
Deep Discrete Flow
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Abstract. Motivated by the success of deep learning techniques in match-
ing problems, we present a method for learning context-aware features
for solving optical flow using discrete optimization. Towards this goal,
we present an efficient way of training a context network with a large re-
ceptive field size on top of a local network using dilated convolutions on
patches. We perform feature matching by comparing each pixel in the
reference image to every pixel in the target image, utilizing fast GPU
matrix multiplication. The matching cost volume from the network’s
output forms the data term for discrete MAP inference in a pairwise
Markov random field. We provide an extensive empirical investigation of
network architectures and model parameters. At the time of submission,
our method ranks second on the challenging MPI Sintel test set.

1 Introduction

Despite large progress, optical flow is still an unsolved problem in computer
vision. Challenges provided by autonomous driving applications [1–3] or cur-
rent benchmarks like KITTI [4, 5] and MPI Sintel [6] include large motions,
appearance changes, as well as uniform image regions. While the predominant
paradigm for estimating optical flow is based on continuous optimization [7–9]
with coarse-to-fine warping [10], recent approaches leverage discrete optimization
strategies [11–14] in order to overcome local minima and to gain robustness.

While these approaches have shown promising results, their performance still
falls considerably behind the state-of-the-art in stereo matching [15, 16]. While
2D flow estimation is an inherently more difficult problem than 1D matching
along the epipolar line, most existing works on discrete optical flow optimization
exploit hand-crafted features for calculating the matching costs. In contrast, the
most successful approaches in stereo matching exploit a combination of learned
local feature representations and global discrete optimization [16–18].

In this paper, we investigate the utility of feature learning for discrete optical
flow, see Fig. 1 for an illustration. In particular, we modify the “DiscreteFlow”
framework of Menze et al. [11] by replacing their hand-crafted descriptors with
learned feature representations. In particular, we investigate two types of net-
works: a local network with a small receptive field consisting of 3x3 convolutions
followed by non-linearities as well as a subsequent context network that ag-
gregates information over larger image regions using dilated convolutions [19].
As näıve patch-based training with dilated convolutions is computationally very
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Fig. 1: Deep Discrete Flow. The input images are processed in forward or-
der (top stream) and backward order (bottom stream) using local and context
Siamese convolutional neural networks, yielding per-pixel descriptors. We then
match points on a regular grid in the reference image to every pixel in the other
image, yielding a large tensor of forward matching costs (F1/F2) and backward
matching costs (B1/B2). Matching costs are smoothed using discrete MAP infer-
ence in a pairwise Markov random field. Finally, a forward-backward consistency
check removes outliers and sub-pixel accuracy is attained using the EpicFlow in-
terpolator [20]. We train the model in a piece-wise fashion via the loss functions.

expensive, we propose an efficient implementation based on regular strided con-
volutions. For efficient learning of the whole pipeline, we specify auxiliary loss
functions akin to [16] and train the model in a piece-wise fashion.

We provide a detailed empirical analysis of the impact of each of the compo-
nents of the pipeline. More specifically, we compare a large number of different
local and context architectures with respect to each other and to traditional
hand-crafted features. Further, we compare the results of the best-performing
systems after discrete optimization and sub-pixel interpolation, and qualitatively
visualize the results with their corresponding error images at every stage.

2 Related Work

In this section, we survey the most important related works. We first provide
an overview of related optical flow approaches with a particular focus on recent
discrete and mixed discrete/continuous approaches that attain state-of-the-art
performance on current benchmarks. In the second part, we review current fea-
ture learning approaches for correspondence estimation.

