
Supplementary Material for

KING: Generating Safety-Critical Driving Scenarios

for Robust Imitation via Kinematics Gradients

Niklas Hanselmann1,2,3, Katrin Renz2,3, Kashyap Chitta2,3, Apratim

Bhattacharyya2,3, and Andreas Geiger2,3

1 Mercedes-Benz AG R&D, Stuttgart
2 University of Tübingen

3 Max Planck Institute for Intelligent Systems, Tübingen

Abstract. In this supplementary document, we first provide additional infor-

mation regarding AIM-BEV (Sec. 1.1) and the rule-based expert (Sec. 1.2). Next,

we provide additional information on the kinematics model (Sec. 2) and a detailed

description of our cost functions (Sec. 3). Furthermore, we discuss details regard-

ing the maps, routes and traffic initialization of the scenarios in Sec. 4. Finally,

we present details on the hyperparameter choices for all optimization methods,

further results, as well as additional qualitative examples in Sec. 5.

1 Driving Agents

In this work, we consider three driving agents: (1) Our AIM-VA [3] variant termed

AIM-BEV, (2) TransFuser [10] and (3) a privileged rule-based expert, which provides

supervision for AIM-BEV and TransFuser and is additionally used to determine solv-

ability for the scenarios generated by KING. In the following we provide additional

details on AIM-BEV and the rule-based expert. For TransFuser, we refer readers to the

original paper. In addition, we provide further information on the driving metrics used

to benchmark their performance in the CARLA simulator.

1.1 AIM-BEV

Model: Our architecture is similar to the AIM models introduced in previous work

[3, 10]. For efficiency during simulation, we use a lightweight MobileNetV3-Small [8]

instead of the ResNet34 used in AIM as a convolutional backbone. As described in the

main paper, it takes a bird’s-eye view (BEV) semantic occupancy grid observation ot

as input. From this, a 512-dimensional feature vector is extracted (same as in AIM).

This is then further processed by three fully-connected layers (256, 128 and 64 units

with ReLU activations) to yield a 64-dimensional representation of ot. To be able to

train and evaluate the model in the CARLA simulator [5], we concatenate a binary

variable indicating if the vehicle should stop for a red light to this representation. As

we do not model traffic lights in KING scenarios, this variable is always set to zero

2 N. Hanselmann et al.

Fig. 1: Architecture Overview. Illustration of the AIM-BEV architecture. First, a low-

dimensional embedding from the input BEV semantic grid map observation ot is ex-

tracted. This is then used as the basis for autoregressive waypoint prediction, from

which the final actions are obtained via lateral and longitudinal PID controllers.

in our proxy simulation.4 Finally, the resulting feature is input to a single layer gated

recurrent unit (GRU) with a linear decoder, which autoregressively estimates a set of

four future waypoints {wi}
4

i=1
representing the desired trajectory. In each timestep, the

GRU is additionally conditioned on a sparse goal location xgoal indicating the intended

high-level route. To convert the waypoints into low-level actions we use a set of two

PID controllers, which we describe next.

Controllers: We obtain actions for steering and acceleration from separate lateral and

longitudinal controllers (LatPID and LonPID in Algorithm 1). These are similar to those

used in [2, 3, 9], with slight modifications. In particular, we replace hard clipping and

thresholding operations with soft versions to maintain differentiability. For these, we

tune the shape parameters βeb, βdecel and clipping bounds cδ, cthrottle to approximate

the original non-differentiable implementation. For steering, we obtain a control target

by computing the relative orientation Φd of the halfway point w∗ between the first and

second waypoint. This is then input to the lateral PID controller (with gains Kp = 1.25,

Ki = 0.75, Kd = 0.3), which returns the corresponding steering action. Because this

is unbounded, we constrain it to the [−1, 1]-interval by applying the tanh function.

