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Zusammenfassung

Visuelles 3D Szenenverständnis stellt eine wichtige Komponente für automatisier-
tes Fahren und die Navigation von Robotern dar. Innerstädtische Kreuzungsszenari-
en sind hierbei in gleichem Maße interessant wie auch anspruchsvoll: Straßenkreu-
zungen können komplexe Geometrien annehmen und oft werden wichtige Hinweise
auf die Geometrie, wie zum Beispiel Fahrbahnmarkierungen oder andere Verkehrs-
teilnehmer, durch Objekte im Sichtfeld verdeckt. Während autonomes Fahren auf
Schnellstraßen (Dickmanns et al. [51]) sowie das Überqueren einfacher annotier-
ter Kreuzungen (DARPA Urban Challenge [31]) bereits erfolgreich gezeigt wurde,
bleibt die Behandlung des allgemeinen innerstädtischen Falls mit geringem Vorwis-
sen auch weiterhin ein ungelöstes Problem. Diese Arbeit stellt einen Beitrag zum
Verständnis von Verkehrsszenen basierend auf Videosequenzen dar. Ein auf dem
Dach des Versuchträger AnnieWay [106] angebrachtes Kamerasystem liefert die
dafür benötigten Sensorinformationen. Vorgestellt wird ein probabilistisches gene-
ratives Modell, welches die 3D Szenengeometrie sowie die Position und Orientie-
rung von Objekten in der Szene schätzt. Insbesondere werden die Topologie, Geo-
metrie sowie Aktivitäten der Verkehrsteilnehmer aus kurzen Videosequenzen be-
stimmt. Das Verfahren zieht dabei monokulare Informationen wie Objekte, Flucht-
punkte sowie eine semantische Bildsegmentierung als Merkmale heran. Zusätzlich
wird der Einfluss stereoskopischer Merkmale wie Szenenfluss und Belegungsgitter
untersucht. Motiviert durch die beeindruckende Fähigkeit des Menschen wird kein
weiteres Wissen wie beispielsweise GPS-, Lidar-, Radar- oder Karteninformationen
vorausgesetzt. Die auf 113 repräsentativ ausgewählten Sequenzen durchgeführten
Experimente zeigen dass der vorgestellte Ansatz für eine Vielzahl von Szenarien ge-
eignet ist. Eine umfangreiche Auswertung und Analyse gibt Aufschluss über die Re-
levanz der einzelnenMerkmale. DesWeiteren wird aufgezeigt, wie durch das vorge-
schlagene Verfahren eine verbesserte Objektdetektion und -orientierungsschätzung
erreicht werden kann.
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Abstract

Visual 3D scene understanding is an important component in autonomous driving
and robot navigation. Intelligent vehicles for example often base their decisions
on observations obtained from video cameras as they are cheap and easy to employ.
Inner-city intersections represent an interesting but also very challenging scenario in
this context: The road layout may be very complex and observations are often noisy
or even missing due to heavy occlusions. While Highway navigation (e.g., Dick-
manns et al. [51]) and autonomous driving on simple and annotated intersections
(e.g., DARPA Urban Challenge [31]) have already been demonstrated successfully,
understanding and navigating general inner-city crossings with little prior knowl-
edge remains an unsolved problem. This thesis is a contribution to understanding
multi-object traffic scenes from video sequences. All data is provided by a camera
system which is mounted on top of the autonomous driving platform AnnieWAY
[106]. The proposed probabilistic generative model reasons jointly about the 3D
scene layout as well as the 3D location and orientation of objects in the scene. In
particular, the scene topology, geometry as well as traffic activities are inferred from
short video sequences. The model takes advantage of monocular information in the
form of vehicle tracklets, vanishing lines and semantic labels. Additionally, the ben-
efit of stereo features such as 3D scene flow and occupancy grids is investigated.
Motivated by the impressive driving capabilities of humans, no further information
such as GPS, lidar, radar or map knowledge is required. Experiments conducted
on 113 representative intersection sequences show that the developed approach suc-
cessfully infers the correct layout in a variety of difficult scenarios. To evaluate the
importance of each feature cue, experiments with different feature combinations are
conducted. Additionally, the proposed method is shown to improve object detection
and object orientation estimation performance.
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Notation and Symbols

This chapter introduces the notation and symbols which are used in this thesis. In
cases where a symbol has more than one meaning, the context (or a specific state-
ment) resolves the ambiguity.

General Notation

Scalars Regular (greek) lower case a, b, c, σ, λ
Vectors Bold (greek) lower case a, b, c, σ, λ
Matrices Bold upper case A, B, C, Σ, Λ
Sets Calligraphic upper case A, B, C
Distributions Calligraphic upper case U(·),N (·), Cat(·)
Numbers Blackboard/greek upper case N, Z, R, ∆

Indexing

i First-order index i ∈ {1, . . . , N}
j Second-order index j ∈ {1, . . . ,M}
ai i’th element of vector a
Ai,j (i, j)’th element of matrix A
[a1,a2] Matrix A = [a1,a2] is composed of columns a1 and a2

Numbers

N Natural numbers
Z Integer numbers
R Real numbers
∆N N-simplex

Geometry

R Intersection parametersR = {κ, c, w, r, α}
κ Intersection topology κ ∈ {1, . . . , 7}
c Center of intersection c ∈ R2

w Road width w ∈ R+

r Road layout orientation r ∈ [−π
4
,+π

4
]

α Crossing street angle α ∈ [−π
4
,+π

4
]

l Lane index
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s Spline index
K Number of intersection armsK ∈ {2, 3, 4}
L Number of lanes/parking spots

Image Evidence

E Image evidence E = {T ,V,S,F ,O}
T Tracklets T = {t1, . . . , tNt}
t Tracklet t = {d1, . . . ,dMd}
d Detection d = (fd,md,Sd,od)
fd Frame number of object detection fd ∈ N
md, Sd Object location distributionN (md ∈ R2,Sd ∈ R2×2)
od Object orientation distribution od ∈ ∆7

V Vanishing points V = {v1, . . . , vNv}
v Vanishing point/line angle v ∈ [0, π)
S Scene labels S = {s1, . . . , sNs}
s Scene label s ∈ ∆2

F Scene flow F = {f1, . . . , fNf }
f Scene flow vector f = (pf ,qf ), pf ∈ R2, qf ∈ R2

O Occupancy grid O = {o1, . . . , oNo}
ρ Occupancy grid cell ρ ∈ {−1, 0,+1}

Projection

(x, y, z)T World coordinates
(u, v)T Image coordinates
π(·) Projection onto the image plane
K Camera calibration matrix K ∈ R3×3 (intrinsics)
P Camera projection matrix P ∈ R3×4 (intrinsics, extrinsics)
R, r Rotation matrix, rotation vector
T, t Translation matrix, translation vector
I Image
D Disparity map

Probabilistic Model

Θ Model parameters
E, R Training set (E = {E1, .., ED},R = {R1, ..,RD})
p(·) Probability
log p(·) Log-probability
φ(·), ϕ(·) Image likelihood helper functions
ψ(·), Ψ(·) Potential functions
ζ, λ Image likelihood outlier and importance variables
σout Standard deviation of outlier distribution

2



q(·) Metropolis-Hastings proposal distribution
pMH(·) Metropolis-Hastings acceptance probability
U(·) Uniform distribution (discrete or continuous)
N (·) Gaussian distribution
Cat(·) Categorical distribution
µ, µ Mean
σ2, Σ Variance, covariance matrix
λ, Λ Precision λ = σ−2, precision matrix Λ = Σ−1

〈·〉p(·) Expectation with respect to p(·)
[·] Iverson bracket (1 if true, 0 otherwise)

Notation of Probability Distributions

This thesis follows the common notation of probability distributions and uses p(x) =
D(x|θ) and x ∼ D(θ) interchangeably, where x is a random variable, D denotes
some probability distribution and θ are the parameters of the distribution.
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1. Introduction

Recent progress in self-driving vehicles makes us believe that only a few decades
from now drivers can be replaced by autonomous systems that excel humans in terms
of perception (e.g., omni-directional sensors), availability and the ability to respond.
Improved safety and time for work and leisure activities while traveling are the con-
sequence. While vehicle control and trajectory planning algorithms have already
been demonstrated successfully, robust environment perception is still a challenging
unsolved problem. This thesis presents a method to extend the vehicle’s field of view
to the challenging scenario of cluttered real-world intersections while relying solely
on close-to-production stereo image sensors.

1.1. Problem Statement

Given a short traffic video sequence of 5 to 30 seconds in length captured from a
movable platform we are interested in extracting information about the scene layout
and the dynamic objects, e.g., vehicles, present in the scene. In particular, we tackle
traffic scenarios with complex interactions. They pose an interesting problem and
are challenging due to the heavy occlusions and the clutter present in these scenes.
Additional difficulties are caused by the low camera viewpoint leading to noisy depth
estimates and the limited camera field of view. In particular, the proposed method
tries to answer the following questions:

• Where are the streets and the center of the intersection located?

• What is the width and the orientation of the streets?

• Where are the vehicles located and how are they oriented?

• Which car is driving? On which street?

• Which cars are parked at the side of the road?

• What is the current traffic situation?

• Does object detection benefit from the extracted road layout?

We try to answer the aforementioned questions from visual measurements alone,
which are easy and cheap to acquire, never get outdated (as maps do) and mimic the
human perception process. All sequences used for evaluation end when the observer
is required to take a decision, i.e., when the traffic light turns green or the ego-vehicle
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1. Introduction

Figure 1.1.: Intersection from a Lane Detector’s Point of View. This figure shows a typical
traffic scene with all non-road pixels masked. Note how difficult it is to correctly assess the
intersection geometry using this information alone. To see the full picture, please turn over to
Fig. 1.2 on page 8.

enters the crossing. This requires predicting into the future and makes the task very
challenging. Much like for human drivers no additional information such as 3D point
clouds from a laser scanner, radar or maps is used.

While the problem of lane detection has been tackled intensely over the last
decades [4, 44, 51, 137, 173, 185], the detection and recognition of lane markings in
isolation is not sufficient to infer the scene layout in complex situations. Consider for
example the scene illustrated in Fig. 1.1, where all non-road pixels of the image have
been whitened. Even for a human being it is almost impossible to judge the situation
using lane markings as the only source of information. In contrast, Fig. 1.2 reveals
the full picture and shows that a variety of feature cues are important to understand
the scene in context [179]. Amongst them are: Other traffic participants, buildings,
vegetation, vanishing points and the sky region. Drawing from these observations,
this thesis combines a variety of features in a probabilistic framework to tackle the
problem as illustrated in Fig. 1.3(b).

1.2. Applications

We highlight three important applications of traffic scene understanding.

Autonomous Driving: While the total number of fatal traffic accidents has been
slightly decreasing over the last couple of years, in 2010 still more than 12, 000
fatalities have been reported in the US1 and more than 3, 500 cases have been reg-
istered in Germany2. The ultimate goal of autonomous driving is to substitute the
human driver with an intelligent system which is able to process the incoming sen-
sor information and react appropriately in order to maneuver the vehicle from A

1National Highway Traffic Safety Administration Facts Sheet 2010
2Statistisches Jahrbuch 2011
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1.3. Contributions

to B. However, autonomous driving has the potential to significantly reduce traf-
fic accidents [138] and vehicle emissions [187] at the same time, for example by
increasing roadway capacity and reducing traffic jams [146]. As a side effect, pas-
sengers gain additional time which can be utilized for work or leisure activities. So
far, autonomous driving has been successfully demonstrated on highways with little
or no traffic. Busy inner-city navigation, however, is still an open challenge.

Advanced Driver Assistance Systems: While autonomous driving at large scale
might still be decades away, many research findings have alreadymade their way into
commercial driver assistance systems such as lane departure warning [127], auto-
matic parking or collision avoidance [189]. Visual scene analysis at intersections can
add to these functionalities by warning the driver of overlooked traffic participants
or when entering the wrong lane. Furthermore, navigation systems will benefit from
the extracted 3D information by enhancing their visual experience and simplifying
the interaction with the user.

Visually Impaired People: Traffic scene understanding is of high importance for
blind people as well, for example the situation must be assessed correctly before to
crossing the street [1]. Today’s assistance is typically provided by short-range white
canes or guide dogs which both can only be employed for navigating known terrain
[52]. Computer-based scene analysis in combination with visualization techniques
such as acoustic auralization [182] has the potential to increase the range of percep-
tion, contribute to a higher quality of life and increase safety.

1.3. Contributions

The contributions of this thesis are as follows:

• A novel intersection model is proposed which, in contrast to existing lane or
road detection methods, is flexible in the number of intersecting streets and
the location, orientation and width of the intersection arms.