Optical Flow: The classical formulation for estimating optical flow [7, 9] in-
volves solving a continuous variational optimization problem. To cope with dis-
placements larger than a few pixels, coarse-to-fine estimation heuristics are com-
monly employed [10, 21–27]. Unfortunately, coarse-to-fine schemes often lead to
blurred object boundaries on current benchmarks [4,6,28] due to their suscepti-
bility to local minima in the energy function.
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Thus, discrete formulations have recently gained popularity. One line of work
incorporates pre-estimated sparse feature correspondences into the optimization
process [20,29–32]. To allow for more robust estimates, a second line of work di-
rectly formulates optical flow estimation as a discrete optimization problem [33],
e.g., in terms of MAP inference in a Markov random field under appropriate flow
priors. These approaches can be further categorized into epipolar constrained
methods [34, 35], methods which estimate the most likely flow field based on a
small set of dense flow field proposals [13,36–38] and methods that estimate flow
directly at the pixel level [11, 12,14,39,40].

More specifically, Menze et al. [11] establish a sparse set of 500 flow pro-
posals by matching Daisy descriptors [41] using fast approximate nearest neigh-
bor techniques. Exploiting the truncation property of their pairwise potentials,
they efficiently approximate the MAP solution using belief propagation. Chen
et al. [12] extend the efficient min-convolution algorithm to 2D flow fields and
optimize a discretized version of the classical variational objective using normal-
ized cross-correlation as data term. For sub-pixel accuracy and to extrapolate
into occluded regions, both approaches exploit an additional extrapolation and
variational post-processing step [20].

While all aforementioned methods focus on the optimization of an energy
function based on hand-crafted local feature descriptors, in this work, we inves-
tigate the benefits of learning feature representations for discrete optical flow
estimation. In particular, we leverage the framework of [11] and replace their
features using non-local pixel representations trained for predicting optical flow.

Feature Learning for Correspondence Estimation: Motivated by the
success of deep learning in image classification and object recognition [42], a
number of papers have tackled the problem of correspondence estimation by
learning deep convolutional representations.

Recently, Fischer, Mayer et al. [43, 44] have demonstrated dense end-to-end
flow prediction using a deep convolutional neural network which takes as input
two images and directly outputs a flow map. While impressive performance has
been demonstrated, the method does not attain state-of-the-art performance
on current leaderboards. One difficulty is the model’s high capacity and the
associated large amount of data required to train it.

An alternative approach, which we follow in this paper, is to learn per-pixel
feature representations using Siamese networks which can be fed into a winner-
takes-all selection scheme or - as in our case - into a discrete optimization algo-
rithm. While the learned representations tend to be more local, they are also less
prone to overfitting. Importantly, even small datasets such as KITTI [4] or MPI
Sintel [6] provide millions of training points as every pixel provides a training
example. This is in contrast to dense approaches [43] where hundreds of thou-
sands images with ground truth flow maps are required for obtaining reliable
representations.

A number of approaches [45, 46] aim for descriptor learning for sparse fea-
ture matching. Due to the relatively small number of interest points per image,
metric learning networks can be exploited for this task. However, sparse feature
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matching approaches do not benefit from spatial smoothness priors which we
incorporate into dense correspondence estimation via discrete optimization.

For the problem of binocular stereo matching, Zbontar et al. [16], Chen
et al. [17] and Luo et al. [18] have demonstrated state-of-the-art performance
by combining deep feature representations with discrete optimization. In simi-
lar spirit, Zagoruyko and Komodakis [47] learn Siamese matching networks for
wide-baseline stereo matching. Motivated by this success, here we leverage fea-
ture learning and discrete optimization to tackle the more challenging problem
of unconstrained 2D flow estimation.

Very recently, Bai et al. [48] have extended the approach of [18] to segment-
wise epipolar flow where motion stereo has been estimated separately for each
independently moving vehicle in the KITTI dataset [4]. In contrast, in this paper
we neither assume rigidly moving objects nor the availability of highly accurate
semantic instances. Thus, our method is also applicable to more general scenes
as occuring, e.g., in the MPI Sintel optical flow challenge [6].

