-
attention block in each of its Le transformer layers. To this
end, we project them to the model’s feature space similar to
Qgt

H via a separate MLP to obtain a set of detection features
QD = {q0

D, · · · ,qND

D } ∈ Rdh .

Decoder: Given the set of initial hypotheses and map context,
the decoder applies a sampled latent error pattern Z to produce
a set of proxy bounding boxes B̃ = fθ(Z,S,M). To this end,
the information in both QH and Z is first fused by applying
an MLP to the feature-wise concatenation of each pair of
vectors (qn, zn), forming Q̃H ∈ Rdh . Similarly to the prior
encoder, Q̃H is then refined through a series of Ld transformer
layers performing self-attention and cross-attending to QM.
Finally, the refined latent queries are decoded to the bounding
box regression parameters and independent per-class sigmoid
classification scores. This mirrors the prevalent output config-
uration used in state-of-the-art 3D detectors [2], [30], [3].

Training: We optimize the model on a dataset of tuples
(S,M, B̂) collected by running inference with a target detec-
tor on the corresponding sensor data to obtain noisy detections.
Similar to prior work [31], [25], we use a modified CVAE
objective Lcvae = Lrecon + βLJS consisting of a reconstruction
error and a divergence regularizer:

Lrecon =
∑

(i,j)∈Ω

(
∥b̃reg

i − b̂reg
j ∥1 +

Nc∑
c=0

BCE
(
b̃cls
i,c , b̂

cls
j,c

))

−
∑
i∈∅

Nc∑
c=0

log(1− b̃cls
i,c ) (3)

LJS =JSGα

(
qϕ

(
Z | S,M, B̂

)
|| pθ (Z | S,M)

)
. (4)

For the reconstruction loss, we first compute correspondences
between the set of boxes B̃ drawn from the PEM and the set of
boxes B̂ produced by the target detector. The correspondences
for the subset of boxes produced from ground-truth initialized
hypotheses Qgt

H are obtained by greedily matching detections
b̂n to ground-truth bounding boxes bn via the logic proposed
in [32] and kept fixed throughout training. For those left
unmatched, which includes the boxes produced from Qfp

H , we
obtain an assignment of the remaining boxes in B̂ that have not
been matched in the previous step online via the Hungarian
algorithm, following the standard practice in [2], [30], [3].
This set of correspondences between predicted hypothesis and
detector targets is termed Ω. Any boxes in B̃ left without
correspondence after these steps are treated as belonging to
the no-object set ∅.

The reconstruction loss is then computed as the sum of an
l1-term for the regression parameters and the binary cross-
entropy for the per-class sigmoid scores. Unmatched proxy
bounding boxes are expected to have a classification score of
zero. To discourage the prior encoder from placing probability
mass in regions assigned low likelihood by the privileged
approximate posterior, we replace the forward KL-divergence
in (2) with the skew-geometric Jensen-Shannon divergence
JSGα [33]. Intuitively, this allows us to interpolate between the
forward KL, which encourages mode-covering behavior, and

the backward KL, which encourages mode-seeking behavior,
via a parameter α. This formulation permits trading off diver-
sity for a decreased chance of sampling latent error patterns
from the prior that would be unlikely under the posterior at
test time. Finally, we use a weighting factor β to control the
strength of the divergence regularizer in the overall objective,
as proposed in [34].

B. Imitation Learning-based Planner

We consider a simple transformer-based planner that is
prototypical of the planning modules proposed in recent liter-
ature [7], [35], [36], [37]. It operates on BEV projections of
B̂ or B̃, which are encoded via an MLP to form Qπ

H ∈ Rdπ ,
as well as a set of map features Qπ

M ∈ Rdπ obtained from a
convolutional encoder. The planner then forms a latent plan by
refining an initial constant learnable embedding qπ

ego through
a series of Lπ transformer layers consisting of two cross-
attention blocks attending to the encoded detection results Qπ

H

and map features Qπ
M. To provide additional context, we add

embeddings of the current speed of the ego vehicle ϑego, as
well as a high-level navigation command cnav (i.e. go-straight,
turn-left or turn-right) to the initial qπ

ego. Finally, an MLP
decodes a trajectory τ̂ = πω(B,M, ϑego, cnav) ∈ RTplan×3 of
future waypoints consisting of a BEV position and heading
angle. The model is trained via standard imitation-learning on
expert trajectories using an l1-loss.