• Compared to existing approaches, no static camera, bird’s eye view or infor-
mation from maps is required.

• In contrast to previous approaches, the proposed model combines static fea-
tures (e.g., building facades or vanishing points) with dynamic features (e.g.,
traffic participants) for improved performance and robustness.

• Efficient learning and inference algorithms based on Markov Chain Monte
Carlo sampling and belief propagation are developed to infer the scene layout
and the location of objects within the scene.

7



1. Introduction

Figure 1.2.: Intersection from a Human’s Point of View. To interpret complex scenes as
the one from Fig. 1.1 on page 6, humans make use of a variety of different cues such as in-
frastructure (e.g., buildings or vegetation), vanishing points, objects and dynamic information.
The presented approach builds on this observation and integrates the different complementary
features into a probabilistic model for analyzing traffic scenes.

• Extensive evaluations on 113 real-world sequences demonstrate the applica-
bility of the method and confirm that context helps in scene estimation as well
as object recognition. The importance of each of the proposed feature cues
for the problem of 3D scene understanding is evaluated and discussed.

1.4. Thesis Outline

This thesis is structured as follows: Chapter 2 surveys the current state-of-the-art and
contrasts the proposed approach with respect to previous work. Chapter 3 presents
the proposed geometric and probabilistic intersectionmodel and the parameter learn-
ing and model inference techniques that are employed. Chapter 4 gives details about
the image evidence and the computation of the features used by the model. Finally,
Chapter 5 describes the autonomous platform, the data collection process and the
experiments that have been carried out. Conclusions are drawn in Chapter 6. A
brief tutorial on the sampling techniques that we use for learning and inference is
given in Appendix A.

8



1.4. Thesis Outline

Vehicle Tracklets

Scene Labels

Vanishing Points

Occupancy Grid

Scene Flow

(a) Video-based Image Cues are the Input to the Proposed Model

(b) Inference Result: Scene Layout and Objects (c) Experimental Platform AnnieWAY

Figure 1.3.: 3D Intersection Understanding. (a) Image cues. (b) Inferred scene layout and
objects, active lanes are shown in red. (c) Autonomous vehicle AnnieWAY which has been
used for capturing the evaluation sequences.
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2. Related Work

This chapter discusses the state-of-the-art in autonomous driving systems and scene
understanding, and positions the contributions of this thesis with respect to the exist-
ing literature, summarized in Fig. 2.1. We start with an overview of the development
of autonomous driving systems, survey their capabilities and current challenges.

2.1. Autonomous Driving

In 1939 General Motors invited the industrial designer Bel Geddes to submit a pro-
posal for an exhibit at the New York’s World Fair ’Building The World of Tomor-
row’. The exhibit, called ’Futurama’, envisioned a world 20 years into the future
featuring automated highways as a solution to traffic congestion of the day. Electric
cars were powered by circuits embedded in the roadway and controlled by radio,
much like modern production lines work today. In 1986, supported by the rapid
development of computers, a team of engineers around Ernst Dickmanns in collab-
oration with Daimler equipped a Mercedes-Benz van with cameras and successfully
demonstrated the first self-driving car on well-marked streets without traffic [51].
Subsequently, the European Commission began funding the EUREKA Prometheus
Project on autonomous vehicles (1987–1995). In 1995 the team demonstrated semi-
autonomous driving in real traffic from Munich in Germany to Odense in Denmark
at speeds up to 175 km/h, with human intervention for about 5% of the distance. At
the same time, the CMU Navlab project achieved 98.2% autonomous driving with
manual longitudinal control using the RALPH (Rapidly Adapting Lateral Position
Handler) computer program [152]. Similar efforts have been undertaken in 1996
and 2010 by the research group of Alberto Broggi [28], amongst others. In 2011, the
Grand Cooperative Driving Challenge has benchmarked the state-of-the-art in au-
tonomous platooning systems with Christoph Stiller’s Team AnnieWAY from KIT
taking the lead [68].
All aforementioned projects are targeted at tasks like highway driving, lane-

keeping/-following or overtaking. In contrast, this thesis deals with the more chal-
lenging task of understanding traffic situations at intersection, which are much more
flexible in terms of topology, geometry and vehicle constellation.

2.1.1. The DARPA Urban Challenge

Motivated by the success of the Grand Challenges in 2004 and 2005 [30], the Amer-
ican Defense Advanced Research Projects Agency initiated the DARPAUrban Chal-
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2. Related Work

lenge [31, 106, 139, 100] in 2007 to benchmark the state-of-the-art in autonomous
inner-city driving on a 96 km test course at an abandoned Air Force Base. As for the
previous challenges and in contrast to the early approaches mentioned above, 100%
autonomous driving was required throughout the course.

While the Urban Challenge endeavor came closer to urban traffic situations, the
streets were wider than usual, the field of view was unobstructed and only a very
limited number of traffic participants were present. Furthermore, sub-meter precise
manually annotated maps were required and all teams made use of expensive 3D
laser scanner equipment for localization and collision avoidance. In contrast, the
approach presented in this thesis aims at analyzing complex and cluttered scenes in
the absence of maps or 3D point clouds.

2.1.2. The Google Driverless Car

Under the guidance of Sebastian Thrun, Google gathered a team of engineers,
amongst them Chris Urmson (the current team lead), Mike Montemerlo and An-
thony Levandowski who had experienced the DARPA Grand [30] and Urban [31]
Challenges, to equip a Toyota Prius with self-driving capabilities [188]. In August
2012 Google announced that they have completed over 300,000 miles without acci-
dent.
Similarly to the participants of the DARPA Urban Challenge, the Google driver-

less car is equipped with a Velodyne 3D laser scanner for perception and requires
manually annotated maps at lane-level accuracy for path planning. Furthermore,
its precise localization system is based on registering depth and reflectance mea-
surements with respect to a 3D map, which is recorded a-priori. In contrast, this
thesis targets scene understanding in the more general and challenging case where
no a-priori location-specific information is required.

2.2. Environment Perception

One major challenge for intelligent autonomous driving systems is the requirement
to perceive and interpret their environment. We focus on cheap and easy-to-employ
video-based perception and this section surveys the current state-of-the-art in this
field. The spectrum of the referenced works ranges from very task-specific methods
(e.g., lane detection) to more general scene understanding approaches (e.g., scene
segmentation and 3D interpretation).

2.2.1. Lane Detection

The pioneering works of Dickmanns et al. [51] made use of an extended Kalman
Filter [105] to recursively estimate lane parameters such as the steering angle, slip
angle, lateral offset from the road center, heading relative to the road tangent and
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Futurama (Geddes, 1939) Blocks World (Roberts, 1963) VaMP Car (Dickmanns, 1994)

Intersection (Rasmussen, 2003) Geom. Context (Hoiem, 2005) Urban Challenge (Boss, 2007)

Lane Detection (Aly, 2008) Segmentation (Ess, 2009) Road Detect. (Alvarez, 2010)

VIAC Challenge (Broggi, 2010) Activity Recogn. (Wang, 2009) Driverless Car (Google, 2011)

Figure 2.1.: Related Work in autonomous driving/environment perception.
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the horizontal and vertical road curvature parameters. The road was represented us-
ing a clothoid (or Euler spiral) which is commonly employed in road planning and
construction. As features, edge elements were extracted by correlating the image
with filter templates. Besides modeling the road shape with clothoids [51, 45, 176],
splines [4, 16, 45, 36] have been proposed to more accurately represent road seg-
ments that do not obey a clothoidal shape. Apart from edge features, other cues such
as color, lane width [8, 44] and adaptive binarization techniques [55, 27] have been
investigated. In order to remove the effect of distortions introduced by the perspec-
tive projection, the inverse perspective mapping has been proposed [27, 4, 66], con-
structing a virtual bird’s eye view of the road area ahead of the vehicle by means of
the homography between the road and the image plane. Due to the increase in com-
puting power over the last decades, the extended Kalman filter has been replaced by
the more powerful particle filter [44, 173, 185] for tracking the road parameters over
time. In contrast to the extended Kalman filter no linearization is required and multi-
modal distributions can be represented more accurately, given a sufficient number of
particles – or equivalently – computation time. To distinguish lane markings from
clutter such as cast shadows and damages in the road surface, robust methods have
been developed [4, 8, 185]. Furthermore, the use of stereo information has been
reported to additionally boost performance [16, 45, 44, 111, 177, 186] as it enables
distinguishing edge information on the road from edges located on objects and infras-
tructure. While early stereo-based approaches applied the idea of Helmholtz shear
[111] for computational reasons, recent progress in dense real-time stereo matching
[113, 64, 93, 133, 73] allows to directly estimate the free space and segment road
from objects and infrastructure [10, 12, 11] in an online fashion. Paetzold et al.
[147] have cast lane recognition as an optimal control problem where the vehicle
trajectory is directly optimized to avoid obstacles and maximize comfort at the same
time. The use of maps has been investigated bei Heimes, Huang et al. [90, 100].
They map line segments into the image using GPS as initialization to improve local-
ization accuracy [90]. Furthermore, map information in combination with a precise
GPS system have been key to successful navigation during the DARPA Urban Chal-
lenge [100]. For a more complete survey on recent developments in lane detection,
the reader is referred to [107, 137].
While all of the methods mentioned above focus on the detection of one to three

adjacent lanes, this thesis is concerned with the intersection scenario and handles
lane detection as a subset of intersection understanding.

2.2.2. Road Detection

While lane detection approaches try to fit parametric models to the lane boundaries,
methods for road detection are non-parametric in the sense that they directly produce
a segmentation of the image into road and non-road pixels. This is useful in cases of
less structured roads, for example when driving on dirt roads as required during the
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DARPA Grand Challenge [30]. Early approaches directly classify each pixel using
the gray value structure tensor as feature [199]. To increase robustness, different
cues such as color, vanishing points and the 3D scene layout have been proposed
and integrated over time [3]. Online learning approaches [2, 42] inspect a small road
patch in front of the vehicle, e.g., identified by lidar [42], to learn a statistical model
of the road ahead and classify image regions further away. According to Dahlkamp
et al. [42], such a mechanism turned out to be key for increasing the range of vision
in order to drive fast enough to win the 2005 DARPA Grand Challenge.
All state-of-the-art road detection methods focus on recognizing a single road and

work well in unstructured terrain where texture and color are discriminative enough
to distinguish road from vegetation or background. As will be shown in this thesis,
texture based classification alone, which is one of the features in our framework,
is insufficient for extracting higher-level information about intersections such as the
topology or geometry.

2.2.3. Intersection Recognition

Back in the early 1990’s the problem of intersection understanding has been rec-
ognized as a difficult one [41, 56, 77]. In the case of unstructured terrain, pattern
recognition techniques have been employed to partition the image into road and non-
road pixels and classify the shape of the road using template matching [41] or clas-
sification [154, 58]. To increase the field of view, active camera vision systems have
been proposed [104, 136]. For well marked roads, Enkelmann et al. [56] aim at re-
covering gaps between road markings as indications of intersections. Gengenbach
[77], Heimes [89, 90] andMueck [140] project intersectionmodels, which have been
manually annotated or obtained from maps [29] in a semi-supervised fashion, into
the image in order to localize the vehicle when the approximate location is known
up to a couple of meters. Richer prior knowledge has been incorporated into these
methods using description logic. In [102, 103], for example, a description logic base
for arbitrary road and intersection geometries has been developed. Based on map in-
formation, logically stated geometric constraints and road building regulations are
employed in a deductive inference scheme to answer questions like ’is this lane a
right turn lane?’ or ’which lane is the vehicle on?’.

All existing methods deal with very simple scenarios, neglecting clutter and oc-
clusions, or require an immense amount of labor intense prior knowledge. This
prevents them from being employed to real-world urban traffic situations. We argue
that road and lane features by themselves are insufficient to robustly infer the road
layout. Instead a more diverse set of feature cues such as the scene flow fields in-
duced by other participants [67], infrastructure elements [69], vanishing points and
scene labels [74] need to be considered in order to accomplish the task.
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2.2.4. Semantic Image Segmentation

While the approaches described so far are largely rooted in the domain of robotics
and intelligent vehicles, the perceptual side of scene understanding has received a
lot of attention in the computer vision and machine learning communities as well.
In the following, we introduce the most important developments in these fields and
relate the material presented in this thesis with respect to them.
The goal of semantic image segmentation [118, 117, 58, 174, 9, 203, 54, 21, 63,

81, 83, 83, 120, 170, 170, 181, 191] is to partition the input image into disjoint
regions and assign a unique class label (e.g., car, building, vegetation or sky) to
each of them. Contextual information is typically integrated by means of a Markov
random field model.
While these models reason directly at the pixel-level, they provide useful cues

which are exploited as features in the proposed approach. We aim to infer the full 3D
layout of traffic intersections from a monocular view including the accurate position
of buildings, the street and all vehicles.