In [49], Siamese networks for optical flow computation have been combined
with winner-takes-all matching and smoothing of the resulting correspondence
field. While they use patch-wise max pooling operations to increase the size of
the receptive field, we exploit computationally efficient dilated convolutions for
this purpose. Furthermore, we investigate the usefulness of spatial priors and
present a detailed empirical analysis of network architectures and settings.

3 Deep Discrete Flow

Menze et al. [11] formulate optical flow estimation as discrete MAP inference in
a Markov random field with pairwise smoothness priors, followed by sub-pixel in-
terpolation [20]. We follow their framework, but replace their hand-crafted Daisy
features [41] with learned local and non-local representations to investigate the
effect of feature learning on this framework as illustrated in Fig. 1. In Section 3.1,
we first describe our local and context network architecture and provide details
about training and inference. For completeness, we briefly review the discrete
optimization framework [11] in Section 3.2.

3.1 Feature Learning using Dilated Convolutions

The classical approach to establish correspondences between two images is to
search for the most similar patch in the target image, given a particular patch in
the reference image, assuming that corresponding regions appear more similar
than non-corresponding regions. Popular similarity measures for optical flow
include brightness and gradient constancy [24], normalized cross-correlation [12],
SIFT [30], Daisy [11] and hierarchical histograms of oriented gradients [32].

Following recent trends in computer vision [16,18,45–49], we use deep convo-
lutional neural networks in order to learn better representations tailored for the
task. In particular, we use Siamese architectures to process a pair of patches and
produce a matching score as an indication of their level of similarity. In addition
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to traditional local 3× 3 convolutional layers, we integrate context information
by adopting dilated convolutions [18], which have recently demonstrated great
performance in semantic segmentation. Compared to increasing the receptive
field size using max-pooling operations, dilated convolutions have the advantage
of not decreasing the image resolution, thus allowing for efficient dense infer-
ence with reuse of computation. In addition, patch-based dilated convolution
networks can be efficiently trained as we demonstrate in this section.

For efficiency and due to the difficulty of training CNN-CRF models jointly,
we train our model in a piece-wise fashion using auxiliary loss functions. That
is, as illustrated in Fig. 1, we first train the local architecture using ∆1, followed
by the context architecture using ∆2, and finally the CRF as well as hyperpa-
rameters of the post-processing stage using ∆3. We also tried joint training on
top of the pre-trained local and context networks, but observed no significant
improvements. This agrees with the observations reported in [19].

Network Architecture: We use a Siamese network architecture composed of
two shared-weight branches, one for the reference patch and one for the target
patch. As we are also interested in calculating the backward flow, we have an
additional backward Siamese network which shares weights with the forward
network as illustrated in Fig. 1. Each of the branches consists of several building
blocks where each block is defined as convolution, Batch Normalization, and
ReLU for non-linearity except the last one which contains only a convolutional
layer. The unit-length normalized output of the last layer is used as a feature
vector of the patch. The similarity s between image pixels is calculated as the dot
product between the respective feature vectors. As opposed to current trends in
feature learning for stereo matching [16], we do not exploit fully connected layers
for score computation as the large set of potential correspondences renders this
computationally intractable (i.e., one network evaluation for each pixel pair).

Local Network: Our local network leverages 3 × 3 convolution kernels. The
hyper-parameters of the network are the number of layers and the number of
feature maps in each layer as specified in our experimental evaluation. We call
this network local, because the size of each feature’s receptive field is relatively
small (i.e., 2n+ 1 where n denotes the number of blocks).