We have found a buffer of length 4 to be sufficient for computing the integral and

derivative terms in both PID controllers. For throttle, we obtain the desired speed vd by

computing the norm of the vector connecting the first and second waypoint. From this

we then compute a throttle value for the desired acceleration using the longitudinal PID

controller (Kp = 5, Ki = 0.5, Kd = 1), as well as a weighting factor α indicating if the

agent should decelerate (throttle = -1). The latter is high either when the current desired

speed vd is lower than an emergency brake threshold τeb or when the current speed is

higher than vd. In our kinematics model, which we detail in Section 2, the state update

is then computed using the α-weighted sum of both the acceleration and deceleration

throttle values. As this effectively allows to express the entire [−1, 1] range of throttle

values, we denote the action space of the driving policy as a
0

t ∈ [−1, 1]
2

in the main

paper for notational convenience.

4 Similarly, we use an additional channel in the BEV representation to encode pedestrians for

deployment in CARLA, which is inactive when optimizing for and evaluating on KING sce-

narios.

Generating Safety-Critical Driving Scenarios via Kinematics Gradients 3

Algorithm 1: Computing low-level actions from waypoints.

parameters: τeb ← 0.6, βeb ← 10, βdecel ← 1, cδ ← 0.25, cthrottle ← 0.75
input : v, {wi}

4
i=1

output : steer ∈ [−1, 1], throttle ∈ (0, 1), α ∈ (0, 1)
1 w

∗ ← w1+w2

2
;

2 Φd ← tan−1
(

w
∗[1]

w∗[0]

)

;

3 steer← tanh (LatPID (Φd));
4 vd ← ∥w2 −w1∥ × 2;

5 αeb ← sigmoid (−βeb × (vd − τeb));
6 αdecel ← tanh (βdecel × ReLU (v − vd));
7 if vd < τeb then

8 α← αeb

9 else

10 α← αdecel

11 end

12 δ ← cδ × tanh (βδ × ReLU (vd − v));
13 throttle← cthrottle × tanh (ReLU (LonPID (δ)));

Training on regular data: For initial training of AIM-BEV, we collect a dataset Dreg

of demonstrations by the rule-based expert described in Section 1.2 in regular traffic.

We sample a dense set of routes for the expert to complete, covering all possible junc-

tions in Town01-Town06 available in the CARLA simulator as well as routes outside

of the junctions (e.g., highways). We include the hand-crafted CARLA scenarios dur-

ing data collection to cover basic critical situations. In total, the dataset contains 91000

demonstrations, the equivalent of 12.6 h of driving. We obtain ground truth supervision

on the waypoints predicted by the driving policy from the future trajectory driven by the

expert during data collection. The goal location xgoal is obtained by the route planner

of [2], which is based on an A* planner. Using this, the sparse waypoint at least 7.5m
ahead of the current position provided by CARLA is queried to obtain xgoal. To train

the driving policy using this dataset, we further employ data augmentation. For this,

we rotate the BEV, waypoints and goal location around the vehicle center to simulate

situations where the policy has to recover to stable lane keeping. We augment 50% of

the samples with rotation angles sampled uniformly between ±20 degrees. The policy

is then trained using an L1-Loss on the waypoints for 350 epochs. We use the AdamW

optimizer with a learning rate of 0.001 and a batch size of 128.

Fine-tuning with safety-critical scenarios: Similar to Dreg , we build Dcrit by collect-

ing demonstrations from the rule-based expert. The overall approach remains similar.

However now, instead of driving in CARLA under regular traffic, the expert solves sce-

narios generated by KING in our closed-loop proxy simulation. As described in the

main paper, we first collect a larger set of KING scenarios that are solvable by the

expert, containing around 8000 training samples. When training on a union of both

datasets Dcrit ∪ Dreg , we ensure a certain proportion of critical to regular data in

each minibatch. We find a mix of 60% regular and 40% critical data to work well in

4 N. Hanselmann et al.

practice. Aside from an increased batch size of 512 the training hyperparameters and

augmentations remain the same.

1.2 Rule-based Expert

We use a rule-based expert policy based on privileged information to generate training

data and determine solvability for the scenarios generated by KING. For the initializa-

tion of non-critical scenarios (see Section 4) we further adapt this expert to also work

in our proxy simulation. We build on the code provided by [2,3], which is based on the

structure of the CARLA traffic manager5. It consists of three main components, (1) a

collision stage, (2) a traffic light stage and (3) a motion planner stage, which we detail

next.