2.2.5. 3D Indoor Scene Understanding

Several decades after Roberts first attempts [155] in 1963, the problem of 3D scene
understanding has witnessed novel interest thanks to the developments in object de-
tection, semantic segmentation and image classification, amongst others. A wide
variety of approaches have been proposed to recover the 3D layout of indoor scenes
in the form of 3D cuboids from a single image [126, 87, 183, 125, 168]. These meth-
ods mainly build on edges and image segments as features, and most of them rely
on the Manhattan world assumption [114, 157], i.e., edges in the image can be as-
sociated with vanishing points which are orthogonal to each other. With a moderate
degree of clutter, accurate geometry estimation has been shown for this scenario. To
improve performance, several methods have tried to explicitly model the room clut-
ter using 3D occupancy grids [87] or cuboids [88, 149, 125, 195]. Recently, depth
information from the Kinect sensor has been explored towards the goal of estimat-
ing support relationships between objects [171]. Context from observing people and
their interaction with the environment has been investigated by Breitenstein, Delaitre
et al. [25, 49] and a vertical structure prior has been proposed by Zeisl et al. [198].

Unfortunately, these approaches can only cope with limited amounts of clutter
(e.g., beds), and rely on the fact that indoor scenes closely satisfy the Manhattan
world assumption, i.e., walls (and objects) are aligned with the three dominant van-
ishing points. In contrast, outdoor scenes as considered in this thesis are often more
cluttered, 3D lines are not necessarily orthogonal [166, 15], and objects might not
always agree with the dominant orientations.
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2.2.6. 3D Outdoor Scene Understanding

Apart from the efforts towards geometric multi-view reconstruction [128, 40, 151]
for urban scenes, a large body of work has focused on estimating 3D popups from
single images captured outdoors [96, 94, 97, 98, 163, 161, 162, 164, 91, 142]. Of-
ten a Manhattan world [15, 114, 157] is assumed to infer vanishing points from
line segments. Reminiscent to the Blocksworld model, physical constraints between
objects such as ’object A supports object B’ are imposed in [84]. Large datasets
such as LabelMe [160] allow for similarity-based scene understanding [159], where
ground truth labels are transferred from the most similar scenes in the database.
Several methods have tried to infer the 3D locations of objects in outdoor scenar-
ios [95, 14, 50]. In order to estimate 3D object locations, tree-structured mod-
els have been proposed [95, 14] which also reason about the camera tilt. Mur-
phy et al. [141] exploit object co-occurrence statistics to improve object detection,
while Sudderth at al. [175] make use of hierarchical Dirichlet processes to model
visual scenes. The most successful approaches use tracklets to prune spurious detec-
tions by linking consistent evidence in successive frames [108, 101, 65]. However,
these models are either designed for static camera setups in surveillance applications
[101] or do not provide a rich scene description [108, 65]. Notable exceptions are
[37, 57, 190, 192, 193], which jointly infer the camera pose with respect to a sin-
gle ground plane and the location of objects in the scene. Unfortunately, most urban
scenes violate theManhattan world assumption and several approaches have focused
on estimating vanishing points in this more adversarial setting [166]. For example,
Barinova et al. [15] proposed to jointly perform line detection as well as vanishing
point, azimuth and zenith estimation.
Unfortunately, most of the existing 3D scene layout estimation techniques are

mainly qualitative, do not model object dynamics, suffer from clutter and lack the
level of accuracy necessary for real-world applications such as autonomous driving
or robot navigation. Existing methods that take objects into account usually model
the scene in terms of a simple ground plane and thus are not able to draw conclusions
from the complex interplay of the objects with the larger scene layout. In contrast,
we propose a method that is able to extract accurate geometric information by rea-
soning jointly about static and dynamic elements as well as their interplay. Towards
this goal we develop a rich image likelihood model that takes advantage of vehicle
tracklets, vanishing points, segmentations, scene flow and occupancy grids.

2.2.7. Object Tracking and Activity Recognition

For a long time dynamic objects have been considered either in isolation [153, 65,
20, 6, 7, 13, 43, 112, 131] or jointly using simple motion models [101, 24, 32, 57,
109, 129, 130, 167, 172, 194, 200, 197, 202]. Only very recently, social interac-
tion between individuals has been taken into account [196, 38, 37, 124]. Choi et al.
[38] introduce a hierarchy of activities, modeling the behavior of groups and Pelle-
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grini et al. [148] explicitly account for collisions. Methods for unsupervised activity
recognition and abnormality detection [115, 184] are able to recover spatio-temporal
dependencies from a static camera mounted on top of a building.
While promising results have been shown, the interplay of objects with their en-

vironment is neglected and the focus is put on surveillance scenarios with a fixed
camera viewpoint, limiting applicability. In contrast, the method developed in this
thesis infers semantics at a higher level such as multi-object traffic patterns at inter-
sections, in order to improve the layout and object estimation processes. Importantly,
we do inference over intersections that we have never seen before and our viewpoint
is substantially lower compared to the surveillance scenario, which renders the prob-
lem very challenging.
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This thesis tackles the problem of estimating complex 3D traffic scenes (e.g., inter-
sections) from video sequences. The sequences have been captured from a moving
vehicle as illustrated in Fig. 1.3(c). Here, 2D refers to observations in the image plane
and 3D refers to coordinates in bird’s eye perspective. We assume a flat road surface
and model the scene layout and all objects in the road coordinate system. The road
coordinate system is located directly below the left camera in the last frame using the
same yaw angle and coordinate axis definition (x = right, y = down, z = forward).
All points on the road satisfy y = 0. An illustration of the road coordinate system
with respect to the camera is given in Fig. 3.1(b) and Fig. 4.3.

3.1. Geometric Model

The proposed model is based on our observation of typical traffic scenes: We as-
sume that the global layout of the scene is dominated by two, three or four roads
intersecting at a single point, the center of the intersection. All vehicles are either
parked at designated parking areas at the side of the road or they drive on lanes and
adhere to some basic traffic rules such as right-hand driving. Lanes are modeled
using B-splines and connect every inbound street with every outbound street. Road
boundaries determine the border between drivable regions and areas that are likely
to contain buildings and infrastructure. We model seven different scene topologies
and use the following parameters to describe the intersection:

• Topology. The discrete topology variable κ distinguishes between the scene
topologies ’straight’, ’turn’, ’T-intersection’ and ’X-intersection’ as illustrated
in Fig. 3.1(a). κ ∈ {1, . . . , 7}.

• Center of intersection. The intersection center c defines the point where all
roads join and is specified in terms of the road coordinate system, depicted in
Fig. 3.1(b). c = (x, z)T ∈ R2.

• Street width. As our depth measurements are very noisy and the size of the
opposing streets are often not observable, we assume that all streets share
the same width w. The consequences of this assumption are analyzed in our
experimental evaluation. w ∈ R+.

• Rotation. The rotation r accounts for the observer’s yaw orientation with
respect to the incoming street. r ∈ [−π

4
,+π

4
].
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1 2 3

4 5 6

7

(a) Topology Model κ ∈ {1, . . . , 7} (b) Geometry Model (for κ = 4)

Figure 3.1.: Road Topology and Geometry. (a) shows the 7 different topologies κ we con-
sider: Straights (1), turns (2,3), T-intersections (4-6) and X-intersections (7). The gray shaded
areas illustrate the flexibility of the crossing street. (b) shows the geometric parameters of the
model for κ = 4. All modeling is done in bird’s eye perspective (road plane coordinates).

• Crossing angle. The crossing angle α refers to the relative orientation of the
crossing street. Alternate intersection arms are forced to be collinear, which
is a reasonable assumption. α ∈ [−π

4
,+π

4
].

All variables are illustrated in Fig. 3.1. In the following they will be subsumed using
the road layout variableR = {κ, c, w, r, α}.

Lane Model: An important contribution of the proposed model is to account for
the interplay of dynamic objects (i.e., vehicles) with their environment (e.g., streets
or buildings). This is realized by assuming that, given the road layout, all traffic
participants can be explained as either driving on designated lanes, which we model
with the help of B-splines, or being parked at a parking area at the side of the road.
For simplicity, we restrict our focus to two lanes per street, one incoming and one

outgoing lane for each intersection arm. Streets with multiple lanes can be repre-
sented in our model by means of a larger street width w. As vehicles are allowed
to cross the intersection in any possible direction, we have K(K − 1) lanes for a
K-armed intersection. For each street we model two parking areas at the side of
the road, one at the left side and one at the right side, yielding 2K parking areas in
total. Two (out of six) lanes of a 3-armed intersection as well as one parking area
are illustrated in Fig. 3.2(a).
Lane centerlines are modeled using quadratic B-splines [48] governed by five con-

trol points {q1, . . . ,q5} which are located at the center of the lane as illustrated in
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(a) Lanes and Parking Lots (b) B-Spline Control Points
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(c) B-Splines

Figure 3.2.:LaneModel. This figure illustrates the location of the lane centerlines with respect
to the road layout using B-splines. (a) shows 2 out of 6 lanes and 1 out of 6 parking areas for
a 3-armed intersection. All lanes and parking areas are discretized at 1m intervals to facilitate
inference. The placement of the 5 control points that define a lane spline is depicted in (b). A
set of quadratic B-splines with knot vector t is illustrated in Fig. 3.2(c).

Fig. 3.2(b), with q3 the intersection center. Using de Boor’s recursion formula [48],
a spline can be recursively expressed as

s(t) =

5∑
i=1

bi,2(t)qi

bi,j(t) =
t− ti

ti+j − ti
bi,j−1(t) +

ti+j+1 − t
ti+j+1 − ti+1

bi+1,j−1(t)

bi,0(t) = [ti ≤ t < ti+1] (3.1)

where t ∈ [0..1] is the curve parameter, ti is the i’th entry of the knot vector t,
b(t) are the basis B-splines, qi ∈ R2 is the i’th control point as illustrated in Fig.
3.2(b), and [·] denotes the Iverson bracket. The knot vector, controlling the shape of
the B-spline through Eq. 3.1, is chosen as t = (0 0 0 0.1 0.9 1 1 1)T which forces
the spline to interpolate all but the central control point. Empirically this resulted
in realistic curvatures as illustrated in Fig. 3.2(c). We refer the reader to [48] for
details.

Given all lane splines and all parking areas, we equidistantly define discrete ve-
hicle locations (s) at 1m intervals as illustrated in Fig. 3.2(a). This makes inference
very efficient as dynamic programming algorithms can be employed for calculating
marginals and MAP estimates. At inference, the vehicle locations are obtained by
assigning all detected objects to one of these locations. Note that this assignment
links the object detections with the static elements in the scene (e.g., road, buildings,
vanishing points).
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3.2. Image Evidence

Besides the geometric model, which is entirely determined by the road parameters
R = {κ, c, w, r, α}, we define a probabilistic model to explain the evidence E in
the image. The observations are collected from a set of monocular and stereo feature
cues which we introduce in the following.

First, we detect objects and track them over time, yielding vehicle tracklets, which
we denote by T . They provide us with information about where the lanes and the
parking areas might be located, which are central in our geometric model described
in Section 3.1. Furthermore, vanishing points V give useful hints about the direction
of the streets since many scene elements such as road markings or building facades
are often aligned with the principal axes of the scene. Segmenting the image into se-
mantic categories S such as road, background or sky, provides valuable information
about the extend of the roads and urban canyons.

In addition to the monocular feature cues described so far, we also leverage low-
level stereo features. For instance, 3D scene flow F is extracted as a cue for moving
objects in the scene and an occupancy grid O provides complementary hints at the
location of buildings and infrastructure alongside the road.

We summarize all feature cues as image evidence E = {T ,V,S,F ,O}, which
we will define in the following. For details on the feature extraction pipeline, we
refer the reader to Chapter 4.