C. Probing Planning

Given a scene- (S,M) and planning context (ϑego, cnav),
we now aim to probe πω with respect to its sensitivity to
noise in its input perception results. To this end, we leverage
our generative PEM in an adversarial fashion to draw samples
B̃ ∼ pθ(B̂ | S,M) that induce failure in πω . Specifically, for
a driving cost C measuring the quality of the generated trajec-
tory, we formulate this process as an optimization problem:

B̃∗ = argmax
Z∼pθ(Z|S,M)

C (πω(fθ (Z,S,M) ,M, ϑego, cnav),S,M)

s.t. − κσp
θ,n ≤ zn − µp

θ,n ≤ κσp
θ,n ∀ zn ∈ Z

(5)

Here, the latent space of our generative model forms the
search space, which is particularly amenable to adversarial
optimization due to the explicit prior over Z: By bounding
the maximum standard deviation we allow each zn to move
from the mean, the solution space can be constrained to high-
likelihood regions, ensuring plausibility.

Objective: For this study, we choose a simple collision cost
measuring the closest Euclidean distance d(τ̂ t, stn) between
the BEV center point of any other object and a planned
waypoint in τ̂ within the planning horizon Tplan. Furthermore,
we add a regularizer encouraging Z to remain likely under the
prior, resulting in the following overall cost:

C = − min
n∈{0,··· ,N}
t∈{0,··· ,Tplan}

d(τ̂ t, stn) + λ

Nq∑
n=0

log pθ(zn | S,M) (6)

where λ controls the strength of the prior regularization.
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TABLE I
PERFORMANCE EVALUATION FOR DIFFERENT PEMS. THE

COMPARISON OF PEM AND DETECTOR CHARACTERISTICS IS MEASURED
IN TERMS OF CUMULATIVE ABSOLUTE DIFFERENCE AREA (CD) FOR
DIFFERENT PERCEPTION METRICS. ∗ DENOTES A VARIANT WITHOUT

VISIBILITY INPUT, WHILE † DENOTES ADDITIONAL MAP INPUT.

Model CD-mPrec. CD-mATE CD-mAOE CD-mAVE

Detr3d [2]
Static Gauss 0.082 0.479 0.453 0.601
MLP + Gauss ∗ 0.057 0.116 0.059 0.310
MLP + Gauss 0.061 0.120 0.064 0.204
MLP + Gauss † 0.065 0.162 0.102 0.263
ResNet + Gauss 0.062 0.138 0.068 0.274
ResNet + StudT 0.052 0.117 0.072 0.333
ResNet + StudT † 0.069 0.156 0.078 0.351
OURS 0.038 0.053 0.060 0.133

w/ KL-Divergence 0.044 0.061 0.066 0.140
w/ Nfp

q = 0 0.051 0.115 0.056 0.182
w/ Nfp

q = 256 0.038 0.055 0.058 0.128

BEVFormer [30]
MLP + Gauss 0.076 0.152 0.076 0.145
ResNet + Studt 0.068 0.142 0.061 0.466
OURS 0.046 0.069 0.069 0.044

StreamPETR [3]
MLP + Gauss 0.066 0.122 0.088 0.089
ResNet + Studt 0.089 0.191 0.100 0.342
OURS 0.056 0.109 0.087 0.046

Optimization: Since all components in our framework are
differentiable, we approach the optimization problem in (5)
via gradient ascent. This results in the following procedure:

1) Infer the prior distribution pθ(zn | S,M) for the current
scene via the corresponding probabilistic encoder, and
initialize all zn to the mean µp

θ,n(S,M).
2) Take Nopt gradient steps on Z maximizing the cost

function in (6) and clamp all zn to the permitted
interval (−κσp

θ,n, κσ
p
θ,n) after each update to satisfy

the constraint in (5).
3) After each step, determine if the planned trajectory

results in a future collision with any object via an
intersection check on the BEV bounding-boxes of all
ego-object pairs. If no collision is found within Nopt
iterations, the optimization terminates unsuccessfully.