Collision stage: In order to predict possible future collisions we use a kinematic bicycle

model to extrapolate the position and orientation of all other agents within a radius of

30m. For the extrapolation we use an action repeat assumption (i.e., the exact same

throttle and steer value is repeated for all extrapolation timesteps) since we do not have

any information about the future ground truth actions. For the ego agent, we extrapolate

assuming actions that maintain its current target speed. This allows reasoning about

the possibility of a collision and necessary braking maneuvers. Outside of junctions,

we extrapolate for a horizon of 1 s. In junctions we extrapolate for a longer horizon of

4 s due to a higher probability of collision. We express each future timestep through a

bounding box with the size of the respective vehicle and the extrapolated future position

and orientation. With these bounding boxes we then check for overlaps between the ego

and the other vehicles in each timestep to detect possible future collisions. In case of a

bounding box intersection we set a brake hazard flag. As an additional security measure

we extend the ego bounding box of the current timesteps to the front and check for

intersections in this timestep. The extent is computed depending on the braking distance

for the current ego speed.

Traffic light stage: In the traffic light stage we detect traffic lights and stop signs. For

this we use privileged information provided by CARLA through trigger boxes. If there

is an intersection of the boxes and the internal CARLA state of the traffic light is red or

yellow we set the brake hazard flag.

Motion planner stage: For the main logic we refer to Section 2.2 of the supplementary

material of [3]. However, we observed a higher driving score when modifying the set

of target speeds. We use a default target speed of 4m/s. When entering an intersection

this is increased to 5m/s. We observed that moving swiftly in intersections lowers the

probability of collision. When the brake hazard flag is set, the target speed is always

0m/s. To adapt to the lower frame rate in our simulator (4 fps vs 20 fps), we use ad-

justed gains (Kp = 1.75, Ki = 0.75, Kd = 3.5) for the lateral controller (only in our

simulator). We leave the longitudinal controller unchanged.

5 https://carla.readthedocs.io/en/latest/adv traffic manager/

https://carla.readthedocs.io/en/latest/adv_traffic_manager/

Generating Safety-Critical Driving Scenarios via Kinematics Gradients 5

1.3 Driving Metrics for CARLA Benchmarking

In the main paper we benchmark the driving agents wrt. to their driving performance in

CARLA. This is measured by the Driving Score (DS), which is composed of two terms,

the Route Completion and the Infraction Score, which we detail in the following. The

Route Completion (RC) is given by

RC =
1

NR

NR
∑

i

Ri (1)

where Ri is the percentage of the total distance to be driven on route i that the

agent has completed, and Nr is the total number of routes. This is complemented by

the Infraction Score (IS), which measures the agent’s compliance with traffic rules. It

is computed as a product of infraction penalties pji for each instance i of an infraction

of type j. An overview of the type-specific penalties is shown in Table 1. In addition

to these, there is one further penalty for deviations from the drivable area. This is com-

puted as (1−Roffroad), where Roffroad denotes the percentage of the route completed

outside of the drivable area. Overall, the agent starts with a base IS of one, which is re-

duced for each infraction. The DS is then computed as the product of the RC and IS,

averaged over all routes.

Infraction Type Penalty

Collisions with pedestrians 0.50

Collisions with other vehicles 0.60

Collisions with static elements 0.65

Running a red light 0.70

Running a stop sign 0.80

Table 1: Infraction Score (IS) penalties for different infraction types.

2 Kinematics Model

For the kinematic bicycle model we follow previous work [1] and use the author pro-

vided code and parameters, which were fitted to the CARLA dynamics and default

vehicle model. Their implementation constrains the speed to be positive via a hard

threshold to prevent backwards motion. This zeroes out gradients through the indirect

path in timesteps where the current throttle action would result in negative speeds. We

hence replace the hard threshold with a softplus activation. We set its shape parameter

β to 7, which we found to result in sufficiently low error.

3 Cost Functions

Here, we provide more details of the costs from Section 3 Eq. 2 of the main paper.

We begin with the ego-collision cost φego
col (S) followed by the two regularization terms

φadv
col (S) and φadv

dev (S).

