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Abstract. In this supplementary document we illustrate the 3D CAD
model database we use, give details on the sparse factor-to-variable mes-
sage calculation and provide additional quantitative results in terms of
reconstruction, segmentation and 2D/3D detection performance. Fur-
thermore, we show additional qualitative results and comparisons with
respect to Lin et al. [10] on randomly selected scenes from the NYUv2
dataset.
In addition, the supplementary video visualizes the proposals, the infer-
ence process and our estimates in the form of wireframe projections and
3D popups for several scenes. To illustrate how inference progresses, we
show the estimated max-marginal configuration at different iterations of
the belief propagation algorithm. The video can be viewed with the VLC
media player, available at: http://www.videolan.org/vlc/.

1 Related Work and 3D CAD Model Database

Table 1 shows a table comparing related methods for scene understanding to the
proposed method in terms of their properties. Fig. 1 shows scaled (i.e., normal-
ized) versions of the 3D CAD models we collected from Google 3D Warehouse1.
For consistency with the object annotations from [3], we selected the same 3D
models for the object classes bed, table, shelf, sofa and chair. Note that this
doesn’t affect our evaluation as we compute the intersection-over-union of the
3D bounding box associated with the estimated 3D models with respect to the
corresponding ground truth 3D bounding box.

1 https://3dwarehouse.sketchup.com/
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Input 360° 2D 2D 2D 2D 2D 2D 2D 3D 3D 3D 3D 3D
#Object classes 16 6 8 1 1 8 1 2 9 1 11 21 21
#Layout classes 1 5 5 5 5 – – – 4 – – – 3
#Scene classes – 3 – – – – – – – – – 12 –
Context model 3 3 3 3 3 3 3 3 3

Visibility model 3 3 3 3 3 3 3

Occlusion model 3 3 3

CAD models 3 3 3 3

Beyond MHW 3 3 3 3 3 3 3

Table 1. Related Work. This table gives an overview over the most related work on
indoor scene understanding with 3D models. “Beyond MHW” expresses the fact that
the object orientations are not limited to the Manhattan world assumption.

Fig. 1. 3D Model Database. For each object category which can’t be well repre-
sented by a cuboid model we use one out of 66 CAD models collected from Google 3D
Warehouse. The colors correspond to the different semantic categories.
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2 Sparse Factor-to-Variable Message Calculation

Finding the minimum of E(x|I) with respect to x in the main paper is an
NP hard problem and we employ max-product loopy belief propagation to find
an approximate solution. For numerical stability we follow common practice
and make use of the equivalent min-sum formulation where messages between
variable i and the factor corresponding to clique c are passed as follows:

mt
c→i(xi) = min

x−i
c

fc(xc) +
∑

j∈c\{i}

mt−1
j→c(xj)

 (1)

mt
i→c(xi) =

∑
c′∈Ni\{c}

mt−1
c′→i(xi) (2)

Here, Ni denotes all factors involving variable i and x−ic denotes all variables
involved in clique c except variable i. For high-order cliques the computational
complexity of computing the factor-to-variable message in Eq. 1 is O(DN ) in
general, where N is the number of variables in the clique and D denotes the
number of labels2. As the size of our high-order cliques easily exceeds N = 20 or
N = 30, brute force calculation is clearly intractable. We approach this problem
by taking advantage of the sparsity in our high-order potentials which can be
written as3

f(x) =

{
ξ(x) if x ∈ S

0 otherwise
(3)

where ξ(x) : DN → R is an arbitrary function and S is a set of special states
with |S| � 2N . Note that in contrast to the high-order potentials considered
in [8,12], we allow negative as well as positive values for ξ(x). The latter case is
required by our superpixel-object consistency potentials (see paper, Eq. 5).

In Algorithm 1, we provide an efficient recursion (an illustration of which
is given below using a simple example) to exactly compute factor-to-variable
messages (Eq. 1) for the class of potentials specified in Eq. 3 given a limited
computational budget. Without loss of generality, we assume that the message
is passed to the first node in the clique. For other cases we simply switch the
target variable with the first variable in the clique. Moreover, we assume that the
variables in the clique under consideration are indexed from 1 to N for clarity
of presentation.

