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Motivation. Using object knowledge, we encourage disparities to
agree with plausible surfaces while simultaneously recovering 3D
geometry of the objects (bottom). This improves results (center)
compared to current state-of-the-art stereo methods (top) [1].

Abstract

•Current stereo methods often fail at textureless,
reflecting or semi-transparent surfaces such as cars.

•Yet, as humans we are able to effortlessly extract
information about the geometry of objects even from
a single image.

•Little is known about the importance of recognition
for stereo matching.

We introduce object knowledge for well-constrained ob-
ject categories into a slanted-plane MRF. We leverage
inverse graphics to sample set of plausible object dispar-
ity maps given an initial semi-dense disparity estimate
and a rough semantic segmentation of the image. We
encourage the presence of these 2.5D shape samples (or
“displets”) depending on how much their geometry and
semantic class agrees with the image observations.

Representation

We decompose the image into planar superpixels S.
Each superpixel i ∈ S is associated with:

• region Ri in the image
• random variable ni ∈ R3 describing a plane in 3D
Each displet k ∈ D is associated with:

• random variable dk ∈ {0, 1} (presence/absence)
Our goal is to infer:

• superpixel planes n = {ni|i ∈ S}
•displets d = {dk|k ∈ D}

Displets

Displets: A representative set of disparity maps for a specific semantic class (e.g., car) conditioned on the image.

Displet Illustration. Top: wireframe model, middle:
rendered disparity map, bottom: fitted superpixel planes.

We sample 3D CAD model configurations ξk
and associate each displet k ∈ D with

• its class label ck
•a fitness score κk
•a set of superpixels Sk
• the corresponding planes n̂k,1, . . . , n̂k,|Sk|

Examples of Car Displets. Our displets cover the most likely 3D car
shapes given the initial disparity map and a semantic segmentation.

Stereo Matching using Displets

E(n,d) = ∑
i∈S

ϕSi (ni)︸ ︷︷ ︸
Data

+ ∑
i∼j
ψSij(ni,nj)︸ ︷︷ ︸
Smoothness

+ ∑
k∈D

ϕDk (dk)︸ ︷︷ ︸
Displets

+ ∑
k∈D

∑
i∈Sk

ψDki(dk,ni)︸ ︷︷ ︸
Consistency

Data term
We penalize deviations from an initial sparse disparity
map Ω̂ obtained using the method of [1]:

ϕSi (ni) = ∑
p∈Ri∩ Ω̂+

ρτ1(ω(ni,p)− ω̂(p))

•ω(ni,p) denotes the disparity of plane ni at pixel p.
•ρτ(·) is a robust l1 penalty ρτ(x) = min(x, τ ).

Local smoothness
For adjacent superpixels, we penalize discontinuities at
the boundary Bij and encourage similar orientations:

ψSij(ni,nj) = θ1
∑

p∈Bij
ρτ2 (ω(ni,p)− ω(nj,p)) +

θ2 ρτ3

(
1− |nT

i nj|/(‖ni‖‖nj‖)
)

Displet Unary
We encourage image regions with semantic class label ck
to be explained by a displet of the corresponding class:

ϕDk (dk) = −θ3 [dk = 1] · (|[S = ck] ∩Mk| + κk)

•Mk is the foreground mask of displet k.
•S denotes the semantic segmentation.

Consistency between Displets and Superpixels
We ensure consistency by encouraging superpixels to
agree with the geometry of the active displets:

ψDki(dk,ni) = λki [dk = 1] · (1− δ(ni, n̂k,zi))

•λki denotes a weight which depends on the distance to
the boundary (see experiments).

Inference

Minimizing E(n,d) is a non-convex, mixed continuous-
discrete optimization problem. We use max-product par-
ticle BP with TRW-S for the inner iterations.

At each outer iteration, particles are sampled
•around the previous MAP estimate
•using neighbouring superpixels

Sampling Displet Proposals

We leverage the initial semi-dense disparity map, a se-
mantic segmentation of the image as well as 3D CAD
models to sub-sample the space of displets using MCMC.

Observation Model
We sample pose parameters from a model which

•encourages displets to explain pixels in object regions
•avoids occlusion of other objects
We run one Markov chain for each combination of 3D
CAD models and object proposals using Metropolis-
within-Gibbs sampling with randomly chosen blocks.

We select the 8 most dominant modes after burn-in for
each model and combine all results to yield the final set
of displets.

3D CAD Models
For sampling displets, we leverage 3D CAD models
from Google Warehouse. To speed-up the rendering
process, we reduce details while preserving the overall
shape by fitting a “semi-convex hull” to the point
clouds of the original models:

(a) 3D Warehouse Model (b) Semi-Convex Hull

(c) QSlim (d) MATLAB
Mesh Simplification. Comparison of our semi-convex hull
algorithm to QSlim and MATLAB’s reducepatch function.

Experimental Results on KITTI

Illustration of Displet Influence λki

Displet Influence. Less transparency indicates a higher penalty,
e.g., we allow more deviation at the displet boundaries.

Ablation Study
Reflective All

Input Ω̂ (Interpolated) 19.84 % 3.35 %
Unary Only 17.72 % 3.31 %
Unary + Pair (Boundary) 15.96 % 3.21 %
Unary + Pair (Normal) 17.06 % 3.28 %
Unary + Pair 14.78 % 3.12 %
Unary + Pair + Occ 15.32 % 3.04 %
Unary + Pair + Disp 7.08 % 2.87 %
Unary + Pair + Occ + Disp 7.16 % 2.78 %

Importance of Different Terms.
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Number of Proposals and Models. Influence of limiting the
number of object proposals (left) and the variety of CAD models
used for generating the displets (right).

Quantitative Results
Rank Method Out-Noc Out-All Avg-Noc Avg-All
1 Our Method 8.40 % 9.89 % 1.9 px 2.3 px
2 VC-SF* [2] 11.58 % 12.29 % 2.7 px 2.8 px
3 PCBP-SS [3] 14.26 % 18.33 % 2.4 px 3.9 px
4 SPS-StFl* [4] 14.74 % 18.00 % 2.9 px 3.6 px
... ... ... ... ...
11 MC-CNN [1] 18.45 % 21.96 % 3.5 px 4.3 px

Reflective Regions.

Rank Method Out-Noc Out-All Avg-Noc Avg-All
1 Our Method 2.47 % 3.27 % 0.7 px 0.9 px
2 MC-CNN [1] 2.61 % 3.84 % 0.8 px 1.0 px
3 SPS-StFl* [4] 2.83 % 3.64 % 0.8 px 0.9 px
4 VC-SF* [2] 3.05 % 3.31 % 0.8 px 0.8 px
5 SPS-St [4] 3.39 % 4.41 % 0.9 px 1.0 px
6 PCBP-SS [3] 3.40 % 4.72 % 0.8 px 1.0 px

All Regions.
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