To generate multiple challenging perception results per
scene, we run the above procedure up to Ntrial times, each
time removing the object used to compute the collision cost
in (6) in the previous trial from consideration.

IV. EXPERIMENT RESULTS

In this section, we experimentally analyze EMPERROR in
terms of (1) its effectiveness in faithfully imitating modern
camera-based 3D object detectors and (2) illuminate its utility
in probing the robustness of planning to such errors.

Dataset: We utilize the challenging and well-established
nuScenes dataset [32] consisting of 1000 real-world sensor
logs covering a diverse range of scenarios, each 20 s in length,
and tracked 3D annotations of ten different object categories
at a frequency of 2Hz. We use the official detection sub-split
of the training set to train the detector and apply it on the
tracking sub-split to generate training data for the PEM. We
evaluate both on the official validation split.

Target Detectors: To include a variety of error character-
istics in our evaluation, we choose three different modern
detectors: (1) DETR3D [2] based on sparse object queries,
(2) StreamPETR [3] that utilizes temporal object queries
that are propagated through time and (3) BEVFormer [30]
which utilizes an intermediate temporal BEV-feature grid. All
detectors have been trained for 48 epochs, utilizing a ResNet-
101 [38] backbone and the official implementations.

A. Evaluation of Error Imitation Quality

Metrics: To measure the perception performance, we follow
the official metric definitions of the nuScenes benchmark.
These include the Average Precision (AP) as well as regression
error metrics for true positives. The latter include the mean
Average Translation Error (mATE), mean Average Orientation
Error (mAOE) and mean Average Velocity Error (mAVE).
For the exact metric definitions, we refer the reader to [32].
However, analyzing the mean precision and error values alone
is insufficient, as it does not quantify how the errors evolve
with decreasing detection confidence values. To this end, we
compare the integral of absolute differences in metric values
over all recall intervals between the target detector and PEM,
which we term Cumulative Absolute Difference Area (CD).

Baselines: We implement a simple baseline similar to the
observation noise used in the Kalman filter, which models the
perception error distribution as a scene-independent Gaussian
distribution. To this end, we compute the per-class empirical
Gaussian over 3D bounding box regression errors and class
logits for detections with a ground-truth match on the PEM
sub-split of the training dataset. Samples from this distribution
are then applied to ground-truth bounding boxes to create
noisy perception results. We additionally compute the per-class
false-negative rate, at which we randomly drop detections.
Since this baseline, which we term Static Gauss, simply mod-
els dataset-level statistics, it is incapable of capturing scene-
dependent error patterns. Inspired by the PEMs proposed
in [15], [13] we also design six object-conditioned baseline
configurations that utilize a simple per-object feed-forward
network to map the ground-truth state as well as a categorical
visibility level [32] to a noisy detection output. Furthermore,
we also construct a variant that additionally utilizes the same
map encoder as our approach by concatenating the flattened
map embedding to the per-object state projections. Note that
these methods fail to explicitly model false positives [15], [13]
and cannot capture error patterns that depend on other scene
elements, such as duplicate detections. Unlike Static Gauss,
they can, however, capture correlations between the ground-
truth object state and detection errors on a per-object basis.
These baselines output the confidence scores for each class,
as well as the parameters of a probability distribution for all
regression targets. We train the models by optimizing the nega-
tive log likelihood for a given target detector. We use the same
MLP as EMPERROR for the input state projection, followed by
either a three layer MLP utilizing Layer normalization [39] and
an ELU activation function [40] or a ResNet [38] as proposed
in [13] without dropout. For the probability distribution, we
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Fig. 3. PEM Qualitative Results. Perception errors modeled by a baseline PEM (middle) using an MLP with a Gaussian and EMPERROR (right) compared
to DETR3D detections (left). Red boxes indicate ground truth objects, blue boxes the model predictions. While the baseline model samples implausible
perception velocities and does not adapt to scene context, such as the parking area in Scene B, our approach closely mimics the target detector.
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Fig. 4. PEM Error Characteristics. We show the precision and mean re-
gression errors for DETR3D, EMPERROR and the MLP + Gauss configuration
as baseline. All metrics are normalized for clearer visual comparison.

either use a multivariate Gaussian as in [15] with a diagonal
covariance matrix or a multivariate Student-T distribution as
in [13] as the target distribution.

