

Deep Discrete Flow Fatma Güney¹, Andreas Geiger^{1,2}

¹Autonomous Vision Group, MPI for Intelligent Systems, Tübingen ²Computer Vision and Geometry Group, ETH Zurich

Discrete Flow

Siamese Networks

Feature Learning Using Dilated Convolutions

 $\Delta_1(s_-, s_+) = \Delta_2(s_-, s_+) = \max(0, m + s_- - s_+)$ $\Delta_3 = \left[\|\mathbf{f} - \hat{\mathbf{f}}\|_2 > 3 \operatorname{Px} \right]$

 $\mathcal{K}_{\mathbf{p},\mathbf{q}}$

.

 $\mathbf{p}\sim\mathbf{q}$

Truncated Penalty

Dilated Convolution with dilations[i]

if i < #dilations then</pre>

Batch Normalization, ReLU

Sub-sampling with dilations[1] for i = 1 to #dilations do if i == #dilations then stride=1 else

> stride = dilations[i+1]
> dilations[i] Convolution with stride if i < #dilations then</pre>

Results and Remaining Problems

Arch.	Layers	Feature Maps					
1	5	$64 \ 64 \ 64 \ 64 \ 64$	11				
2	7	$64 \ 64 \ 64 \ 64 \ 64 \ 64 \ 64$	15				
3	7	64 64 64 128 128 128 64	15				
4	9	64 64 64 64 64 64 64 64 64	19				
5	9	$32 \ 32 \ 32 \ 64 \ \ 64 \ \ 64 \ \ 128 \ 128 \ 128$	19				

Arch.	Out-Noc	Arch.	Out-Noc			
1	24.61~%	1	34.60~%	DF [11] Optimize	ed	
2	20.54~%	2	29.71~%	MPI Sintel 29.97% 19.16 %)	
3	20.69~%	3	29.89~%	KITTI 34.29 % 22.59 %)	
4	19.34~%	4	30.37~%			
5	18.31~%	5	27.36~%			
(a) MPI Sintel		(b)	KITTI	(c) Daisy	(c) Daisy	

RFS
+60
+28
+12
+56
+48
+16
+24
+28
+48

MPI Sintel

KITTI

Arch.	Out-Noc	Arch.	Out-Noc	Arch.	Out-Noc	Arch.	Out-Noc	
1	30.16~%	11	24.28~%	1	16.32~%	11	11.92~%	
2	25.82~%	12	20.28~%	2	14.51~%	12	12.19~%	
3	24.67~%	13	21.39~%	3	15.65~%	13	14.32~%	
4	29.40~%	14	25.29~%	4	15.27~%	14	12.53~%	
5	28.54~%	15	24.89~%	5	15.66~%	15	13.34~%	
6	25.11~%	16	21.13~%	6	15.10~%	16	13.59~%	
7	26.78~%	17	22.93~%	7	15.68~%	17	13.69~%	
8	31.63~%	18	24.68~%	8	15.50~%	18	13.01~%	
9	40.12~%	19	34.43~%	9	20.04~%	19	14.55~%	
(b) KITTI					(a) MPI Sintel			

M. Menze, C. Heipke, A. Geiger. Discrete Optimization for Optical Flow, GCPR 2015.

Stereo Matching by Training a Convolutional Neural Network to Compare Image Patches, JMLR 2016. J. Zbontar, Y. LeCun.

fatma.guney@tue.mpg.de