Vehicle Tracklets: Let T denote the set of vehicle tracklets T = {t1, . . . , tNt}
that have been detected in the sequence. A vehicle tracklet t is defined as a sequence
of object detections projected into bird’s eye perspective t = {d1, . . . ,dMd} with
d = (fd,md,Sd,od). Here, fd ∈ N is the frame number and md ∈ R2,Sd ∈
R2×2 are the mean and covariance of the Gaussian distributionN (m,S) describing
the object location in road coordinates. od ∈ ∆7 are the parameters of a categorical
distribution over eight possible viewpoints (estimated by the object detector) with
the unit N -simplex ∆N defined by

∆N =

{
x ∈ RN+1

∣∣∣∣∣
N+1∑
i=1

xi = 1 ∧ ∀i : xi ≥ 0

}
(3.2)

Vanishing Points: Furthermore, we detect up to two (Nv ∈ {0, 1, 2}) dominant
vanishing points V = {v1, . . . , vNv} and represent them by a single rotation an-
gle around the yaw axis of the road coordinate system vi ∈ [0, π). The vertical
vanishing point is non-informative for our task and not considered here.

Semantic Scene Labels: We define the set of semantic labels S = {s1, . . . , sNs}
by subdividing the image into Ns patches (or ’superpixels’) of size ns × ns pixels.
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For each patch, si ∈ ∆2 denotes the discrete probability distribution over the se-
mantic categories road, background and sky. This feature is computed for the last
frame in each sequence as this gives us the best possible view at the scene.

Scene Flow: The scene flow F = {f1, . . . , fNf } features capture the 3D mo-
tion in the scene, compensated for the observer’s egomotion. Each flow vector
f = (pf ,qf ) is defined by its location pf ∈ R2 and velocity qf ∈ R2 on the
road plane. All velocity vectors are normalized to ‖qf‖2 = 1 as our scene flow
model does not explicitly reason about vehicle velocities.

Occupancy Grid: The occupancy grid O = {ρ1, . . . , ρNo} is represented by No
cells of size no × no meters. Each cell ρi ∈ {−1, 0,+1} can be either free (−1),
occupied (+1) or unobserved (0).

3.3. Probabilistic Model

By assuming all observations E = {T ,V,S,F ,O} to be conditionally independent
given the road layoutR, the joint distribution over the image evidence E and the road
parametersR factorizes as

p(E ,R|Θ) = p(R|Θ)

︸ ︷︷ ︸
Prior

[
Nt∏
i=1

p(ti|R,Θ)

]
︸ ︷︷ ︸

Vehicle Tracklets

×
Nv∏
i=1

p(vi|R,Θ)︸ ︷︷ ︸
Vanishing Points

Ns∏
i=1

p(si|R,Θ)︸ ︷︷ ︸
Scene Labels

×
Nf∏
i=1

p(fi|R,Θ)︸ ︷︷ ︸
Scene Flow

No∏
i=1

p(ρi|R,Θ)︸ ︷︷ ︸
Occupancy Grid

(3.3)

where Θ denotes the set of all parameters in our model. This is also illustrated in
the graphical model shown in Fig. 3.3.

3.3.1. Prior

The prior on road parametersR factorizes as

p(R|Θ) = p(κ|Θ)p(c, r, w|κ,Θ)p(α|κ,Θ) (3.4)
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Figure 3.3.: Directed Graphical Model. This figure shows the factorization of the joint prob-
ability distribution in Eq. 3.3 using a directed graph. Random variables are depicted with cir-
cles, observed variables are filled and dependencies between random variables are highlighted
using directed arrows. The plate notation is adopted to denote copies.

with

κ ∼ Cat(ξp) (3.5)

(c, r, logw)T|κ ∼ N
(
µ(κ)
p ,Λ(κ)

p

−1
)

(3.6)

α|κ ∼ fκ(α, σα)λp (3.7)

where Cat(·) denotes the categorical distribution

p(κ|Θ) = Cat(κ|ξp) = ξp,κ with
7∑
i=1

ξp,i = 1 (3.8)

and c, r and w are modeled jointly to capture correlations between the variables. w
is modeled using a log-Normal distribution due to its positivity constraint. Empir-
ically we found α to be highly multi-modal and model it using kernel density esti-
mation fκ(α, σα) with kernel bandwidth σα. All parameters ξp,µp,Λp, λp ∈ Θ
are learned from training data using real-world intersections labeled in GoogleMaps
aerial imagery as described in Section 5.3. Note that the symmetric positive definite
precision matrix Λp has to be parameterized appropriately. For details on the pa-
rameterization and the learning procedure the reader is referred to Section 3.5. The
likelihood terms in Eq. 3.3 are described in the following.
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3.3.2. Vehicle Tracklets

Recall that a vehicle tracklet t is defined as a sequence of object detections pro-
jected into bird’s eye perspective t = {d1, . . . ,dMd} with object detections d =
(fd,md,Sd,od), where fd ∈ N is the frame number, md ∈ R2,Sd ∈ R2×2 de-
scribe the object location in road coordinates and od ∈ ∆7 is the discrete object
orientation distribution. Let l be an additional latent variable representing either
the lane or the parking area where tracklet t has been observed as illustrated in Fig.
3.2(a). Assuming a uniform prior on allK(K − 1) lanes and all 2K parking areas

l ∼ U({1, . . . ,K(K − 1) + 2K}) (3.9)

the tracklet likelihood is defined as the marginal distribution

p(t|R,Θ) =

L∑
l=1

p(t, l|R) (3.10)

p(t, l|R) = p(l|R)p(t|l,R) ∝ p(t|l,R) (3.11)

where the tracklet index i and the dependency on the parameters Θ have been
dropped for clarity of notation. In order to keep inference tractable, we marginalize
over l when estimating the road model parametersR. When estimating the location
of individual objects in the scene, the posterior over l becomes important and is ex-
plicitly computed. The tracklet distribution conditioned on the lane and road layout
is given by

p(t|l,R) =

{
pl(t|l,R) if l ≤ K(K − 1) (lane)
pp(t|l,R) ifK(K − 1) < l ≤ 2K (parking) (3.12)

where pl(t|l,R) and pp(t|l,R) denote the likelihood terms for the lanes and park-
ing areas, respectively.
In order to evaluate the tracklet posterior for lanes pl(t|l,R), all object detections

t = {d1, . . . ,dMd} must be associated to locations on the spline of lane l. As this
subroutine is called very often during inference (i.e., once per sample and observed
tracklet) and for maintaining efficiency, we discretize the lane spline at 1m intervals
and augment the observation model with an additional discrete latent variable s per
object detection d which indexes the location on the lane as illustrated in Fig. 3.2(a).
Note that a 1m discretization interval is sufficient as for most viewpoints the obser-
vation noise will be larger than 1m. As dynamical model we employ a left-to-right
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Hidden Markov Model. Marginalizing over all hidden states {s1, . . . , sMd} yields

pl(t|l,R) =
∑

s1,...,sMd

pl(t, s1, . . . , sMd |l,R)

=
∑

s1,...,sMd

p(s1)pl(d1|s1, l,R)

×
Md∏
j=2

p(sj |sj−1)pl(dj |sj , l,R) (3.13)

whereMd denotes the number of object detections in the tracklet and tracklets are al-
lowed to start anywhere on the lanewith equal probability, i.e., s1 ∼ U({1, . . . ,Ml}),
withMl the number of spline points on lane l. Our motion model is simple, yet ef-
fective: By constraining all tracklets to move forward with uniform probability

p(sj |sj−1) =

{ 1
Ml−sj−1+1

if sj ≥ sj−1

0 otherwise
(3.14)

the model is able to distinguish the lane of a crossing street purely based on the
vehicle’s motion. This is of importance as distance measurements of far objects are
noisy to an extend which is preventing the distinction from the object location alone.
The emission probability for lanes pl(d|s, l,R) is factorized into the probability
over object location md,Sd and object orientation od

pl(d|s, l,R) = p(md|s, l,R,Sd) p(od|s, l,R) (3.15)

For clarity of notation the detection index j has been dropped. The 3D object loca-
tion in Eq. 3.15 is modeled as a Gaussian mixture

p(md|s, l,R,Sd) = (1− ζt) pin(md|s, l,R,Sd)
+ ζt pout(md|s, l,R) (3.16)

with inlier and outlier distributions defined by

pin(md|s, l,R,Sd) ∝ exp

(
−1

2
(φt −md)TS−1

d (φt −md)

)
pout(md|s, l,R) ∝ exp

(
− 1

2σ2
out

mT
dmd

)
, (3.17)

respectively. Here, φt(s, l,R) ∈ R2 denotes the 2D location of spline point s
on lane l according to the B-spline model presented in Section 3.1, ζt ∈ Θ is the
outlier probability and σout ∈ Θ is a parameter controlling the ’spread’ of the outlier
distribution.
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3.3. Probabilistic Model

For the object orientation likelihood, we impose a categorical distribution over
object orientations od

p(od|s, l,R) = Cat(ϕt(s, l,R)|od) = od,ϕt(s,l,R) (3.18)

where ϕt(s, l,R) ∈ {1, . . . , 8} selects the orientation bin that represents the rela-
tive direction the object would be viewed by the observer when it was driving into
the direction of the lane. Intuitively, Eq. 3.18 encourages lane associations such that
the estimated vehicle orientation and the direction of the lane coincide. The relative
viewing direction is computed from the tangent of lane l at spline point s.
For parking areas, all cars are assumed to be static. Thus, no dynamics needs to

be incorporated into the observation model and the tracklet’s parking area likelihood
reduces to

pp(t|l,R) =
∑
s

pp(t, s|l,R)

=
∑
s

Md∏
j=1

p(s) pp(dj |s, l,R) (3.19)

assuming a uniform prior p(s) on the location s within parking area l. Furthermore,
for parked cars we do not make any assumption about the orientation. Thus, the
emission probability becomes

pp(d|s, l,R) =
1

8
p(md|s, l,R,Sd) (3.20)

with p(md|s, l,R,Sd) as in Eq. 3.16.

3.3.3. Vanishing Points

Assuming all Nv ∈ {0, 1, 2} vanishing points V = {v1, . . . , vNv}, represented by
their orientations on the ground plane vi ∈ [0, π), to be independent given the road
layoutR, we define

p(v|R,Θ) ∝ ζv + (1− ζv) exp (−λvφv(v,R,Θ)) (3.21)

with orientation error

φv(v,R,Θ) = 1− cos(2v − 2ϕv(R)) (3.22)

where ζv ∈ Θ is a small constant capturing outlier detections. The last term in
Eq. 3.21 correspond to the cyclic von Mises distribution [22] up to a normalizing
factor that depends on the zeroth-order Bessel function of the first kind. ϕv(R) is
the orientation of the closest street, based on the current road model configuration
R, and λv ∈ Θ is a precision parameter and controls the importance of this term.
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3. Urban Scene Understanding

Figure 3.4.: Illustration of Scene Label Likelihood. This figure shows the semantic seg-
mentation returned by a joint boosting classifier (top) and the ’virtual’ image segmentation
corresponding to the current road layout configurationR (bottom). The semantic scene label
likelihood in Eq. 3.23 encourages a large overlap between the virtual segmentation and the
classification result.

As lines belonging to a vanishing point are undirected, i.e., v ∈ [0, π) instead of
v ∈ [0, 2π), a factor of 2 is added in Eq. 3.22 to accommodate this fact.

3.3.4. Semantic Scene Labels

Let s ∈ S represent the (discrete) distribution over the three different semantic
classes ’road’, ’background’ and ’sky’ for a particular image patch. The semantic
label likelihood for that patch is modeled as

p(s|R,Θ) ∝ exp

(
λs
Ns

ws,φs(R) sφs(R)

)
(3.23)

where λs ∈ Θ is a parameter controlling the importance of the semantic label cue,
φs(R) ∈ {1, 2, 3} picks the class label corresponding to the same pixel in a ’virtual’
segmentation of the scene according to the current road model configurationR and
ws ∈ R3 is a weight vector. We assume that the background (i.e., buildings, trees)
starts directly behind the curb of the road and buildings reach a height of four sto-
ries on average, thereby defining the background area which separates the sky from
the road region. Facades adjacent to the observer’s own street are not considered.
Despite the fact that this approximation seems quite crude, many inner-city scenes
in our dataset follow this scheme closely. Fig. 3.4 illustrates the scene labeling re-
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3.3. Probabilistic Model

turned by our boosting classifier described in Section 4.3 (left) as well as the labeling
generated from the re-projection of our model (right). A large overlap corresponds
to a large likelihood in Eq. 3.23.

3.3.5. Scene Flow

Compared to the tracklet observations, the 3D scene flow likelihood directly explains
all moving objects in the scene with the road model described by R. However, in
contrast to vehicle tracklets, objects that do not fit the appearance model of the car
detector (e.g., trucks, tractors, quad bikes, motorbikes) and hence have been missed
at detection time are considered here as well, unless they do not move.