Implementation Details: For EMPERROR, we use Ngt
q = 300

queries for ground-truth, as well as Nft
q = 128 queries for

false positives. Each query has a latent dimensionality of
dh = 256 while the sampled latent code utilizes dz = 32. This
configuration is comparatively lightweight and achieves an
inference throughput of roughly 190 scenes per second at batch
size 64 on an Nvidia Titan Xp GPU. We choose β = 0.01
for weighting LJS after a warm-up period of three epochs,
while setting α = 0.5 for an equal weighting of forward and
backward KL. We filter detector targets and PEM outputs for
a minimum confidence score max(bcls) ≥ 0.2 to ignore low
confidence predictions.

Results: The performance of our proposed PEM for different
detectors is shown in Table I. Compared to both Static Gauss
and the object-conditioned baselines, our model more precisely
captures the error characteristics of the target detector, leading
to consistent improvements in all metrics. For DETR3D [2],
which only uses inputs from a single time step, the CD-mPrec.
is improved by 26% over the best baseline. Compared to target

detectors that utilize temporal information, our proposed PEM
improves the CD-mPrec. for BEVFormer [30] as target by
32% and by 15% for StreamPETR [3] respectively. We also
show the mean error characteristics for DETR3D in Fig. 4.
Especially the reproduction of the translation error, velocity
error and average precision is significantly improved in our
model compared to the MLP + Gauss baseline.

In Fig. 3, we show two qualitative examples of sampled
perception errors for the MLP + Gauss baseline and EMPER-
ROR in comparison to DETR3D [2] as target detector. In the
first scene, the baseline model predicts implausible velocity
estimates for oncoming traffic, while our approach models
this correctly and samples realistic translation errors along
line of sight as well reproducing similar orientation errors for
large vehicles. The second scene highlights the importance of
scene context. In contrast to our model, the baseline fails to
sample plausible errors for the orientations of grouped parking
vehicles, whilst our approach closely mimics the error modes
of the target detector. Additional examples can be found in the
supplementary material.

Ablation Study: To verify our key design choices, the
query initialization scheme and choice of divergence, we run
experiments varying the number of false positive queries Nfp

q

and using the standard KL divergence instead of the skew-
geometric JS divergence and report the results in Table I.
Doubling the number of false-positive queries results in similar
performance at a higher computational burden, while omitting
them drastically degrades performance, highlighting their im-
portance. When using the KL- instead of the JSGα divergence
we also see degraded performance. Additionally, we observe
that it can permit high latent variance, providing an avenue
for implausible attacks.

B. Adversarial Perception Errors
We now apply EMPERROR to probe the robustness of

the IL-based planner described Section III-B. To this end,
we run our proposed adversarial optimization procedure on
scenes from the validation split, which is held-out for all
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TABLE II
EFFECTIVENESS OF ADVERSARIAL PERCEPTION ERRORS. LEFT-HAND SIDE: COMPARISON OF BASELINE OPEN-LOOP PLANNING PERFORMANCE.

RIGHT-HAND SIDE: ATTAINED INCREASE IN COLLISION RATE (CR) FOR VARYING LATENT SPACE CONSTRAINTS κ.

Detector PEM Adversarial PEM
CR ADE FDE CR ADE FDE CR (%)

Model (%) (m) (m) (%) (m) (m) κ = 1 κ = 2 κ = 3

Detr3d [2] 3.40 1.23 2.59 3.56 1.22 2.57 4.27 (+20%) 5.09 (+43%) 5.88 (+65%)
BEVFormer [30] 3.20 1.25 2.63 3.36 1.24 2.61 4.47 (+33%) 5.27 (+57%) 6.20 (+85%)
StreamPETR [3] 3.40 1.27 2.67 3.58 1.25 2.60 4.77 (+33%) 5.35 (+49%) 6.28 (+75%)

Nominal Attack

(a) Not keeping safe distance

Nominal Attack

(b) Dangerous sudden braking

Fig. 5. Qualitative Examples of Worst-Case Perception Errors (κ =
3). Sampling adversarial perception errors from EMPERROR can induce
unwarranted acceleration (Fig. 5a) and sudden braking (Fig. 5b) in the
planner, causing collisions. Red indicates ground truth objects, blue the model
predictions. Non-filled boxes represent future states.

involved models during training. To gain an understanding
of its baseline performance, we first apply the planner to
perception results obtained directly from the target detector.
We also verify whether it performs similarly when operating
on maximum likelihood samples obtained from EMPERROR
(i.e. zn = µp

θ,n(S,M) ∀ zn ∈ Z). Finally, we optimize for
failure over varying latent space constraints κ.