6 N. Hanselmann et al.

Ego Collision Cost: The ego collision cost φego
col (S) is an attractive potential encourag-

ing close encounters between the driving policy and the adversarial agents. This attrac-

tive potential is proportional to the distance between the ego agent and the adversarial

agents, for which the geometry of the ego agent and the adversarial agents is taken into

account. Let dbb(s
i
t, s

j
t) denote the Euclidean distance in R

2 between closest points on

the bounding polygons of the ith and jth agents at time t. We minimize the Euclidean

distance between the ego agent and closest adversarial agent. We choose only the closest

adversarial agent in order to discourage situations where multiple adversaries deviate

from their trajectory to collide with the ego agent:

φego
col (S) = min

i∈{1,...,N}

1

T

T
∑

t=0

dbb(s
0

t , s
i
t). (2)

The distance dbb(s
i
t, s

j
t) can be efficiently computed in parallel as the minimum of the

distances between every vertex-edge pair of the two agents’ bounding boxes.

Adversarial Collision Regularization: To improve the physical plausibility of the

generated scenarios, we discourage collisions between adversarial agents through a re-

pulsive potential φadv
col (S). This potential is inversely proportional to the distance be-

tween the closest pair of adversarial agents:

φadv
col (S) = −min

(

min
i,j∈{1,...,N}, t∈{0,...,T}

dbb(s
i
t, s

j
t), τ

)

. (3)

We find it sufficient to apply the repulsive potential φadv
col to the closest pair of adver-

sarial agents. Finally, we apply a threshold τ to the distance, acting as a safety margin.

This ensures that the repulsive potential is active only in a local neighbourhood around

each adversarial agent j, preventing penalization of agents which are further apart than

this threshold. We find τ = 1.25m to work well in practice.

Out-of-bounds Regularization: Finally, we regularize adversarial agents to stay within

drivable parts of the map. For this, we use a repulsive potential φadv
dev (S) between the

adversarial agents and off-road areas. To ensure that this is compliant with the geome-

try of the vehicle, the overall cost is composed of multiple terms defined as Gaussian

potentials g(Bi
t(ck)) at each corner ck of the bounding rectangle Bi

t corresponding to

the adversarial agent i. The potential at each corner is obtained through a convolu-

tion operation between the Gaussian potential g(Bi
t(ck)) and the map Moob, which is

g(Bi
t(ck))⊛Moob. We consider a binary map Moob which marks the non-drivable ar-

eas. The potential g(Bi
t(ck)) ⊛Moob is thus large when the corner ck is near (or on) a

non-drivable area. The full “out-of-bounds” repulsive potential is defined as sum over

all corners of the polygon Bi
t across agents and over all timesteps:

φadv
rddev =

1

T

N
∑

i=0

T
∑

t=0

C
∑

k=0

g(Bi
t(ck))⊛M (4)

In practice, a variance of 1m works well for the Gaussians. This ensures that the poten-

tial is large when any corner is ∼0.5m from any non-drivable area.

Generating Safety-Critical Driving Scenarios via Kinematics Gradients 7

Cost Weighting: As the number of actors in the scene is always known ahead of opti-

mization, we use separate cost weightings for each traffic density. This accommodates

for the fact that for different densities, a slightly different emphasis of the regularization

terms can be optimal. The used weightings can be found in Tab. 2.

agents γ (for φadv
dev) λ (for φadv

col)

1 20 0

2 23 5

4 20 3

Table 2: Cost weightings. Weighting of the costs for different traffic densities.

4 Scenarios

In this section we provide additional information on the maps and routes as well as the

traffic initialization scheme, which provide the basis for the dataset of initial non-critical

scenarios used throughout the main paper.

(a) Town03 (b) Town04 (c) Town05 (d) Town06

Fig. 2: Town layouts. Each town has unique features, such as roundabouts (a) or high-

way junctions (b, d).

Maps and Routes: We use routes from towns 3-6 provided by the CARLA simulator

for optimization. The layouts of these towns are illustrated in Fig. 2. Each town has

unique features in terms of road topology, such as multi-lane highways, highway exits or

roundabouts. From each of these towns we densely sample routes through junctions and

intersections to obtain a set of 714 routes in total, each of which is a potential mission

for the ego agent. This forms a diverse basis for possible scenarios. For evaluation

on the Town10 intersections, we sample additional routes using the same sampling

mechanism from CARLA’s Town10, which we found to be the most challenging for

the driving agents. This set consists of 82 different routes. We use the maximum traffic

density for Town10 (156 background vehicles) and spawn one hand-crafted CARLA

8 N. Hanselmann et al.

scenario6 along each route. Specifically, we consider Scenarios 7, 8, 9, and 10, which

involve multiple vehicles simultaneously entering the intersection.