Context Network: Deeper architectures with more convolutional layers in-
crease the receptive field size, possibly leading to improved performance. How-
ever, complex high capacity models are also hard to train and require a lot of
data. Our context network increases the size of the receptive field with only
modest increase in complexity by exploiting dilated convolutions [19]. In con-
trast to normal convolutions, dilated convolutions read the input feature maps at
locations with a spatial stride larger than one. Thus, they take more contextual
information into account while not increasing the number of parameters with re-
spect to regular (i.e., 1-dilated) convolutions. In contrast to pooling operations,
spatial information is not lost.
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(a) Näıve (b) Proposed

Fig. 2: Dilated Convolution Implementations This figure shows the dilated
convolution centers on a patch for the context network 2 and 12 with dilation
factors 2, 4 and 8 as specified in Tab. 3. The center of the patch is marked
with a red star and each color corresponds to a convolution center for a specific
dilation factor, red for 4 dilations (shown in green), green for 2 dilations (shown
in blue) and yellow for both. In other words, red dots show the convolution
centers (outputs) for the 4-dilated convolutions which read their input values at
the green points. Note that yellow points are only visible in (a) as red and green
dots do not overlap in (b) due to the sparsity exploited by our approach.

Training: We consecutively train the local and the context network using the
same auxiliary losses ∆1 = ∆2. As loss function, we leverage the hinge loss func-
tion which is defined for a positive-negative pair to penalize when the similarity
score of the positive is not greater than the similarity score of the negative at
least by margin: ∆1(s−, s+) = ∆2(s−, s+) = max(0,m+ s− − s+). Here s− de-
notes the the score of a wrong correspondence, s+ denotes the score of a correct
correspondence and m is the margin. We extract positive and negative patch
pairs around points with valid ground-truth. Each positive is defined by the
ground-truth flow with a perturbation of up to 1 pixel for robustness of the re-
sulting feature representation. Unfortunately, the candidate set for the negative
is the whole target image except the ground-truth matching point and thus in-
tractable. Following [16], we sample negatives in a small circular region around
each positive, keeping a minimum distance from the ground truth location. In
particular, we use a threshold of 3 pixels for the minimum distance and a thresh-
old of 6 pixels for the maximum distance to the ground truth flow. This ensures
that the training set is composed of patches which are non-trivial to separate.

As illustrated in Fig. 2, a näıve implementation of dilated convolutions for
training with patches would result in unnecessary computations. As we only need
to forward/backward propagate information to/from the center of the patch, we
can back-trace the source locations through the dilation hierarchy. Thus, we can
implement the dilated convolution operation with sub-sampling and strides as a
regular convolution as shown in Fig. 2.

Furthermore, we are able to exploit the fact that dilated convolutions on
patches can be expressed as regular convolutions with strides as illustrated by
our pseudo-code in Fig. 3. Our experiments show that this reduces computation
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for i = 1 to #dilations do
DilatedConvolution with dilations[i]
if i < #dilations then

Batch Normalization, ReLU

Sub-sampling with dilations[1]
for i = 1 to #dilations do

if i == #dilations then
stride = 1

else
stride = dilations[i+1]

dilations[i]

Convolution with stride
if i < #dilations then

Batch Normalization, ReLU

Fig. 3: Fast Patch-based Training of Dilated Convolutional Networks.
Left: A näıve implementation requires dilated convolution operations which are
computationally less efficient than highly optimized cudnn convolutions without
dilations. Right: The behavior of dilated convolutions can be replicated with
regular convolutions by first sub-sampling the feature map and then applying 1-
dilated convolutions with stride. Here dilations is denoting an array that specifies
the dilation factor of the dilated convolution in each convolutional layer.

time as state-of-the-art implementations of regular convolutions (using cudnn)
are significantly faster compared to dilated ones. This makes training with patch-
based dilated convolutional networks much faster. At test time, we reuse the
computations by dense convolutions over the image domain in traditional man-
ner.

Inference: Differently from training with image patches, at test time the out-
puts of both branches of the network are computed for each point only once in
a single forward pass of the full image, thereby reusing computations. The score
computation between multiple reference points and every point on the target
image can be performed efficiently as a single big matrix multiplication on the
GPU. The first matrix is constructed by stacking reference feature descriptors
as rows and the second matrix is built by stacking the target feature descriptors
as columns. This waives the need for approximate search strategies as required
in CPU-only model [11]. In our implementation, we handle the large GPU mem-
ory requirements by dividing the first matrix into individual chunks, balancing
memory usage and computation time. We are able to further cut down inference
time, as the post-processing stage which we use requires only every fourth pixel
to be matched.