Recall that each 3D flow vector f = (pf ,qf ) is defined by its location pf and
normalized velocity qf on the road plane. The probability of a scene flow vector
depends on its proximity to the closest lane and on howwell its velocity vector aligns
with the tangent of the respective B-spline at the corresponding foot point

p(f |R,Θ) ∝ φf (f ,R,Θ)
1

Nf (3.24)

where

φf (f ,R,Θ) = ζf exp

(
−‖pf‖

2
2

2σ2
out

)
+ (1− ζf ) exp

(
−φ̃f (f ,R,Θ)

)
(3.25)

and

φ̃f (f ,R,Θ) = −λf1‖pf −ϕf (pf ,R)‖22 − λf2(1− qT
f ϕ̃f (pf ,R)) (3.26)

with parameters ζf , λf1, λf2, σout ∈ Θ. Here, ζf accounts for outliers and λf1 and
λf2 control the importance of the location and the orientation term, respectively.
Similar to the vehicle tracklet model from Section 3.3.2, σout denotes the width of
the outlier distribution. The functions ϕf (pf ,R) ∈ R2 and ϕ̃f (pf ,R) ∈ R2

return the spline foot point and tangent vector at the location closest to pf , respec-
tively. This is illustrated in Fig. 3.5(a). The dependencies are modeled as a hard
mixture, i.e. for each flow vector we select the spline l that maximizes Eq. 3.24.

3.3.6. Occupancy Grid

Free space information is incorporated by means of a 2D occupancy grid O =
{ρ1, . . . , ρNo}, modeled in road coordinates (y = 0), withNo the number of cells in
the grid. Here, our assumption is that the road area should coincide with free space
while non-road areas may be covered by buildings or vegetation. Each cell ρ in the
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3. Urban Scene Understanding

(a) Scene Flow Likelihood (b) Occupancy Grid Likelihood

Figure 3.5.: Scene Flow and Occupancy Grid Observation Model. (a) The proposed scene
flow likelihood encourages flow vectors to agree with the lane geometry. (b) The geometric
prior, a ’template’ of freespace and occupied areas, determines the occupancy grid likelihood.

grid takes one of three values ρ ∈ {−1, 0,+1} representing free space, unobserved
areas and obstacles. The occupancy likelihood of cell ρ is defined as

p(ρ|R,Θ) ∝ exp

(
λo
No

ρ · φo(R)

)
(3.27)

where φo(R) ∈ {wo,1, wo,2, wo,3} is a mapping that for any cell ρ returns the value
(or weight) of a model-dependent geometric prior expressing the belief on the loca-
tion of free space (i.e., road) and buildings alongside the road. The geometric prior
is illustrated in Fig. 3.5(b) for the case of a right turn. Intuitively, it encourages free
space where the road is located and obstacles elsewhere, with a preference towards
the roadside region. λo ∈ Θ controls the strength of this term.

3.4. Inference

Given the image evidence E , we are interested in determining the underlying road
layoutR and the location of cars C = {(l, s)} in the scene

R̂, Ĉ = argmax
R,C

p(R, C|E ,Θ) (3.28)

where l denotes the lane index and s contains the spline points of all detections in a
tracklet. Unfortunately, the posteriors involved in this computation have no analyt-
ical solution and can’t be solved in closed form. Thus we approximate them using
Metropolis-Hastings sampling [5, 78, 86, 123, 79]. A short review on the sampling
techniques employed in this thesis is given in Appendix A. To keep computations
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3.4. Inference

Local Metropolis Proposals (33%)
1. Vary center of crossroads c (σc)
2. Vary width of all roads w (σw)
3. Vary angle of crossing street α (σα)
4. Vary overall orientation r (σr)
5. Vary center c and width w jointly
6. Vary center c, width w, angle α and rotation r jointly

Inter-Topology Metropolis Proposals (33%)
7. Re-sample κ uniformly

Global Metropolis-Hastings Proposals (33%)
8. Re-sample all parametersR = {κ, c, w, r, α} from the prior

Table 3.1.: Metropolis-Hastings Proposals for Inference. We randomly propose one of the
abovemoveswith probability given in brackets and accept themove according to the acceptance
probability in Eq. 3.33.

tractable, the problem is split into two sub-problems: First, we estimate R while
marginalizing C

R̂ = argmax
R

p(R|E ,Θ) = argmax
R

∑
C

p(R, C|E ,Θ) (3.29)

Given an estimate ofR, the object locations C can be inferred as

Ĉ = argmax
C

p(C|E ,R,Θ) (3.30)

Both steps are detailed in the following two subsections. Throughout inference, the
calibration parameters, the camera poses and the ground plane are assumed to be
known, i.e., estimated with sufficient accuracy, and fixed.

3.4.1. Inferring the Road Layout

Our first goal is to estimate the road layoutR given the image evidence E

R̂ = argmax
R

p(R|E ,Θ) (3.31)

where
p(R|E ,Θ) ∝ p(E ,R|Θ) (3.32)

as p(E) is constant. For computing the maximum a-posteriori estimate in Eq. 3.31
we run a Markov chain for ninfer iterations and pick the sample with the highest
probability. As the normalization constant p(E) does not depend onR, it cancels in
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3. Urban Scene Understanding

Algorithm 1 Tracklet Marginals (Forward Algorithm)
Input: E = [e1, . . . , eMd ], Ej,s ∝ pl(dj |s, l,R)
Output: log pl(t|l,R)
α1 ← 1

Ms
e1

β ←
∑Ms
k=1 α1,k, α1 ← 1

β
α1, log pl ← log β

for j ← 2, . . . ,Md do
for k ← 1, . . . ,Ms do

αj,k ← Ej,k
1
k

∑k
k′=1 αj−1,k′

β ←
∑
k αj,k, αj ←

1
β
αj , log pl ← log pl + log β

return log pl

the sampler’s acceptance ratio

pMH(R′|R) = min

{
1,
p(R′|E ,Θ)q(R|R′,Θ)

p(R|E ,Θ)q(R′|R,Θ)

}
= min

{
1,
p(E ,R′|Θ)q(R|R′,Θ)

p(E ,R|Θ)q(R′|R,Θ)

}
(3.33)

Here, q(R′|R,Θ) denotes the proposal distribution and R′ is the proposed state
computed from the old stateR using one of the moves in Table 3.1. A short tutorial
on sampling techniques and Metropolis-Hastings can be found in Appendix A.

We exploit a combination of local, inter-topology and global moves to obtain a
well-mixing Markov chain. While local moves modify R slightly, global moves
sampleR directly from the prior. This ensures a quick traversal of the search space,
while still exploring local modes. For local moves we choose symmetric proposals
in the form of Gaussians centered on the previous state such that the proposal ratio
in Eq. 3.33 cancels. To avoid trans-dimensional jumps [82], we do not alter the
existence of the variable α. Instead, we include α in all models, also when κ = 1.
Table 3.1 gives an overview of themove categories picked at random. Note that while
the local and inter-topology moves are symmetric and thus purely ’Metropolis’, the
global moves result in a proposal distribution ratio q(R|R′,Θ)/q(R′|R,Θ) 6= 1.

Each sample requires the evaluation of p(R|E ,Θ) up to a normalizing constant.
The marginalization in Eq. 3.13 can be carried out efficiently using the forward
algorithm [22] for hidden Markov models, which for the dynamical model in Eq.
3.14 is given in Algorithm 1. Numerical instabilities due to limitations in the floating
point arithmetic precision are mitigated through proper re-normalization in each step
of the algorithm.
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3.4. Inference

Algorithm 2 Vehicle Locations (Viterbi Decoding)
Input: E = [e1, . . . , eMd ], Ej,s ∝ pl(dj |s, l,R)
Output: {s1, . . . , sMd} = argmaxs1,...,sMd

pl(s1, . . . , sMd |t, l,R)

δ1 ← 1
Ms

e1

for j ← 2, . . . ,Md do
for k ← 1, . . . ,Ms do

δj,k ← Ej,k maxk′=1,...,k δj−1,k′

ψj,k ← argmaxk′=1,...,k δj−1,k′

sMd ← ψMd,Ms

for j ←Md − 1, . . . , 1 do
sj ← ψj+1,sj+1

return {s1, . . . , sMd}

3.4.2. Inferring the Location of Objects

Given the road model R, we are interested in recovering the location of cars C =
{(l1, s1), . . . , (lNt , sNt)}, where li denotes the lane index and si are the spline in-
dices of all detections in tracklet i

Ĉ = argmax
C

p(C|E ,R,Θ) (3.34)

Conditioned onR, all tracklets become independent such that the inference problem
decomposes into sub-problems. Neglecting the tracklet index i and the dependency
on Θ for notational clarity and observing that p(t) is constant, l can be inferred by
marginalizing over the object locations {s1, . . . , sMd} on the lane spline

l̂ = argmax
l

p(l|t,R) = argmax
l

p(t, l|R) (3.35)

with p(t, l|R) defined by Eq. 3.11. Given l, the object locations on the lane spline

ŝ1, . . . , ŝMd = argmax
s1,...,sMd

pl(s1, . . . , sMd |t, l,R)

= argmax
s1,...,sMd

pl(t, s1, . . . , sMd |l,R) (3.36)

are easily inferred using Viterbi decoding for hidden Markov models. The proce-
dure is sketched in Algorithm 2, assuming uniform forward motion probability as
discussed in Section 3.3.2.
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3.5. Learning

A principled way to estimate the parameters Θ of our model is to learn them from
training data using maximum likelihood. Let us assume we are given a training set
(E,R) of cardinalityD, with E = {E1, . . . , ED} denoting the image evidence and
R = {R1, . . . ,RD} the annotated road layouts for each sequence, respectively. We
perform ten-fold cross-validation. As we have 113 annotated sequences in total this
leads toD ≈ 113−11 = 102 training sequences per fold. For the ease of indexing,
let us further assume that all model parameters are absorbed into the parameter set
Θ = {θ1, . . . , θMΘ}, with θi denoting a single parameter (e.g., λt, λv , . . . ) and
MΘ is the total number of parameters.

3.5.1. Learning the Model Parameters

Given a training fold (E,R), our goal is to find the parameter set Θ̂ that maximizes
the likelihood of the data

Θ̂ = argmax
Θ

p(E,R|Θ) (3.37)

with

p(E,R|Θ) =

D∏
d=1

p(Ed,Rd|Θ) (3.38)

Unfortunately, maximizing Eq. 3.38 directly for Θ is intractable due to the integral
overR that appears in the partition function

Z(Θ) =

∫
p(E,R|Θ)dR (3.39)

Instead, let us define a Gibbs random field by re-writing p(Ed,Rd|Θ) as

p(Ed,Rd|Θ) =
1

Zd(Θ)
exp (−Ψ(Ed,Rd,Θ)) (3.40)

where Ψ(Ed,Rd,Θ) is the sum of a set of potential functions {ψi}. Details on the
shape of the individual potentials, corresponding to the prior and the likelihoods
from Section 3.3 will be given in Section 3.5.2 and the resulting factor graph is
depicted in Fig. 3.6. Zd(Θ) is the partition function corresponding to data point d

Zd(Θ) =

∫
exp(−Ψ(Ed,R,Θ))dR (3.41)

necessary for turning p(Ed,Rd|Θ) into a proper distribution. Note that in Eq. 3.41
and in the following we abuse the integral over R to express integration and sum-
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mation in order to avoid clutter in the notation. Substituting Eq. 3.40 into Eq. 3.38,
we obtain

p(E,R|Θ) =
1

Z(Θ)
exp (−Ψ(E,R,Θ)) (3.42)

with

Ψ(E,R,Θ) =

D∑
d=1

Ψ(Ed,Rd,Θ) (3.43)

and Z(Θ) =

D∏
d=1

Zd(Θ) (3.44)

The partition functions in Eq. 3.41 and Eq. 3.44, required for evaluating Eq. 3.38,
are still intractable to compute. However, it is possible to approximate the gradients
of the log-likelihood function

L(E,R,Θ) =

D∑
d=1

log p(Ed,Rd|Θ)

= −
D∑
d=1

(Ψ(Ed,Rd|Θ) + logZd(Θ)) (3.45)

which can be optimized as surrogate for Eq. 3.38. Taking the partial derivative of
L(E,R,Θ) with respect to parameter θi, we obtain

∂

∂θi
L(E,R,Θ) = −

D∑
d=1

(
∂

∂θi
Ψ(Ed,Rd,Θ) +

∂

∂θi
logZd(Θ)

)
(3.46)

While the first term in this sum can be evaluated easily as it only depends on the
potential functions themselves, the second term seems intractable at first glance as
it involves derivatives of the log-partition function. By re-arranging the terms, how-
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ever, we obtain

∂

∂θi
logZd(Θ)

=
1

Zd(Θ)

∂

∂θi
Zd(Θ)