Initializating Traffic: As a starting point for safety-critical scenario generation, we

require initial non-critical scenarios. Furthermore, to be able to study the effects of

different traffic densities, the number of adversarial agents present in these initializa-

tions should be controllable. To this end, we mimic CARLA traffic by controlling the

adversarial agents with the rule-based expert described in Section 1.2 to obtain an ini-

tialization. Specifically, we first sample a route that passes by the ego agent’s route

from the dense set of 714 routes for every adversarial agent. For this we consider routes

which start and end at least 4m and at most 100m away from the ego agent’s route.

If possible, each agent is spawned on an individual route at the corresponding start lo-

cation. If the set of candidate routes is smaller than the number of adversarial agents,

additional spawn locations further along already occupied routes are used for the re-

maining agents while making sure a distance of 6m between spawn locations is kept.

Finally, using the expert, we roll out initial trajectories for the adversarial agents that

follow these routes while avoiding collisions with each other and the ego agent. While

this strategy lends itself well to study the effects of different traffic densities, KING is

agnostic to the source of initial scenarios and other choices, for example a dataset of

recorded traffic logs, may be more suitable in practice.

Pre-filtering: For our experiments we sample a subset of the available routes. Instead

of directly sampling from the total set of 714 routes, we first apply a pre-filtering step.

For this, we initialize a scenario on every route as described above. Then, we remove all

routes for which the scenario terminates due to an adversarial agent collision within the

first 10 timesteps. This is done to handle edge cases not covered by the spawning logic.

After pre-filtering, we sample 20 routes and corresponding initial scenarios per town

from the remaining set to obtain the benchmark routes used to compare KING against

black-box optimization (BBO) baselines in Tab. 2 of the main paper. To build the larger

set used in the fine-tuning experiments for improving robustness, we use the entire set

of routes remaining after pre-filtering.

5 Additional Results and Details

In this section we provide additional results supplementing the findings in the main pa-

per. First, we detail the optimization hyperparameter choices for all methods used to

generate safety-critical scenarios, investigate the efficacy of using second-order opti-

mizers for gradient-based generation and perform an ablation study on the regulariza-

tion terms in the generation objective. Next, we assess the impact of their higher com-

putational burden for KING with both the direct and indirect path and for Bandit-TD.

Then, we provide experiments on an additional simple baseline. Furthermore, we eval-

uate AIM-BEV on a benchmark of longer routes involving rural and highway driving.

Finally, we provide additional qualitative examples of safety-critical scenarios gener-

ated by KING.

6 https://leaderboard.carla.org/scenarios/

https://leaderboard.carla.org/scenarios/

Generating Safety-Critical Driving Scenarios via Kinematics Gradients 9

Method Hyperparameter Sweep Range N = 1 N = 2 N = 4

Random Search Perturbation Bounds [0.01, 0.3] 0.2 0.2 0.2

Bayesian Optimization Exploration Kappa κ [0.1, 10] 5 10 0.1
Initial Random Points [1, 50] 20 20 20

SimBA [6] Perturbation Bounds [0.001, 0.2] 0.05 0.05 0.05

CMA-ES [7] Initial Standard Deviation σ [0.1, 0.4] 0.2 0.1 0.4

Table 3: Hyperparameter choices for BBO baselines.

5.1 Optimization Hyperparameters

For gradient-based generation via KING, we use the Adam optimizer with a learning

rate of 5e− 3. We use a decay rate of β1 = 0.8 for all traffic densities, and β2 = 0.999
for a traffic density of N = 1 and β2 = 0.99 for N ∈ {2, 4}. We also adopt this

to optimize the scenario parameters via the numerical gradients obtained from Bandit-

TD. For the experiment involving both the direct and the indirect path (cf. Tab 2 of

the main paper), we observed exploding gradients. To combat this, we clip the norm

of the gradients through the rasterized BEV, where we found a maximum norm of

5e − 2 to work well. An overview of the remaining hyperparameters can be found in

Tab. 3. For Random Search and SimBA [6], we tune the bounds of the interval from

which perturbations can be sampled. For Bayesian Optimization, we search for both

the optimal exploration value κ and the number of initial random points. Finally, for

CMA-ES [7], we select an optimal initial standard deviation σ.