3.2 Discrete Optimization and Postprocessing

We follow the Discrete Flow approach [11] to aggregate information while re-
specting uncertainty in the matching. More specifically, we select the 300 best
feature match hypotheses for each pixel on a regular 4-spaced grid, subject to
mild non-maximum-suppression constraints (threshold 2 pixels), as input to a
4-connected MRF with pairwise smoothness constraints [11]. We find an ap-
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proximate MAP solution using max-product belief propagation and the efficient
robust pairwise potentials of [11].

As some pixels are occluded (i.e., not matchable) and due to the occurrence
of outliers, we post-process our results using a forward-backward consistency
check after discretely optimizing the forward and the backward flow. We further
remove unlikely small segments from the solution using connected-component
analysis. The resulting semi-dense flow map is fed into Epic Flow [20] for further
refinement to sub-pixel accuracy. We optimize the parameters of the MRF and
the post-processing stage using block coordinate descent with a 0/1 outlier loss

∆3 = [‖f − f̂‖2 > 3 Px], averaged over all unoccluded pixels. Here, f is the

ground truth flow vector, f̂ denotes its prediction and [·] is the Iverson bracket.

4 Experimental Results

We evaluate the performance of different local and context architectures, as
well as the whole Deep Discrete Flow pipeline on MPI Sintel [6], KITTI 2012
[4] and KITTI 2015 [5]. Towards this goal, we trained separate networks for
Sintel and KITTI, but merged the training sets of KITTI 2012 and KITTI 2015.
For our internal evaluations, we follow the KITTI and MPI Sintel protocols:
we split the training set into a training and a validation set using every fifth
image for validation and the remaining images for training. While the images in
MPI Sintel are temporally correlated, we found that Siamese networks without
fully-connected layers do not suffer from over-fitting (i.e., the training and the
validation errors behave similarly).

Note that the MPI Sintel and KITTI datasets leverage different evaluation
metrics, average endpoint error (EPE) and outlier ratio, respectively. We follow
each dataset’s criteria for the final results, but report 3 pixel outlier ratios in all
non-occluded regions for comparing the raw output of different network archi-
tectures, since the primary goal of our learned patch representations is to reduce
the number of outliers.

Before passing them to the network, we normalize each image to zero mean
and unit variance. Following common wisdom [50], we set the kernel size to 3
and use stride 1 convolutions unless otherwise specified. We start the training
with standard uniform initialization in Torch and monitor the average outlier
ratio in non-occluded regions on a subset of the validation set to stop training.
We use stochastic gradient descent with momentum 0.9 for optimization, a batch
size of 128, a hinge loss margin of 0.2 and a learning rate of 0.002 without any
decay. We observe no over-fitting for neither our local nor our context networks.
A detailed run-time analysis is provided in the supplementary material.

4.1 Baseline for Feature Matching

We leverage the winner-takes-all solution of Daisy [41] feature matching as pur-
sued in Discrete Flow [11] as local baseline for our learned feature representa-
tions. For a fair comparison, we optimized the hyper-parameters of the Daisy
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Arch. Layers Feature Maps RFS

1 5 64 64 64 64 64 11
2 7 64 64 64 64 64 64 64 15
3 7 64 64 64 128 128 128 64 15
4 9 64 64 64 64 64 64 64 64 64 19
5 9 32 32 32 64 64 64 128 128 128 19

Table 1: Local Architectures. RFS denotes the receptive field size in pixels.