Metrics: As we are interested in inducing unsafe behavior,
we use the Collision Rate (CR) as the main metric for this
experiment. It measures the percentage of scenes for which
the planned trajectory collides with another object within the
planning horizon Tplan. This is supplemented by the Average
Displacement Error (ADE), which measures the average l2-
distance to the human expert trajectory within Tplan, as well
as the Final Discplacement Error (FDE), which is similar to
the ADE but considers only the final waypoint at t = Tplan.

Implementation Details: We use the Adam [41] optimizer
with a learning rate of 1e−1 for the adversarial optimization
procedure, which we run for a maximum of Nopt = 100
iterations per scene, permitting Ntrial = 5 trials each. The
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Fig. 6. Attack Plausibility. Successful attacks (with κ = 3) show a similar
or more accurate distribution of errors compared to DETR3D, highlighting
the realism and conservative nature of our adversarial framework.

strength of the likelihood regularization is set to λ = 1e−1.
We consider a planning horizon Tplan of 3 s and train dedicated
versions of the planner on inference results of each target
detector using the tracking sub-split.

Results: In addition to the evaluation presented in Sec-
tion IV-A, the quantitative results reported in Table II fur-
ther indicate EMPERROR to be a capable PEM in terms of
downstream planning. Compared to the actual inference results
of the target detector, operating the planner on maximum
likelihood proxy samples results in similar a CR, ADE and
FDE. Furthermore, when allowing the adversarial optimization
procedure to adjust the set of latent variables Z, the baseline
CR can be increased by up to 85%, suggesting a critical
vulnerability of our prototypical planner to even plausible
perturbations in its input. The adversarial optimization most
strongly affects the planned trajectory longitudinally, for ex-
ample by inducing sudden dangerous braking or acceleration
while in stationary traffic. We hypothesize this is due to a bias
of heading straight-ahead that is common in driving data. This
is visualized in Fig. 5. Additional examples can be found in
the supplementary material.

Attack Plausibility: Through likelihood regulariza-
tion Eq. (6), search space constraints Eq. (5) and use of the
JS- instead of KL-Divergence Eq. (4), we design our method
to be conservative such that it generates plausible attacks
rather than extreme perturbations. This is evident from Fig. 6,
where we show boxplots of real-world detector errors and
EMPERROR samples inducing successful attacks (with κ = 3)
on the same sensor logs: Even after adversarial optimization,
EMPERROR produces results that either match the detector



8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL, 2025

distribution or show lower errors, both in terms of the median
and spread of the distribution, highlighting their plausibility.

V. CONCLUSION

We presented EMPERROR, a novel generative perception
error model (PEM) that mimics the outputs of a perception
system given a ground-truth scene representation. We have
demonstrated its utility as an evaluation tool by probing an
imitation learning (IL)-based planner in terms of its robustness
to noise in its inputs. Furthermore, we showed that EMPERROR
more accurately captures the target detector’s error charac-
teristics than PEMs used in previous work. However, there
are remaining limitations opening avenues for improvement
in future work. Firstly, we manually designed a cost function
to induce a specific failure mode (i.e. collision). To enable
inducing a wider range of planning failures, learning a gen-
eral driving cost function from data [42] is an interesting
direction. Secondly, extending EMPERROR to model latent
features instead of explicit intermediate representations, such
as 3D bounding boxes, would enable stress-testing modular
end-to-end trainable architectures, which have recently gained
popularity [35], [36].
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[1] J. Janai, F. Güney, A. Behl, and A. Geiger, Computer Vision for
Autonomous Vehicles: Problems, Datasets and State of the Art. Foun-
dations and Trends in Computer Graphics and Vision, 2020, vol. 12, no.
1-3.

[2] Y. Wang, V. . Guizilini, T. Zhang, Y. Wang, H. Zhao, and J. M.
Solomon, “Detr3d: 3d object detection from multi-view images via 3d-
to-2d queries,” in CoRL, 2021.