=
1

Zd(Θ)

∫
∂

∂θi
exp(−Ψ(Ed,R,Θ))dR

= − 1

Zd(Θ)

∫
exp(−Ψ(Ed,R,Θ))

∂

∂θi
Ψ(Ed,R,Θ)dR

= −
∫
p(Ed,R|Θ)

∂

∂θi
Ψ(Ed,R,Θ)dR

= −
〈
∂

∂θi
Ψ(Ed,R,Θ)

〉
p(Ed,R|Θ)

(3.47)

Here, the derivative with respect to θi and the integral operator can be swapped be-
cause the partial derivative of the integrand is continuous and the limits of integration
do not depend on θi (Leibniz integral rule). Thus, the derivative of the log-partition
function can be expressed as the expectation of the potential derivatives with re-
spect to the model distribution p(Ed,R|Θ). In contrast to [92, 156] the potentials
Ψ additionally depend on Ed in our case. While it is impossible to evaluate this ex-
pression exactly, it can be approximated by drawing samples using Markov Chain
Monte Carlo as described in Section 3.4. Sampling exhaustively from the model
distribution is computationally prohibitive. However, it has been shown [92] that
when starting from the data distribution, a couple of sampling iterations, say nlearn
iterations, are sufficient to draw the samples closer to the (current) model distribu-
tion. This change is sufficient to approximate the gradients well enough. Given the
approximation to the gradient, we take niter steps into its direction

δθi = −ηi
D

D∑
d=1

(
∂

∂θi
Ψ(Ed,Rd,Θ) +

〈
∂

∂θi
Ψ(Ed,R,Θ)

〉
p(Ed,R|Θ)

)
(3.48)

where ηi is the learning rate controlling the speed of convergence. The choice of
ηi is subtle: When ηi is chosen too small, the parameters converge very slowly. On
contrary, values that are too large can easily cause parameter divergence. Further-
more, choosing a single η for all parameter dimensions iwill inherently lead to slow
convergence rates as η has to be chosen small enough such that convergence for all
parameters is guaranteed.

Thus, we employ a simple optimization heuristic: We initialize all ηi small enough
(ηi = 10−6) and analyze the normalized second derivative of each parameter, which
is an indicator for the smoothness of the learning curves, in a time interval of 10
iterations. For all smooth curves we multiply ηi by a factor of 10 while we divide all
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Figure 3.6.: Factor Graph. This figure shows the factor graph representation of the directed
graphical model in Fig. 3.3 corresponding to the distribution in Eq. 3.49. Dependencies be-
tween random variables are expressed using factor nodes (black squares) and the latent tracklet
variables s and l have been marginalized for clarity of presentation.

ηi’s by 10 in case the curves become noisy. In practice, this algorithm led to quick
and stable convergence. We also observed the procedure to be largely independent
of the initialization, which has been empirically chosen for all parameters.

3.5.2. Energy Potentials and Derivatives

For applying the learning procedure described in Section 3.5.1, all potential func-
tions1 need to be properly defined and their derivatives with respect to the model
parameters Θ must be calculated. The joint potential Ψ(E ,R,Θ) from Eq. 3.40
decomposes as

Ψ(E ,R,Θ) = ψp(R,Θ) + ψt(T ,R,Θ)

+ ψv(V,R,Θ) + ψs(S,R,Θ)

+ ψf (F ,R,Θ) + ψo(O,R,Θ) (3.49)

using the same subscript notation as in Eq. 3.3. The corresponding factor graph is
illustrated in Fig. 3.6. In the following, we derive each potential in Eq. 3.49.

1Note that throughout this section we call ’ψ(·)’ a potential function for clarity of notation, even though
(strictly speaking) ’−ψ(·)’ is the actual energy potential.
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Prior: By taking the negative logarithm of Eq. 3.4 and absorbing all constant terms
into the partition function, we obtain the prior potential

ψp(R,Θ) = − log ξp,κ − λp log fκ(α)

+
1

2
φp(R,µ

(κ)
p )TΛ(κ)

p φp(R,µ
(κ)
p ) (3.50)

with
φp(R,µ

(κ)
p ) = (c, r, logw)T − µ(κ)

p (3.51)

and ξp, λp ∈ Θ. While µp ∈ R4 can be parameterized element-wise, i.e. µp ∈
Θ, Λp ∈ R4×4 has to fulfill the properties of a precision matrix, i.e. it must be
symmetric positive definite. These properties can be enforced by considering the
Cholesky decomposition of Λ,

Λ = LTL (3.52)

into a lower triangular matrix LT and an upper triangular matrix L, omitting all
indices for clarity of notation. Clearly, Λ is symmetric positive definite and L can
be parameterized as

L =


L1,1 L1,2 L1,3 L1,4

0 L2,2 L2,3 L2,4

0 0 L3,3 L3,4

0 0 0 L4,4

 (3.53)

with ∀i≤j : Li,j ∈ Θ. The required derivatives with respect to ξp,i, µ, Li,j and λp
are readily given by

∂ψp(R,Θ)

∂ξp,i
= − [κ = i]

ξp,i

∂ψp(R,Θ)

∂µ
= −Λφp(R,µ)

∂ψp(R,Θ)

∂Li,j
=

1

2
φp(R,µ)T

(
∂LT

∂Li,j
L + LT ∂L

∂Li,j

)
φp(R,µ)

∂ψp(R,Θ)

∂λp
= − log fκ(α) (3.54)

In practice, one can directly optimize for log ξp,i instead of ξp,i for stability.

Vehicle Tracklets: The potential corresponding to the vehicle tracklet likelihood
and its derivative are obtained by taking the logarithm of Eq. 3.10 and differentiating
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it:

ψt(T ,R,Θ) = − λt
Nt

Nt∑
i=1

log

(
L∑
l=1

p(ti, l|R)

)
(3.55)

∂ψt(T ,R,Θ)

∂λt
= − 1

Nt

Nt∑
i=1

log

(
L∑
l=1

p(ti, l|R)

)
(3.56)

Here, λt ∈ Θ is a parameter controlling the strength of the feature cue and the
tracklet probability p(t, l|R) is defined by Eq. 3.10. We have added an additional
degree of freedomλt to the tracklet potentialψt, which accommodates for violations
of the naïve Bayesian observation model and controls the relative strength of the
tracklet feature with respect to the prior and all other features.

Vanishing Points: Similarly, the vanishing point potential and its derivative are
obtained from Eq. 3.21 as

ψv(V,R,Θ) = −
Nv∑
i=1

log (ζv + (1− ζv) exp (−λvφv(vi,R,Θ))) (3.57)

∂ψv(V,R,Θ)

∂ζv
= −

Nv∑
i=1

1− exp (−λvφv(vi,R,Θ))

ζv + (1− ζv) exp (−λvφv(vi,R,Θ))

∂ψv(V,R,Θ)

∂λv
= −

Nv∑
i=1

(ζv − 1) exp (−λvφv(vi,R,Θ))φv(vi,R,Θ)

ζv + (1− ζv) exp (−λvφv(vi,R,Θ))

with φv(v,R,Θ) measuring the error with respect to the orientation of the closest
street as defined in Eq. 3.22.

Semantic Scene Labels: The semantic scene label potential is given by taking the
logarithm of Eq. 3.23 and differentiating with respect to λs

ψs(S,R,Θ) = − λs
Ns

Ns∑
i=1

ws,φs(R) si,φs(R) (3.58)

∂ψs(S,R,Θ)

∂λs
= − 1

Ns

Ns∑
i=1

ws,φs(R) si,φs(R) (3.59)

where φs(R) ∈ {1, 2, 3} selects the class label according to the segmentation of the
scene induced by the current road layoutR. For further details, we refer the reader
to Section 3.3.4 and the illustration in Fig. 3.4.

39



3. Urban Scene Understanding

Scene Flow: The scene flow potential is obtained by taking the logarithm of Eq.
3.24 and differentiating with respect to the outlier constant ζf and the importance
weights λf1 (location) and λf2 (orientation):

ψf (F ,R,Θ) = − 1

Nf

Nf∑
i=1

log φf (fi,R,Θ) (3.60)

∂ψf (F ,R,Θ)

∂ζf
= −

Nf∑
i=1

exp
(
− ‖pf,i‖22

2σ2
out

)
− exp

(
−φ̃f (fi,R,Θ)

)
Nf φf (fi,R,Θ)

∂ψf (F ,R,Θ)

∂λf1
= −

Nf∑
i=1

(ζf − 1) exp
(
−φ̃f (fi,R,Θ)

)
Nf φf (fi,R,Θ)

∂φ̃f (fi,R,Θ)

∂λf1

∂ψf (F ,R,Θ)

∂λf1
= −

Nf∑
i=1

(ζf − 1) exp
(
−φ̃f (fi,R,Θ)

)
Nf φf (fi,R,Θ)

∂φ̃f (fi,R,Θ)

∂λf2

with the unnormalized probability of a single scene flow vector given by

φf (f ,R,Θ) = ζf exp

(
−‖pf‖

2
2

2σ2
out

)
+ (1− ζf ) exp

(
−φ̃f (f ,R,Θ)

)
(3.61)

and

φ̃f (f ,R,Θ) = −λf1‖pf −ϕf (pf ,R)‖22 − λf2(1− qT
f ϕ̃f (pf ,R)) (3.62)

The partial derivatives with respect to λ are given by

∂φ̃f (f ,R,Θ)

∂λf1
= −‖pf −ϕf (pf ,R)‖22 (3.63)

∂φ̃f (f ,R,Θ)

∂λf2
= qT

f ϕ̃f (pf ,R)− 1 (3.64)

with ϕf (pf ,R) and ϕ̃f (pf ,R) returning the foot point and tangent of the closest
lane spline as in Eq. 3.26 and illustrated in Fig. 3.5(a).
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3.5. Learning

Occupancy Grid: Taking the logarithm of Eq. 3.27 and its derivative, the occu-
pancy grid potential reads

ψo(O,R,Θ) = − λo
No

No∑
i=1

ρi · φo(R) (3.65)

∂ψo(O,R,Θ)

∂λo
= − 1

No

No∑
i=1

ρi · φo(R) (3.66)

where φo(R) ∈ {wo,1, wo,2, wo,3} is a mapping that for any cell ρ returns the value
of the model-dependent geometric prior expressing the belief on the location of free
space (i.e. road) and buildings alongside the road. For more details the reader is
referred to Section 3.27 and the illustration in Fig. 3.5(b).
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4. Image Evidence

This chapter describes the feature cues used by our probabilistic model described
in Section 3.3. They can be categorized into monocular cues (i.e., vehicle tracklets,
vanishing points and semantic scene labels) for which one camera is sufficient and
stereo cues (i.e., 3D scene flow and occupancy grids) which require a stereo camera
setup. We represent all features in the reference coordinate system which as de-
scribed in Chapter 3 is located below the left camera coordinate system in the last
frame of each sequence as illustrated in Fig. 4.3. The required ego-motion falls off
as a by-product when computing the scene flow features as described in Section 4.4.

4.1. Vehicle Tracklets

Vehicle tracklets are sets of vehicle detections which are associated over time and
represent one of the strongest cues in our framework. This is because the observation
of moving objects tells us a lot about the structure of the scene as well as where the
lanes are located and which vehicles are allowed to move given the current traffic
light situation. Empirically, we found that pedestrians occur muchmore rarely in our
datasets and are thus less important in this context. While it would be straightforward
to extend our model to include pedestrians, we focus on vehicles (i.e., cars) here. As
we are interested in reasoning about the scene in bird’s eye perspective, we also
propose a way to extract 3D location estimates from the 2D object detections.
As mentioned earlier, we define a tracklet as a set of object detections, projected

into bird’s eye perspective t = {d1, . . . ,dMd} with d = (fd,md,Sd,od). Here,
fd ∈ N is the frame number andmd ∈ R2,Sd ∈ R2×2 are the mean and covariance
of the Gaussian distributionN (m,S) describing the object location in road coordi-
nates. od ∈ ∆7 is a discrete orientation distribution over 8 possible points of view.
The goal of the tracking stage is to associate object detections to tracklets and project
them into 3D using cues such as the object size or the bounding box ground contact
point in combination with the height and the pitch angle of the camera. Associa-
tion of detections to tracklets is performed in image-scale space to better account for
uncertainties of the object detector.
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4. Image Evidence

(a) Bounding Box b = (u, v, w, h) (b) Orientation o ∈ R8

Figure 4.1.: Illustration of Vehicle Detections. We detect objects in adjacent frames, estimate
their orientation and associate them over time.