Arch. Out-Noc

1 24.61 %
2 20.54 %
3 20.69 %
4 19.34 %
5 18.31 %

(a) MPI Sintel

Arch. Out-Noc

1 34.60 %
2 29.71 %
3 29.89 %
4 30.37 %
5 27.36 %

(b) KITTI

DF [11] Optimized

MPI Sintel 29.97 % 19.16 %
KITTI 34.29 % 22.59 %

(c) Daisy

Table 2: Comparison of Local Architectures. Fig. (a)+(b) show the perfor-
mance of different local architectures using winner-takes-all on the validation sets
of MPI Sintel and KITTI, respectively. As baseline, Fig. (c) shows the perfor-
mance of matching Daisy features on both datasets using the parameter setting
of [11] in the first column and our re-optimized parameters in the second column.
All numbers are percentages of non-occluded bad pixels as defined by the KITTI
evaluation protocol.

feature descriptor [41] on a subset of the MPI Sintel training set using block
coordinate descent to minimize the ratio of outliers. The results are shown in
Table 2c. More details and the resulting combinations are provided in the supple-
mentary material. Note that the optimized Daisy descriptor has 264 dimensions
and a receptive field of approximately 40×40 pixels while Discrete flow [11] uses
Daisy descriptors of length 68 with a receptive field of approximately 20 × 20
pixels. All numbers correspond to the WTA solution calculated over the full
target image using exact matching.

4.2 Comparison of Local Architectures

We first compare five different local network architectures, including some of
the architectures proposed in the literature for feature matching. Our starting
point is the simple 5-layer architecture of [16] (architecture 1). We create addi-
tional architectures by changing the number of layers and feature maps in each
layer as shown in Table 1. Architecture 5 corresponds to the recently proposed
9 layer network for stereo and flow in [18, 48]. Adding more layers changes net-
work’s receptive field size and has a clear effect on the performance as shown in
Table 2. However, compared to our local architectures, the Daisy descriptor is
fairly competitive. We attribute this to its larger receptive field size. In the next
section, we explore context architectures to increase the receptive field size of
our learned representations.
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Arch. Feature Maps Arch. Feature Maps Dilations RFS

1

all 64

11 64 128 256 512 2 4 8 16 +60
2 12 64 128 256 2 4 8 +28
3 13 64 128 2 4 +12
4 14 64 128 256 4 8 16 +56
5 15 64 128 8 16 +48
6 16 128 128 4 4 +16
7 17 64 64 128 128 2 2 4 4 +24
8 18 64 64 128 128 256 256 2 2 4 4 8 8 +28
9 19 128 128 256 256 8 8 16 16 +48

Table 3: Context Architectures. This table shows different context architec-
tures and their receptive field sizes (RFS). We list the architectures that share
the same set of dilations (and consequently RFS) in one row. Architectures in
the same row differ solely by the number of feature maps in each layer. Receptive
field sizes are added (+) to the RFS size of the respective local architecture.

Arch. Out-Noc

1 16.32 %
2 14.51 %
3 15.65 %
4 15.27 %
5 15.66 %
6 15.10 %
7 15.68 %
8 15.50 %
9 20.04 %

Arch. Out-Noc

11 11.92 %
12 12.19 %
13 14.32 %
14 12.53 %
15 13.34 %
16 13.59 %
17 13.69 %
18 13.01 %
19 14.55 %

(a) MPI Sintel

Arch. Out-Noc

1 30.16 %
2 25.82 %
3 24.67 %
4 29.40 %
5 28.54 %
6 25.11 %
7 26.78 %
8 31.63 %
9 40.12 %

Arch. Out-Noc

11 24.28 %
12 20.28 %
13 21.39 %
14 25.29 %
15 24.89 %
16 21.13 %
17 22.93 %
18 24.68 %
19 34.43 %

(b) KITTI

Table 4: Comparison of Context Architectures. This table shows the per-
formance of different context architectures on top of local architecture 1 on the
validation sets of MPI Sintel and KITTI. “Out-Noc” is defined as in Table 2.

4.3 Comparison of Context Architectures

Towards this goal, we fix the local architecture to the simplest one (architecture
1), and train different context architectures on top of this network. In a later
section, we also show the performance of the best context architecture trained on
top of the best local architecture. We create two types of context architectures,
one by fixing the number of feature maps to 64, and one by changing the number
of feature maps in each layer as summarized in Table 3.