5.2 Second-Order Optimizers

Relative to the standards of modern deep learning, the parameter space is low-dimensional

and the computational graph is simple for KING. This suggests that utilizing second-

order gradients might be feasible for this problem, which we investigate in this exper-

iment. On the example of Newton’s method, we find that computing the exact Hessian

with PyTorch’s autograd engine, even for our low-dimensional search space, leads to 1-

2 orders of magnitude slower runtime compared to Adam (see Table 4). This is a result

of the additional backward passes needed to compute second-order derivatives. This

overhead does not permit a single optimization step within our computational budget

for the 4 agents setting. We also investigated quasi-Newton methods (L-BFGS), but did

not observe any benefits over Adam (Table 5). This is due to two factors: the runtime

penalty of requiring multiple function evaluations, each of which is a complete unroll

of the simulation (we found a maximum of five to work best), and a susceptibility to

local minima.

5.3 Cost Ablation Study

We study the influence of the regularization terms in our objective in Tab 6. While

the out-of-bounds term φadv
dev (S) leads to a drop in performance when considering the

regularization terms in isolation due to its computational expense, it is evident that

10 N. Hanselmann et al.

Method 1 Agent 2 Agents 4 Agents

KING, 1st-order (cf. Tab. 2 of main paper) 1.78 1.88 2.03

KING, 2nd-order 81.31 156.71 316.89

Table 4: Timings for second-order gradients in s/it.

Optimizer CR t50% s/it

Adam 78.75 6.40 2.03

L-BFGS 65.00 16.79 9.31

Table 5: Results on KING using L-BGFS in the 4 agent setting.

φ
ego
col φadv

dev φadv
col CR ↑ t50% ↓ s/it ↓

✓ - ✓ 66.25 6.94 1.59

✓ ✓ - 57.50 10.21 2.03

✓ - - 60.00 7.08 1.59

✓ ✓ ✓ 78.75 6.40 2.03

Table 6: Cost ablation. We show the performance for different regularization combi-

nations for the 4 agent setting. Both regularization terms in combination with our main

objective results in the best performance.

combining both terms is crucial to achieve good results. Note that the losses for ego-

adversarial and adversarial-adversarial collisions are computed in parallel as a batched

operation, resulting in the same runtime when deactivating one of them.

5.4 Convergence

Bandit-TD and KING with both the direct and indirect gradient path are disadvantaged

by their higher computational expense when imposing a fixed wall clock budget. We

are interested in assessing their performance in the absence of this. For this, we show

both the overall CR over GPU seconds for a less strict budget and the overall CR over

optimization iterations (Fig. 3). As can be seen, given a high enough budget, Bandit-

TD can eventually partially close the gap to other BBO methods. For KING with both

paths, we observe that given the same number of optimization iterations, it achieves

similar results compared to the indirect path only. Note that the results for KING with

both paths stem from a preliminary experiment and thus perform slightly worse than

the final version reported in Tab. 2 of the main paper.

5.5 Additional Baseline: Pose Jittering

As both AIM-BEV and TransFuser do not take temporal inputs, simply jittering agent

poses for the single input frame is a reasonable simple baseline. However, even though

they do not require temporally consistent inputs, temporally consistent rollouts from the

jittered frame need to be possible in order to obtain ground-truth future waypoints from

Generating Safety-Critical Driving Scenarios via Kinematics Gradients 11

0 200 400 600 800 1000
GPUsec

0.0

0.2

0.4

0.6

0.8
CR

direct + indirect
KING (ours)
Bandit_TD

0 50 100 150 200 250
Iter

0.0

0.2

0.4

0.6

0.8

CR

direct + indirect
KING (ours)
Bandit_TD

Fig. 3: Results at higher compute budget. We compare KING to KING with both the

direct and indirect path, and to Bandit-TD for a larger compute budget (left) and in

terms of optimization iterations (right).