4.1.1. Detection

First, let us define a 2D object detection as d̃ = (f,b,o)1, with frame index f ∈ N
and 2D object bounding box b = (u, v, w, h) ∈ R4, where (u, v)T is the bottom-
center and (w, h)T are the width and height of the bounding box. In contrast to most
traditional object detectors, we also estimate a (discrete) distribution over 8 possible
points of view, o ∈ ∆7, giving us a sense of orientation of the object. All involved
variables are illustrated in Fig. 4.1.

In order to detect objects {(f,b,o)} in an image, we train the part-based object
detector2 of [60] on a large set of manually annotated images. The object detec-
tion system described in [60] is based on mixtures of multi-scale deformable part
models, can represent highly variable object classes and achieves state-of-the-art
performance in difficult scenarios such as the ones presented in the PASCAL object
detection challenge [59]. For training object models we employ a latent SVM [60]
where the location of the individual parts of an object are assumed to be unknown at
training time and maximized over. The model parameters are found using stochas-
tic gradient descent, embedded into an alternating scheme which also estimates the
hidden variables at the same time.
In contrast to the original model of [60], our annotations do not only comprise

the bounding boxes b, but also the relative object orientations o, discretized into
8 viewpoints as illustrated in Fig. 4.1(b). We use one component per viewpoint
and fix the latent variables such that they correspond to the components according
to the ground truth orientations relative to the observer. By introducing this addi-
tional degree of supervision we are able to recover a distribution over possible object
orientations o ∈ ∆7 at test time for each detected object. Algorithm 3 illustrates
the non-maximum-suppression mechanism which computes a small number of non-
maximum suppressed detections with discrete orientation distributions from all raw
detections with associated orientation and score. In order to obtain a proper distribu-
1We use a tilde for distinguishing 2D object detections d̃ (or vehicle tracklets t̃) from 3D detections d (or
vehicle tracklets t)

2Source code available at: http://people.cs.uchicago.edu/~rbg/latent/
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4.1. Vehicle Tracklets

Algorithm 3 Multi-Class Non-Maximum-Suppression
Input: L-SVM detections with orientation and score {(b, o, s)}
Output: NMS detections with orientation distribution {(b,o)}
A ← {(b, o, s)}
B ← ∅
while A 6= ∅ do

// Get all detections that overlap with the highest scoring one
a← argmaxx∈A score(x)

Aa ←
{

x | x ∈ A ∧ box(x) ∩ box(a)
box(x) ∪ box(a)

> τd
}

// For each orientation, get highest score within Aa

for i← 1, . . . , 8 do
Ai ← {x | x ∈ Aa ∧ orientation(x) = i}
oi ← maxx∈Ai score(x)

// Apply softmax normalization
Z ←

∑
i exp(oi)

for i← 1, . . . , 8 do
oi ← 1

Z
exp(oi)

// Add detection to B and remove Aa from A
B ← B ∪ (box(a),o)
A ← A \ Aa

return B

tion o ∈ ∆7 with
∑
i oi = 1, the softmax transformation is applied to the maximum

of all detections scores over all orientation bins. Fig. 4.2 illustrates the quality of the
MAP orientation estimate in terms of the confusion matrix over orientation classes.

4.1.2. Tracking

The association of 2D object detections {d̃} to 2D object tracks t̃ = {d̃1, . . . , d̃T }
with d̃ = (f,b,o) is solved using a two-stage process which utilizes the Hungarian
algorithm [116] for global frame-to-frame data association. As all measurements
are made in the image domain, it is natural to associate objects directly in the image
rather than in 3D to better account for uncertainties.

Frame-to-Frame Association: First, individual frames are associated frame-by-
frame in a tracking-by-detection framework. For all frames of a sequence, we as-
sociate all object detections above a certain detection score to the existing tracklets
using the Hungarian algorithm [116]. If a detection has not been assigned to any
of the existing tracklets, a new tracklet is spawned. The affinity matrix is computed
using both geometry and appearance cues of the object. Experimentally we found
that combining both cues yields the best association results possible. As geometry
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Figure 4.2.: Confusion Matrix of the orientation estimates by the part-based object detector
presented in [60], trained in a semi-supervised fashion.

cue we employ the bounding box intersection over union score. The appearance cue
is computed by correlating the bounding box region in the previous frame with the
bounding box region in the current frame, using a small margin (20%) to account for
the localization uncertainty of the object detector. Let d̃i and d̃j denote two object
detections in consecutive frames. Then, the (i, j)’th entry of the affinity matrix A
is given by

Ai,j =

{
Γ(d̃i, d̃j) if Γ(d̃i, d̃j) < τt1
∞ otherwise (4.1)

Γ(d̃i, d̃j) =

(
1− box(d̃i) ∩ box(d̃j)

box(d̃i) ∪ box(d̃j)

)
×
(

1− xcorr(d̃i, d̃j)
)

where box(·) returns the bounding boxb that belongs to a detected object, xcorr(·, ·)
returns the maximum of the normalized cross-correlation of two detections, and τt1
is the gating threshold of stage one. The optimal assignment given the affinity ma-
trix Aij can be efficiently computed in polynomial time using the Kuhn-Munkres
algorithm [116], yielding a set of initial tracklets.

Tracklet-to-Tracklet Association: So far, only adjacent object detections have
been considered. In practice, however, it occurs quite frequently that object de-
tections are missing for a couple of frames. This may be caused by imperfections
of the object detector, or simply by the fact that other objects like cars, pedestrians
or traffic signs occlude the target of interest. Yet, longer tracklets provide more in-
formation to our model than short tracklets. Thus we employ a second association
stage where we associate tracklets with each other which may be occluded for up to
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4.1. Vehicle Tracklets

20 contiguous frames. Similar to the problem above we make use of the Hungarian
algorithm for optimal data association, but this time we associate tracklets instead of
detections and consider the whole sequence at once. Each entry of the association
matrix refers to a pair of tracklets within the whole sequence. The affinity matrix A
is given by

Ai,j =

{
Γ(t̃i, t̃j) if f∆(t̃i, t̃j) < N ∧ Γ(t̃i, t̃j) < τt2
∞ otherwise (4.2)

Γ(t̃i, t̃j) = min
(
dist(t̃i, t̃j), dist(t̃j , t̃i)

)
×
(
1− xcorr(t̃i, t̃j)

)
where f∆(·, ·) returns the frame gap between two tracklets and dist(·, ·) extrapolates
the bounding boxes of each tracklet linearly to predict the bounding boxes of the
other tracklet and returns the mean of the normalized prediction errors with respect
to the bounding box location, width and height. Extrapolation is carried out by
linear regression, i.e., we fit lines to the bounding box location, width and height,
where each of these modalities is considered a function of the frame number. We
also experimented with higher-order prediction schemes, but found a decrease in
performance due to the large and correlated noise in our measurements. Similar to
above, xcorr(·, ·) compares object appearances via the normalized cross-correlation
score, but this time maximized over all possible combinations of object detections
within t̃i and t̃j . We found that this procedure to significantly alleviate the effect
of semi-occlusions and moderate appearance changes and leads to longer and more
stable tracklet associations. The gating threshold of stage two is denoted by τt2.

4.1.3. Projection into 3D

While the object detection and object tracking stages in Section 4.1.1 and Section
4.1.2 operate directly in the 2D image domain (t̃), the proposed intersection model
reasons about tracklets in 3D (t). In order to extract 3D information, we make the
following two observations:

• Intersections are typically flat and can be well approximated using a single
ground plane, which is easily and robustly extracted from structure-from-
motion point clouds or disparity maps. For an overview on plane-fitting meth-
ods, the reader is referred to [39, 169, 201, 62]. As cars are driving on the
ground, the bounding box contact point (bottom of the bounding box) in com-
bination with an estimate of the ground plane can be employed to ’triangulate’
the 3D location of the object.

• Given the 2D bounding box and the 3D dimensions of an object, its distance
can be estimated. Hereto, we learn the statistics of cars from bounding boxes
and disparity images using a held-out car dataset and back-propagate the lo-
cation and its uncertainty into 3D.
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4. Image Evidence

Figure 4.3.: Projection of 2D Object Detections into 3D. Assuming known calibration pa-
rameters K, a rigid 3D ground plane transformation T and knowledge about typical object
dimensions (∆x,∆y), the 3D location (x, z) can be estimated from the bounding box size
(w, h) and ground contact point (u, v).

Both ideas are illustrated in Fig. 4.3 and detailed in the following. Let ϕ : b →
m,S be a mapping which takes an object bounding box b ∈ R4 as input and maps it
to a 3D location (x, z)T ∼ N (m,S) on the road surface, wherem is themean andS
denotes the covariance matrix. Again, 3D refers to the bird’s eye perspective (y = 0
plane in road coordinates) as we are making a ground plane assumption, i.e. we
assume that all objects are attached to and move on a common ground plane. Let us
further assume that the mapping is probabilistic. As cues for this mapping we use the
location of the bounding box ground contact point as well as the bounding box width
and height. The unknown parameters of themapping are the uncertainty in bounding
box location σu, σv and size σw, σh as well as the real-world object dimensions
∆x,∆y and their uncertainties σ∆x, σ∆y . All parameters are learned from a held
out training dataset with annotated bounding boxes and depth from stereo.

More formally, let (u, v)T denote the image coordinates of the bottom-center point
of the object’s bounding box and let w, h be the width and height of the bounding
box. Let (x, 0, z)T be the 3D location of an object in ground plane coordinates
(y = 0) as illustrated in Fig. 4.3. Further, let ∆x,∆y be the object width and height
in meters, measured via parallel-projection to the plane z = 0, which is coplanar to
the image plane. Finally, let o denote the MAP orientation of the vehicle as returned
by the object detector.

The posterior on the object’s 3D location is factorized as

p(x, z|u, v, w, h,∆x,∆y, o)
∝ p(u, v, w, h|x, z,∆x,∆y, o)p(x, z)
= p(u, v|x, z,∆x,∆y, o) p(w|x, z,∆x,∆y, o) p(h|x, z,∆x,∆y, o)
= p(u, v|x, z) p(w|z,∆x, o) p(h|z,∆y)

∝ p(x, z|u, v) p(z|w,∆x, o) p(z|h,∆y) (4.3)
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4.1. Vehicle Tracklets

where we have assumed a uniform prior over x and z. The first term on the right
hand side of Eq. 4.3 relates the bounding box ground contact point (u, v)T to the
object’s 3D location (x, 0, z)T. The second and the last term model the relationship
between the distance z of the object to the observer and the bounding box width
w and height h, respectively. Note that the term p(z|w,∆x, o) which models the
width ∆x in terms of parallel projection to the z = 0 plane depends on the object
orientation o. This is because the width of a vehicle differs from its length, thus we
learn a separate set of statistics for each object orientation. However, for clarity of
presentation the dependency on o will be dropped in the following. Let

x, z|u, v ∼ N (µ1,Λ
−1
1 ) (4.4)

z|w,∆x ∼ N (µ2, λ
−2
2 ) (4.5)

z|h,∆y ∼ N (µ3, λ
−2
3 ) (4.6)

Then, from Eq. 4.3 we have x, z|u, v, w, h,∆x,∆y ∼ N (m,S) with

m = SΛ1µ1 + SΛ2

[
0
µ2

]
+ SΛ3

[
0
µ3

]
S = (Λ1 + Λ2 + Λ3)−1 (4.7)

where Λ1 has full rank and Λ2,Λ3 are singular matrices of the form

Λ2 =

[
0 0
0 λ2

]
Λ3 =

[
0 0
0 λ3

]
(4.8)

The individual feature cues are described in the following.