Again, we compare the winner-takes-all performance in Table 4. We first
note that the outlier ratio is significantly lower than the outlier ratio of the local
architectures and the Daisy baseline shown in Table 2. Secondly, architectures
which double the number of feature maps consistently outperform their respec-
tive constant counterparts. Finally, the 3-layer context architectures 2 and 12
are the best performing models in our set.
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Local Context
Winner-takes-All Discrete Optimization Full Pipeline

Noc Occ Noc Occ Noc Occ
Out EPE Out EPE Out EPE Out EPE Out EPE Out EPE

DF [11] 26.36 % 27.92 29.85 % 33.93 10.45 % 7.44 14.82 % 13.05 8.20 % 2.77 11.28 % 4.61
1 - 24.67 % 49.86 28.45 % 62.05 12.06 % 10.27 16.55 % 17.60 7.27 % 2.78 10.14 % 4.41
1 12 12.24 % 25.70 16.76 % 39.69 8.95 % 8.73 13.44 % 16.03 6.93 % 2.61 9.92 % 4.18
5 - 18.36 % 42.51 22.64 % 56.30 10.75 % 10.76 15.29 % 18.61 7.28 % 2.83 10.12 % 4.37
5 12 12.13 % 27.94 16.66 % 42.42 8.75 % 9.12 13.26 % 16.70 7.07 % 2.73 10.02 % 4.29

(a) MPI Sintel

Local Context
Winner-takes-All Discrete Optimization Full Pipeline

Noc Occ Noc Occ Noc Occ
Out EPE Out EPE Out EPE Out EPE Out EPE Out EPE

DF [11] 33.01 % 30.21 40.99 % 49.16 10.84 % 3.73 21.81 % 22.38 8.55 % 1.76 18.43 % 4.49
1 - 34.38 % 69.45 42.00 % 99.55 13.38 % 8.75 24.00 % 29.92 8.35 % 2.14 16.73 % 4.44
1 12 20.00 % 41.67 29.33 % 77.21 13.26 % 9.90 23.54 % 31.00 9.75 % 2.57 18.27 % 5.35
5 - 27.18 % 58.58 35.69 % 92.92 13.07 % 9.63 23.63 % 31.70 8.74 % 2.38 17.12 % 4.77
5 12 22.09 % 55.46 31.10 % 92.85 14.01 % 12.78 24.16 % 34.72 10.62 % 2.99 19.10 % 5.95

(b) KITTI

Table 5: Comparison of Model Components. This table shows our results
after winner-takes-all feature matching, after discrete optimization and the re-
sults of the full pipeline including post-processing and sub-pixel interpolation.
We report end-point-errors (EPE) and outliers ratios (Out) both in non-occluded
(Noc) and in all image regions (Occ) on the respective validation sets.

4.4 Evaluation of Model Components

Table 5 compares (from left to right) the results of winner-takes-all (WTA),
discrete optimization and the full pipeline including post-processing and Epic
Flow interpolation with respect to each other. For this experiment, we selected
the simplest local architecture 1 as well as the top performing local architecture
5, both with and without context. For comparison, we also show the results of
Discrete Flow with Daisy features as baseline (“DF [11]”).

We first note that for WTA (first column), the context architectures improve
the outlier ratio significantly with respect to local architectures for both datasets.
However, this improvement is less visible after spatial smoothing (second and
third column). We conclude that the gain of leveraging a larger receptive field
can be partially compensated by using a spatial smoothing stage.