the expert. To gauge the effectiveness of jittering the pose to find safety-critical pertur-

bations, while maintaining temporally consistent rollouts, we construct the following

experiment: We first find the time instant and adversarial agent closest to causing a

collision in the initial scenario. We then jitter the pose of that agent in a ∆t seconds

earlier timestep by sampling perturbations uniformly from a pre-defined interval, while

making sure the perturbations do not trigger our termination conditions. We then con-

tinue rolling out the scenario from the jittered state for 2 seconds to be able to collect

ground-truth waypoints. The results for different ∆t and perturbation magnitudes are

shown in Table 7. In addition to being applicable to only single frame agents, we ob-

serve this approach to be much less effective than KING at generating safety-critical

data. It struggles to find plausible perturbations, resulting in a significantly reduced CR.

Furthermore, we observe that among the obtained perturbations a much smaller per-

centage are solvable by the rule-based expert. In conjunction, this results in an overall

significantly smaller volume of usable safety-critical data.

Method Interval ∆t CR t50% s/it Solvable

Jitter

±1m / ±15° -1s 42.50 - 1.10 64.71%

±1m / ±15° -2s 43.75 - 1.10 65.72%

±2m / ±15° -1s 61.25 9.04 1.10 53.06%

±2m / ±15° -2s 55.00 7.84 1.10 47.73%

KING (Ours) – – 78.75 6.40 2.03 76.25%

Table 7: Pose jittering in the 4 agent setting for AIM-BEV.

5.6 Evaluation on the Longest6 Benchmark

We also evaluate AIM-BEV before and after fine-tuning on Dcrit ∪ Dreg on the

Longest6 benchmark [4]. It contains long routes, which in addition to urban settings,

12 N. Hanselmann et al.

also involve rural and highway driving similar to the NEAT validation benchmark [3],

but at the maximum traffic density allowed by the CARLA simulator. Here, both the

regular and fine-tuned version of AIM-BEV achieve driving scores of 35.38±1.55 and

38.84±2.96 respectively. Because this benchmark places additional emphasis on other

aspects of the driving task not specifically targeted by KING, such as safe lane-changing

and -keeping on multilane roads over extended distances, we instead choose the dense

urban intersection setting in Town10 for evaluation in the main paper.

5.7 Additional Qualitative Examples and Failure Cases

Here, we show additional qualitative examples of safety-critical scenarios for both

AIM-BEV (Fig. 4-9) and TransFuser (Fig. 10). As can be seen, they cover diverse sit-

uations and highlight the brittleness of current imitation learning (IL)-based driving

agents.

Finally, we discuss failure cases of KING and possible strategies for mitigation. As

we aim to cover the long tail of the distribution of traffic scenarios, we impose few con-

straints on the trajectories of other traffic participants. The formulation of the objective

C(S) in Eq. (2) of the main paper only penalizes deviations from drivable areas, but

does not enforce any further restrictions within those areas. While this allows flexibil-

ity in the discovery of diverse safety-critical scenarios, in some cases, the trajectories

of background agents that do not interact with the ego agent may be perturbed, causing

multiple vehicles to leave the trajectory they followed at initialization. This is illustrated

in Fig. 11. Nonetheless, as can be seen from the experiments in Sec. 4.4 of the main pa-

per, these scenarios provide useful training data that lead to improved robustness.

These non-interactive perturbations could be mitigated by adding additional regu-

larizing terms to the overall objective, e.g. a penalty for deviation from an assigned lane

center. However, using a more restrictive objective may lead to less safety-critical data

overall and reduced coverage of out-of-distribution situations.

Generating Safety-Critical Driving Scenarios via Kinematics Gradients 13

Fig. 4: AIM-BEV - Cluster (a). The driving agent collides with a slow moving ve-

hicle while taking a turn (left). Additionally, it often struggles to handle lane-change

scenarios safely (right). This is also evident in cluster (c).

14 N. Hanselmann et al.

Fig. 5: AIM-BEV - Cluster (b). The driving agent understeers when taking a turn,

colliding with another vehicle that has been slightly displaced from its lane center by the

safety-critical perturbation (left). Background traffic in CARLA usually closely adheres

to the lane centers, making penalization of bad lane following less likely. On the right

hand side, overconfident behavior in an unprotected intersection leads to collision.

