3D Scene Understanding from a single RGB-D Image

Andreas Geiger Chaohui Wang

MPI for Intelligent Systems Tübingen, Germany

October 09, 2015

Introduction

Task: Infer scene layout and objects from a single RGB-D Image

Input

Depth

Output

System Overview Input: RGB-D image

System Overview

Proposals: Layout elements and CAD objects

System Overview Model: High-order CRF

Notation:

- *L*: layout elements *O*: objects *S*: superpixels*L*: layout elements *O*: objects *S*: superpixels
- $x_i \in \{0, 1\}$: object/layout present?
- $x_k \in \{0, 1\}$: superpixel explained?

Goal:

Given an RGB-D image I, infer presence of each object/layout $x_i \in \{0, 1\}$ while explaining as many superpixels x_k as possible!

Layout and Object Unary Potentials

Overlap with 2D proposal [Carreira2012,Gupta2013]

3D geometry depth/normals

3D object scale estimated from data

Superpixel Unary Potential

Penalty for unexplained superpixels

Superpixel Unary Potential

Penalty for unexplained superpixels

Superpixel Unary Potential

Penalty for unexplained superpixels

Object-Object and Layout-Object Potentials

Geometric constellation

Volumetric exclusion

Occlusion Potential

$$\psi_{ik}^{\mathcal{S}}(x_i, x_k | \mathbf{I}) = \begin{cases} \infty & \text{if } x_i = 1 \land x_k = 1 \land \text{``i occludes } k'' \\ 0 & \text{otherwise} \end{cases}$$

- Only non-occluded superpixels can be explained
- Penalizes objects "occluding" the actual 3D scene

Consistency Potential

$$\kappa_c(\mathbf{x}_c) = \begin{cases} \infty & \text{if } x_k = 1 \land \sum_{i \in c \setminus \{k\}} x_i = 0\\ 0 & \text{otherwise} \end{cases}$$

Only superpixels supported by objects can be explained

Ensures consistency between superpixels and objects/layout

Proposal Generation

[Lin2013, Jiang2013] fit 3D cuboids to the RGB-D point cloud

[Lin2013]

Our Results

Proposal Generation

- [Lin2013, Jiang2013] fit 3D cuboids to the RGB-D point cloud
- Problems: Shrinking bias, rotation errors

[Lin2013]

Our Results

Proposal Generation

- [Lin2013, Jiang2013] fit 3D cuboids to the RGB-D point cloud
- Problems: Shrinking bias, rotation errors
- Here: Directly sample proposals from unary distribution

$$p(heta_i) \propto \exp\left(-\phi_i^{\mathcal{L}/\mathcal{O}}(heta_i|\mathbf{I})
ight)$$

Inference

Min-Sum Belief Propagation:

$$\underbrace{\begin{array}{lll} \underbrace{m_{c \to i}^{t}(x_{i})}_{\text{factor} \to \text{variable}} &= \min_{\mathbf{x}_{c} \setminus \{x_{i}\}} \left(f_{c}(\mathbf{x}_{c}) + \sum_{j \in c \setminus \{i\}} m_{j \to c}^{t-1}(x_{j}) \right) \\ \underbrace{m_{i \to c}^{t}(x_{i})}_{\text{variable} \to \text{factor}} &= \sum_{c' \in \mathcal{N}_{i} \setminus \{c\}} m_{c' \to i}^{t-1}(x_{i}) \end{array}$$

 $f_c(\mathbf{x}_c)$: factor of clique c

 \mathbf{x}_c : variables in clique c \mathcal{N}_i : factors involving variable i

Sparse Factor:

$$f(\mathbf{x}) = \left\{egin{array}{cc} \xi(\mathbf{x}) & ext{if } \mathbf{x} \in \mathcal{S} \ 0 & ext{otherwise} \end{array}
ight.$$

 \mathcal{S} : set of special states $\xi(\mathbf{x})$: arbitrary function $(-\infty \leq \xi(\mathbf{x}) \leq \infty)$

Inference

Complexity: $O(2^N) \Rightarrow O(N^2)$

Inference

Experiments

- Evaluation on NYUv2 dataset [Silberman2012]
- 795 training and 654 test images, 3D annotations [Guo2013]
- 3D object detection (F1 score, 3D BBox IOU; ≥ 30%)

3D Object Detection (F1 score in %)

	mantel	counter	toilet	sink	bathtub	bed	headboard	table	shelf	cabinet	sofa	chair	chest	refrigerator	oven	microwave	blinds	curtain	board	monitor	printer	overall
#obj	10	126	30	36	25	169	23	455	242	534	228	703	137	42	29	40	111	91	50	81	25	3187
[Lin2013] - 8 Proposals	0	4	27	12	0	13	0	8	13	3	16	8	5	0	0	0	13	5	3	8	0	7.90
[Lin2013] - 15 Proposals	0	3	27	10	0	11	0	7	11	3	19	8	4	0	0	11	11	6	3	6	0	7.71
[Lin2013] - 30 Proposals	0	3	24	11	12	10	0	7	10	3	18	9	5	0	0	11	11	5	3	6	0	7.61
Base-Det-Cuboid	0	8	3	2	13	12	5	8	3	6	6	4	14	14	7	3	3	2	1	4	2	5.80
Base-NMS-Cuboid	0	3	16	0	0	51	6	11	8	14	12	7	24	10	6	0	10	7	2	7	4	11.93
NoOcclusion-Cuboid	0	5	8	3	22	51	7	15	9	17	17	10	21	17	0	0	6	6	2	1	5	13.68
NoContext-Cuboid	0	9	7	2	27	51	6	17	7	18	16	6	21	23	5	0	4	2	1	5	6	13.38
FullModel-Cuboid	0	6	8	3	23	51	7	15	8	18	17	7	24	21	0	0	6	6	2	6	5	13.45
Base-Det-CAD	0	8	13	2	11	10	5	10	4	6	8	9	14	14	7	4	5	3	4	4	1	7.66
Base-NMS-CAD	0	2	43	3	0	48	6	16	9	14	21	15	23	14	5	6	6	5	2	5	4	15.05
NoOcclusion-CAD	0	4	52	4	25	49	0	21	9	17	30	18	24	24	0	0	0	6	4	3	0	17.57
NoContext-CAD	0	8	47	4	28	45	7	23	8	20	28	20	25	22	0	4	2	4	5	4	0	18.61
FullModel-CAD	0	4	61	4	31	55	7	24	10	19	33	18	27	24	0	0	1	6	3	5	0	19.22

[Lin2013] Dahua Lin, Sanja Fidler and Raquel Urtasun: Holistic scene understanding for 3D object detection with RGB-D cameras. IEEE International Conference on Computer Vision (ICCV), 2013.

Failure Cases

Failure Cases

Conclusion

- Novel model for indoor 3D scene understanding
- Accurate modeling of visibility constraints
- 3D CAD models improve recognition

Project page: www.cvlibs.net/projects/indoor_scenes