On the KITTI dataset, the improvements are less pronounced than on the
MPI Sintel dataset. Here, our smallest local architecture (second row) outper-
forms Discrete Flow [11] slightly. Interestingly, the context architectures improve
performance when considering the winner-takes-all (WTA) solution, but perform
on par or even lead to degradation after spatial smoothing (second and third col-
umn). Our investigations revealed that the reason for this is the scale changes
which are prominently present on KITTI (but less so on MPI Sintel) and which
the networks have difficulty to cope with. We thus conclude that progress in
invariant deep representations (in particular scale invariance) is necessary to
address this issue.
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4.5 Results on Test Set

We submitted our results to the MPI Sintel and KITTI 2012 and 2015 evalua-
tion servers. We picked the best row for each dataset according to the results in
Table 5, i.e., local model 1 in combination with context model 12 for the MPI
Sintel and local model 1 alone for both KITTI datasets. In accordance with our
results on the training/validation split, we obtain good results on MPI Sintel
(best performing method amongst the published methods and second best per-
forming method overall) while we are slightly better than Discrete Flow [11] on
KITTI 2012 and KITTI 2015. We refer to the benchmark websites for details1.

4.6 Qualitative Results

Fig. 4 shows visualizations of the different stages of our approach for several
selected images from both MPI Sintel (top) and KITTI (bottom). Some failure
cases are shown in Fig. 5. Each sub-figure shows from top-to-bottom: the input
image and the ground-truth flow, Discrete Flow with Daisy features, our local
architecture 1, our architectures 1 + 12. For each sub-figure, the first double
column shows the WTA result on the grid, the second the results of discrete
optimization and the last double column shows the final result.

As evidenced from these results, the proposed feature learning approach han-
dles object boundaries more precisely and in general leads to lower errors for all
inliers. However, these advantages diminish after discrete optimization and in
particular Epic Flow interpolation as non-matched regions are responsible for
the largest portion of the remaining errors. From Fig. 5, it is clearly visible that
the learned representations suffer from strong scale changes which need to be
addressed to further improve performance.

5 Conclusion and Future Work

We presented an efficient way of learning features for optical flow in a discrete
framework by showing that dilated convolutions can be implemented efficiently
for patch-based training. Learning features with context networks improves fea-
ture matching performance with respect to local architectures and manually
engineered features for both the MPI Sintel and KITTI datasets. Although our
experiments demonstrated that learning features with context is crucial for re-
ducing outliers in the WTA solution of the network, large gains mostly diminish
in the later stages of our pipeline. We found that large changes in scale pose
problems to current feature learning approaches, prompting for the development
of inherently scale invariant deep features. Finally, we remark that our current
model’s performance is hampered by piece-wise training. We therefore plan to
investigate end-to-end training by back-propagating errors through all stages of
our pipeline.

1 http://sintel.is.tue.mpg.de/ http://www.cvlibs.net/datasets/kitti/

http://sintel.is.tue.mpg.de/
http://www.cvlibs.net/datasets/kitti/
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Fig. 4: Qualitative Results. See Section 4.6 for details.



14 Fatma Güney and Andreas Geiger

Fig. 5: Qualitiative Results. See Section 4.6 for details.
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Cremers, D., Brox, T.: FlowNet: Learning optical flow with convolutional networks.
arXiv.org 1504.06852 (2015)

44. Mayer, N., Ilg, E., Haeusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox,
T.: A large dataset to train convolutional networks for disparity, optical flow, and
scene flow estimation. In: CVPR. (2016)

45. Han, X., Leung, T., Jia, Y., Sukthankar, R., Berg, A.C.: Matchnet: Unifying feature
and metric learning for patch-based matching. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR). (2015)

46. Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., Moreno-Noguer, F.:
Discriminative learning of deep convolutional feature point descriptors. In: Proc.
of the IEEE International Conf. on Computer Vision (ICCV). (2015)

47. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolu-
tional neural networks. In: Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). (2015)

48. Bai, M., Luo, W., Kundu, K., Urtasun, R.: Deep semantic matching for optical
flow. arXiv.org 1604.01827 (2016)

49. Gadot, D., Wolf, L.: Patchbatch: a batch augmented loss for optical flow. Proc.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) (2016)

50. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Proc. of the International Conf. on Learning Representations
(ICLR) (2015)