Fig. 6: AIM-BEV - Cluster (c). The driving agent fails to handle merges and lane-

changes in a roundabout safely. These maneuvers are especially problematic due to

AIM-BEV’s forward facing field of view. This shortcoming is not as apparent in regular

CARLA traffic, highlighting KING’s ability to draw attention to possible failure modes.

Generating Safety-Critical Driving Scenarios via Kinematics Gradients 15

Fig. 7: AIM-BEV - Cluster (d). This cluster primarily features collisions at the side of

the driving agent. As depicted, this type of collision can arise from insufficient safety

distance while turning (left) or failure to yield for another vehicle taking an aggressive

turn (right).

16 N. Hanselmann et al.

Fig. 8: AIM-BEV - Cluster (e). The driving agent fails to brake when traffic in the

intersection does not yield. As a result the agent collides into the side of another vehicle.

Generating Safety-Critical Driving Scenarios via Kinematics Gradients 17

Fig. 9: AIM-BEV - Cluster (f). The examples shown here depict similar situations as

in cluster (e). The ego agent fails to correctly assess if it is safe to continue on, resulting

in other traffic colliding into its side.

18 N. Hanselmann et al.

Fig. 10: Additional Qualitative Examples for TransFuser. We show additional exam-

ples of safety-critical perturbations for TransFuser. It shares many of the failure modes

of AIM-BEV, such as difficulty handling merges (top), unsafe behaviour when moving

through intersections (middle) or the reliance on other vehicles strictly adhering to their

lane centers and stopping points at intersections (bottom). The common failure modes

of AIM-BEV and TransFuser suggest that these problems indeed stem from insufficient

representation in the regular traffic data obtained from CARLA.

Generating Safety-Critical Driving Scenarios via Kinematics Gradients 19

Fig. 11: KING failure cases. As we aim to cover the long tail of the distribution of

traffic scenarios, we impose few constraints on the trajectories of other traffic partici-

pants. This can lead to unlikely behaviour in the background actors by definition, such

as moving into opposing lanes (left) or performing seemingly unnecessary lane changes

(right).

20 N. Hanselmann et al.

References

1. Chen, D., Koltun, V., Krähenbühl, P.: Learning to drive from a world on rails. In: Proc. of the

IEEE International Conf. on Computer Vision (ICCV) (2021) 5

2. Chen, D., Zhou, B., Koltun, V., Krähenbühl, P.: Learning by cheating. In: Proc. Conf. on

Robot Learning (CoRL) (2019) 2, 3, 4

3. Chitta, K., Prakash, A., Geiger, A.: Neat: Neural attention fields for end-to-end autonomous

driving. In: Proc. of the IEEE International Conf. on Computer Vision (ICCV) (2021) 1, 2,

4, 12

4. Chitta, K., Prakash, A., Jaeger, B., Yu, Z., Renz, K., Geiger, A.: Transfuser: Imitation with

transformer-based sensor fusion for autonomous driving. In: arXiv.org (2022) 11

5. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: An open urban driv-

ing simulator. In: Proc. Conf. on Robot Learning (CoRL) (2017) 1

6. Guo, C., Gardner, J.R., You, Y., Wilson, A.G., Weinberger, K.Q.: Simple black-box adver-

sarial attacks. In: Proc. of the International Conf. on Machine learning (ICML) (2019) 9

7. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strate-

gies. Evolutionary Computation 9(2), 159–195 (2001) 9

8. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang,

R., Vasudevan, V., Le, Q.V., Adam, H.: Searching for mobilenetv3. In: Proc. of the IEEE

International Conf. on Computer Vision (ICCV) (2019) 1

9. Prakash, A., Behl, A., Ohn-Bar, E., Chitta, K., Geiger, A.: Exploring data aggregation in pol-

icy learning for vision-based urban autonomous driving. In: Proc. IEEE Conf. on Computer

Vision and Pattern Recognition (CVPR) (2020) 2

10. Prakash, A., Chitta, K., Geiger, A.: Multi-modal fusion transformer for end-to-end au-

tonomous driving. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR) (2021) 1