[3] S. Wang, Y. Liu, T. Wang, Y. Li, and X. Zhang, “Exploring object-
centric temporal modeling for efficient multi-view 3d object detection,”
in ICCV, 2023.

[4] T. Li, L. Chen, H. Wang, Y. Li, J. Yang, X. Geng, S. Jiang, Y. Wang,
H. Xu, C. Xu, J. Yan, P. Luo, and H. Li, “Graph-based topology
reasoning for driving scenes,” arXiv.org, vol. 2304.05277, 2023.

[5] T. Salzmann, B. Ivanovic, P. Chakravarty, and M. Pavone, “Trajectron++:
Dynamically-feasible trajectory forecasting with heterogeneous data,” in
ECCV, 2020.

[6] A. Hu, Z. Murez, N. Mohan, S. Dudas, J. Hawke, V. Badrinarayanan,
R. Cipolla, and A. Kendall, “FIERY: Future instance segmentation in
bird’s-eye view from surround monocular cameras,” in ICCV, 2021.

[7] K. Renz, K. Chitta, O.-B. Mercea, A. S. Koepke, Z. Akata, and
A. Geiger, “Plant: Explainable planning transformers via object-level
representations,” in CoRL, 2022.

[8] D. Dauner, M. Hallgarten, A. Geiger, and K. Chitta, “Parting with
misconceptions about learning-based vehicle motion planning,” in CoRL,
2023.

[9] H. Caesar, J. Kabzan, K. S. Tan, W. K. Fong, E. Wolff, A. Lang,
L. Fletcher, O. Beijbom, and S. Omari, “Nuplan: A closed-loop ml-based
planning benchmark for autonomous vehicles,” in CVPR Workshops,
2021.

[10] N. Montali, J. Lambert, P. Mougin, A. Kuefler, N. Rhinehart, M. Li,
C. Gulino, T. Emrich, Z. Yang, S. Whiteson, B. White, and D. Anguelov,
“The waymo open sim agents challenge,” arXiv.org, vol. 2305.12032,
2023.

[11] A. Filos, P. Tigas, R. McAllister, N. Rhinehart, S. Levine, and Y. Gal,
“Can autonomous vehicles identify, recover from, and adapt to distribu-
tion shifts?” in ICML, 2020.

[12] C. Innes and S. Ramamoorthy, “Testing rare downstream safety viola-
tions via upstream adaptive sampling of perception error models,” in
ICRA, 2023.

[13] J. Sadeghi, N. A. Lord, J. Redford, and R. Mueller, “Attacking
motion planners using adversarial perception errors,” arXiv.org, vol.
2311.12722, 2023.

[14] A. Piazzoni, J. Cherian, M. Slavik, and J. Dauwels, “Modeling percep-
tion errors towards robust decision making in autonomous vehicles,” in
IJCAI, 2021.

[15] J. Sadeghi, B. Rogers, J. Gunn, T. Saunders, S. Samangooei, P. K.
Dokania, and J. Redford, “A step towards efficient evaluation of complex
perception tasks in simulation,” in NeurIPS Workshops, 2021.

[16] P. Mitra, A. Choudhury, V. R. Aparow, G. Kulandaivelu, and J. Dauwels,
“Towards modeling of perception errors in autonomous vehicles,” in
ITSC, 2018.

[17] A. Piazzoni, J. Cherian, J. Dauwels, and L.-P. Chau, “On the sim-
ulation of perception errors in autonomous vehicles,” arXiv.org, vol.
2302.11919, 2023.

[18] K. Wong, Q. Zhang, M. Liang, B. Yang, R. Liao, A. Sadat, and
R. Urtasun, “Testing the safety of self-driving vehicles by simulating
perception and prediction,” in ECCV, 2020.

[19] X. Ju, Y. Sun, Y. Hao, Y. Li, Y. Qiao, and H. Li, “Perception imitation:
Towards synthesis-free simulator for autonomous vehicles,” arXiv.org,
vol. 2304.09365, 2023.

[20] B. Yang, W. Luo, and R. Urtasun, “Pixor: Real-time 3d object detection
from point clouds,” in CVPR, 2018.
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