To illustrate the idea, let us look at the simple case of a clique c with N = 3
binary variables (i.e., D = 2). We first consider the trivial case where no special
state is present, i.e., |S| = 0 and f(·) ≡ 0. In this case, Eq. 1 can be computed
efficiently by swapping the min and the sum operators: we obtain mt

c→1(·) ≡

2 For clarity, here we assume that all variables have the same number of labels D while
our algorithm has no such restriction.

3 We define f(x) = 0 for non-special states as we can always add a constant to f(x)
without changing the optimization problem.
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Algorithm 1 Sparse Factor-to-Variable Message Passing

Input: Factor: fc(·), Target variable i = 1, Input messages: mt−1
i→c(·) ∀i ∈ {2, . . . , N}

Output: Factor-to-variable message: mt
c→1(·)

∀i ∈ {2, . . . , N} : µi ← minx(mt−1
i→c(x)) . precompute all min-messages

∀x : mt
c→1(x)← +∞ . initialize output message to +∞

y← vector(N) . y will be set during the recursion
UpdateMessage(y,0) . start recursion
procedure UpdateMessage(y,k)

if k < N then . partition contains ≥ 1 state
if k = 0 ∨ Tk(y) ∩ S 6= ∅ then . k = 0 or Tk(y) contains ≥ 1 special state

for all d← 1, . . . , D do . for all sub-partitions
yk+1 ← d . specify sub-partition
UpdateMessage(y,k+1) . continue recursion

else . compute minimum for partition Tk(y)
mt

c→1(y1) = min
(
mt

c→1(y1), gk(y)
)

. gk(·) is defined in Eq. 5

else . update minimum for single state TN (y)

mt
c→1(y1) = min

(
mt

c→1(y1), f(y) +
∑

i∈{2,...,N}m
t−1
i→c(yi)

)

∑
i∈{2,3} µi with min-messages defined as µi = minx

(
mt−1

i→c(x)
)
. Next, let us

consider the presence of a single special state: S = {s}, s = (1, 1, 1)T . Let

Tk(y) = {x|xi = yi, i ≤ k} ⊂ {1, . . . , D}N (4)

denote the subset of states for which the first k variables in x are equal to those
in y. For N = 3 this allows us to partition the state space into 4 disjoint sets
T1(0) ∪ T2(1, 0) ∪ T3(1, 1, 0) ∪ {s} and we obtain mt

c→1(·) as

mt
c→1(x) =

{
g1(0) if x = 0

min
(
g2(1, 0), g3(1, 1, 0), ξ(s) +

∑
i∈{2,3}m

t−1
i→c(si)

)
otherwise

where gk(y) denotes the minimum of partition Tk(y),

gk(y) =
∑

i∈{2,...,k}

mt−1
i→c(yi) +

∑
i∈{k+1,...,N}

µi (5)

which can be computed in linear time. This partitioning naturally suggests a
recursive implementation which we specify in Algorithm 1: we iterate over the
variables involved in the factor, update the minimum using the pre-computed
min-messages {µi} if no special state is included in the current partition, and
continue the recursion otherwise. By adaptively exploring the state space, this
reduces the time complexity for computing sparse high-order factor-to-variable
messages from O(DN ) to O(DN2). In the presence of multiple special states
the complexity depends on the distribution of these states and the worst-case
complexity is O(|S|DN2).
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3 Additional Quantitative Results

2D Object Detection In addition to the 3D object detection results shown in
Table 2 of the paper submission we investigate the performance of our method
on 2D object detection, i.e., we project all 3D bounding boxes into the image and
evaluate detection performance using the traditional 2D intersection-over-union
(IOU) criterion. Due to the large degree of clutter and occlusion in the scenes,
we use a IOU threshold of 30% for considering an object detection as correct.
As shown in Table 3 (unclipped case) and Table 3 (clipped case), our method
performs about equally for CAD models and cuboids, due to the perspective
“flattening” of the results. However, note that for both, the clipped as well as
the unclipped case, our method compares favorably with respect to the approach
of Lin et al. [10].
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#obj 11 127 30 40 25 170 23 466 253 544 229 751 143 43 30 45 112 98 52 100 30 3322
[10] - 8 Proposals 0 28 42 17 0 36 7 25 29 32 37 25 26 7 0 11 32 28 20 34 11 27.46
[10] - 15 Proposals 17 32 41 15 7 32 5 28 25 30 36 26 32 12 10 25 27 24 21 28 6 27.48
[10] - 30 Proposals 0 29 36 16 29 28 6 27 23 29 33 26 30 16 6 26 24 22 21 28 0 26.40
Base-Det-Cuboid 0 20 12 3 17 14 23 12 7 11 12 10 19 21 12 9 7 8 8 12 3 11.40
Base-NMS-Cuboid 0 29 49 6 7 67 25 20 28 38 46 29 28 20 6 15 32 33 15 28 7 31.07
NoOcclusion-Cuboid 0 29 49 9 22 65 13 27 32 43 46 38 27 29 6 0 26 30 19 19 11 34.54
NoContext-Cuboid 0 36 51 3 32 62 13 29 32 42 43 33 28 34 11 4 10 10 10 21 6 32.33
FullModel-Cuboid 0 27 49 9 23 66 14 27 32 44 46 34 31 32 6 0 27 31 18 23 5 34.29
Base-Det-CAD 0 20 13 4 13 11 23 12 8 11 12 13 19 21 12 9 12 8 8 12 3 12.05
Base-NMS-CAD 0 26 47 8 0 63 25 23 28 38 43 26 29 24 11 14 22 33 15 26 7 30.02
NoOcclusion-CAD 0 26 52 8 31 67 0 28 26 42 53 30 28 32 6 4 9 31 18 20 0 32.40
NoContext-CAD 0 32 54 6 33 61 14 31 27 42 50 33 31 30 6 4 12 10 10 20 0 32.60
FullModel-CAD 0 27 57 7 31 73 15 32 27 44 55 29 32 30 6 4 10 33 16 23 0 33.97
FullModel-CAD-GT 60 59 86 24 70 91 41 61 69 78 89 47 78 83 76 68 20 63 68 51 51 63.92

Table 2. 2D Detection Unclipped. Evaluation in terms of F1 score (%). See text
for details.
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#obj 10 126 30 36 25 169 23 455 242 534 228 703 137 42 29 40 111 91 50 81 25 3187
[10] - 8 Proposals 0 29 45 17 0 36 20 26 28 32 36 25 27 7 6 16 30 25 21 36 13 27.54
[10] - 15 Proposals 18 33 43 16 7 32 22 28 24 30 35 26 33 9 5 31 25 22 19 27 6 27.31
[10] - 30 Proposals 0 29 38 16 29 28 22 27 21 29 32 26 31 13 6 29 23 20 18 28 0 26.25
FullModel-CAD 0 26 61 8 31 74 7 32 26 41 53 29 33 30 6 5 7 30 17 24 0 33.35

Table 3. 2D Detection Clipped. Evaluation in terms of F1 score (%). See text for
details.
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4 Additional Qualitative Results

The following pages show additional qualitative results on the NYUv2 test set.
We compare our estimates against ground truth and the results of Lin et al. [10].
Each subfigure shows: Ground truth, results of [10], our results (top-to-bottom)
in form of 3D popups, re-projections, depth maps and semantic segmentations
(left-to-right) using the semantic color coding scheme from Fig. 1 in the main
paper. For the ground truth we directly show the depth channel of the RGB-D
image in the corresponding row of the reconstruction column. A legend illustrat-
ing what is shown in the individual subplots is given in Fig. 2

Fig. 2. Additional Qualitative Results Legend.
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