Ground Contact Point: Let x, z|u, v ∼ N (µ1,Λ
−1
1 ) and let us assume a standard

pinhole camera model which projects a 3D ground plane point (x, 0, z)T to the point
(u, v)T on the image plane. In homogeneous coordinates, this projection can be
written as uv

1

 = P3×4


x
0
z
1

 (4.9)

where P = K T R is the product of a calibration matrix K3×3, the transformation
from ground plane coordinates to camera coordinatesT3×4 (estimated a-priori) and
an additional camera pitch error θ, parameterized by the rotation matrix

R4×4(θ) =


0 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (4.10)
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Given (u, v)T we obtain µ1 = (x, z)T by solving the linear system

A

[
x
z

]
= b (4.11)

with

A =

[
uP31 − P11 u(P33 cos θ − P32 sin θ)− (P13 cos θ − P12 sin θ)
vP31 − P21 v(P33 cos θ − p32 sin θ)− (P23 cos θ − P22 sin θ)

]
=

[
uP31 − P11 uP33 − P13

vP31 − P21 vP33 − P23

]
(4.12)

b =

[
P14 − uP34

P24 − vP34

]
where Pij denotes the ij’th element of P and we have made use of E(θ) = 0 as
R only models the error in pitch. Assuming the covariance of (u, v)T to be known,
the covariance of (x, z)T can be approximated using error propagation. Since the
transformation implied by Eq. 4.11 is non-linear with respect to u, v and θ, we
linearize it by means of a first-order Taylor expansion. Given σu, σv and σθ we have

Λ1 = Σ−1
1 Σ1 = J

σ2
u 0 0
0 σ2

v 0
0 0 σ2

θ

JT (4.13)

where the Jacobian J ∈ R3×3 is given by

J =
(
∂
∂u

A−1b ∂
∂v

A−1b ∂
∂θ

A−1b
)

(4.14)

with

∂(A−1b) = ∂A−1b + A−1∂b

= −A−1∂AA−1b + A−1∂b

= A−1 (∂b− ∂AA−1b
)

(4.15)

and
∂
∂u

A =

[
P31 P33

0 0

]
∂
∂u

b =

[
−P34

0

]
∂
∂v

A =

[
0 0
P31 P33

]
∂
∂v

b =

[
0
−P34

]
∂
∂θ

A =

[
0 P12 − uP32

0 P22 − vP32

]
∂
∂θ

b =

[
0
0

] (4.16)
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Object Width: As state above, we assume z|w,∆x, o ∼ N (µ2, σ
2
2). From the

pinhole model we obtain the relationship

w =
f∆x

z
(4.17)

with f the focal length, or equivalently

µ2 = z =
f∆x

w
(4.18)

which is a non-linear function in w. Using the same reasoning as above, we obtain
the variance in z through error propagation as

λ2 = σ−2
2 σ2

2 = J

[
σ2
w 0
0 σ2

∆x

]
JT (4.19)

with Jacobian
J =

[
− f∆x

w2
f
w

]
(4.20)

In order to properly account for the viewing angle represented by a set of discrete
object orientation classes o, we learn a separate set of parameters (µ2, σ

2
2) for each

o as illustrated in Fig. 4.4 and 4.5.

Object Height: Similarly to the object width term, we assume a Gaussian distri-
bution z|h,∆y ∼ N (µ3, σ

2
3) for the object height term. We obtain

µ3 = z =
f∆y

h
(4.21)

with variance
λ3 = σ−2

3 σ2
3 = J

[
σ2
h 0
0 σ2

∆y

]
JT (4.22)

and Jacobian
J =

[
− f∆y

h2
f
h

]
(4.23)

Note that the height does not depend on the object heading o.

Learning the Parameters of the 3D Projection Model: The unknown parameters
of the proposed projectionmodel σu, σv , σw, σh,∆x,∆y, σ∆x and σ∆y are learned
automatically from annotated training data. For this purpose we have collected a
dataset of 1020 images that capture 3634 vehicles with annotated 2D bounding boxes
and computed the corresponding disparity maps. The labels do not only include the
bounding box but also the heading of the vehicles, quantized into 8 orientations
o ∈ {1, . . . , 8}. This is important as the object width depends on the orientation of
the vehicle.
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Figure 4.4.: Bounding Box Uncertainty. This figure illustrates the linear relationship between
the error of the object detector and the object size (height h) for the 3 object orientation classes.
The dashed lines show the linear least square approximations σx(h) = a h+ b.
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Figure 4.5.: Object Size Statistics. Cars in our dataset are ∼ 1.9m wide and ∼ 4.4m long.
Here, ∆x and∆y are the width and height of the object after parallel projection onto the z = 0
plane, with z the optical axis.

We first estimate the parameters related to detection accuracy σu, σv , σw and σh
by comparing the object detections with the manually labeled 2D bounding boxes.
Due to the characteristics of sliding-window detectors, we expect the noise to be
dependent on the object scale. A good approximation to object scale is the bounding
box height h as in contrast to the bounding box width it is largely invariant with
respect to the viewing angle. Furthermore, it is readily given by the object detector.
Figure 4.4 depicts σu, σv , σw and σh as a function of h. As the noise σ depends
approximately linearly on h it can be well represented via the linear model

σx(h) = ax,o h+ bx,o (4.24)

with x ∈ {u, v, w, h}. Here, a and b are obtained using least squares estimation.
The parameters describing the real-world dimensions of the object’s parallel projec-
tion to the z = 0 plane are ∆x, ∆y, σ∆x and σ∆y . They are obtained from the
annotated data in conjunction with the stereo information. Given a rectified stereo
camera rig, the following relations hold:

∆x =
zw

f
=
bw

d
∆y =

zh

f
=
bh

d
(4.25)

Here, z is the distance of the object to the camera, f denotes the camera’s focal
length, b is the camera baseline and d represents the median disparity within the 2D
bounding box. As noted above, special care has to be taken for ∆x as it depends on
the orientation of the object. We learn a separate ∆x for each of three car orienta-
tion classes illustrated in Fig. 4.4. The results are depicted in Fig. 4.5. When viewed
frontally or from behind a typical car is ∼ 1.9 meters wide. It spans ∼ 4.4 meters
when viewed from the side. The resulting posterior probabilities for 3 tracklet detec-
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Figure 4.6.:Depth Posterior Distribution. This figure depicts themarginal depth distributions
for each feature cue individually (red,green,blue) and the posterior distribution (black) when
combining the results using Eq. 4.3.

tions are illustrated in Fig. 4.6. The colored curves are the individual cues discussed
in the previous sections and the black curves depict the combined posterior results.

4.1.4. Temporal Integration

As the raw 3D location estimates {(m,S)} are noisy due to the low camera view-
point, the uncertainties in the object detector and the ground plane estimation pro-
cess, we temporally integrate detections within a tracklet t using a Kalman smoother
[105] assuming a constant velocity model. This step finally yields the tracklet ob-
servations which are augmented by the frame number fd and the object orientation
distribution od to tracklets t = {d1, . . . ,dMd} with d = (fd,md,Sd,od) and
serve as input to our probabilistic model in Section 3.3.2. An illustration of the esti-
mated 3D tracklets is provided in Fig. 4.7, where the covariance ellipses depict the
uncertainty in object location.
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4.2. Vanishing Points

(a) Frame 40 (b) Frame 80

Figure 4.7.: Filtered 3D Vehicle Tracklets. This figure shows two frames of a crossing se-
quence. The top row depicts the input image with the detected objects and the bottom row
shows the 3D tracklets in bird’s eye perspective after smoothing. The covariance ellipsoids are
shown for the current frame. The gray trajectory is generated by the moving observer. The
top-right tracklet is caused by outlier detections from the tipper at the right side of the image.

Figure 4.8.:Vanishing Points. For each scene, we detect up to two dominant vanishing points,
one corresponding to the forward-facing street (shown in green with vanishing lines in red) and
one corresponding to the crossing street (vanishing lines in blue, the corresponding vanishing
point is located outside of the image).

4.2. Vanishing Points

Vanishing points are good street orientation cues as image gradients from roadmark-
ings or buildings are often aligned with the dominant streets. For example, in Fig.
1.2 the forward facing street is well supported by the curbstones. In many cases, the
crossing street is supported by road markings, windows or building outlines as well.

We detect up toNv = 2 vanishing points V = {v1, . . . , vNv}, where a vanishing
point is defined by a rotation angle around the y-axis in road coordinates, i.e. we
assume that all vanishing lines are collinear with the ground plane and vi represents
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4. Image Evidence

their yaw angle. All 3D lines that are collinear with a vanishing line intersect at
the same vanishing point. For typical scenarios, two vanishing points are dominant:
One which is collinear with the forward facing street and one which is collinear with
the crossing street. The vertical vanishing points are not informative.
In order to detect vanishing points we first extract long line segments. Towards

this goal we make use of the method described by Kosecka et al. [114], which de-
tects long lines in the image by Canny edge detection [35] followed by labeling the
connected orientation components and fitting the line parameters using principal
component analysis. Given the line segments, we detect vanishing points similarly
to [114], but taking into account the (known) camera calibration information and re-
stricting the search space such that all vanishing lines are collinear with the ground
plane. Additionally, we relax the model to also allow for non-orthogonal vanishing
points as this is required by the intersection types in our dataset.
Unfortunately, traditional vanishing point detection methods [114, 15] require rel-

atively clean scenarios and tend to fail in the presence of clutter such as cast shadows
on a sunny day, railway tracks or defects in the road surface that easily mislead the
vanishing point detection process. To tackle this problem, we learn a k-nearest-
neighbor classifier based on a held-out annotated set of 185 images, in which all
detected line segments have been manually labeled as either structure or clutter.
Here, structure refers to the line segments of interest, which are aligned with the
major orientations of the streets or building facades. The classifier’s confidence on
structure is used as a weight in the vanishing point voting process.
The feature set for classification comprises multiple types of information: As geo-

metric information the position, length and orientation of the line are included. Fur-
ther, we incorporate context knowledge by counting the number of lines with similar
and perpendicular orientation in a local window around the target pixel. The local
appearance is represented by the mean, standard deviation and entropy of all pixels,
computed over a small margin of 3 pixels at both sides of the line. Finally, we add
texton-like features from a Gabor filter bank as well as the 3 principal components
of the scene GIST [145].

The benefits of this additional learning step are highlighted in Fig. 4.9(a), which
shows the ROC curve for classifying lines into structure and clutter. The curves have
been obtained by adjusting k for the k-nn classifier in the learning based method and
by varying the inlier threshold for [114]. Fig. 4.9(b) compares the classification
results for a particular scene: While the cast shadows in the lower-left part of the
image causes wrong evidence for traditional vanishing point detectors [114] (top),
the proposed classification step is able to reject most of those line segments (bottom).

Applying the restricted version of [114] to all structured line segments and thresh-
olding yields up to Nv = 2 vanishing points V = {v1, . . . , vNv} which serve as
input to the vanishing point likelihood in Section 3.3.3.
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(a) ROC curve for classifying line segments into structure and
clutter.

(b) Kosecka et al. (top) vs. proposed approach (bottom). Red
corresponds to structure.

Figure 4.9.: Structured Line Segments. As cast shadows and road defects generate a lot of
structured line segments which can easily confuse the vanishing point estimation process, we
classify each detected line into structural information versus clutter.

Figure 4.10.: Semantic Image Segmentation. We learn a classifier to compute per-pixel like-
lihoods for the classes sky, background and foreground.

4.3. Semantic Scene Labels

The appearance of objects and what is often referred to as ’stuff’ in the computer vi-
sion literature (i.e., objects without extend such as sky road or vegetation) provides
additional cues about the layout of the scene. For example, the texture statistics of
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4. Image Evidence

road area usually differs from the statistics of building or sky. Furthermore, geo-
metric priors can be taken into account, e.g. buildings are located above the road
and below the sky. We can make use of this information by comparing a semantic
segmentation of the scene to a projection of our model into the image. See Fig. 3.4
and Fig. 4.10 for an illustration.
For extracting semantic information in the form of scene labels we use the joint

boosting framework proposed in [180] to learn a strong classifier. Following Wojek
et al. [191], we divide the last image of each sequence into patches of size ns × ns
pixels and classify them into the categories road, background and sky. In order to
avoid hard decisions and to interpret the boosting confidences as probabilities we
apply the softmax transformation [119] to the resulting scores. The semantic label
of a single patch is defined as s ∈ ∆2, where ∆2 is the unit 2-simplex as described
in Section 3.2. We make use of the following features for classification:

• Generic texture cues are computed from the first 16 coefficients of the Walsh-
Hadamard transform [2], which is a discrete approximation to the cosine trans-
formation and has been shown to perform well in practice [191] on sequences
similar to the ones used in this work.

• As urban scenes contain many man-made structures we include the feature
set for man-made structure detection described by Kumar et al. [118, 117] on
patches of size 16×16, 32×32 and 64×64 pixels.

• Finally, the image location is incorporated by concatenating the pixel coordi-
nates to the feature vector. This enables to encode knowledge such as the sky
being located on top and the road at the bottom of the image.

For training, we use a hold out dataset of 200 hand-labeled images. Fig. 4.10 il-
lustrates the results of the proposed semantic image feature cue on one of the test
images from our database. After softmax normalization we obtain a (discrete) scene
label distribution s for each image patch s ∈ S, which is used in our semantic scene
label likelihood described in Section 3.3.4.

4.4. Scene Flow

Due to the low viewpoint of the car-mounted camera depth information is very noisy
when only relying on monocular feature cues. Thus, we also investigate the use of
stereo features, which are described in this and the following section. Note that even
for stereo features the depth error increases quadratically with the distance. However,
due to the different noise properties a gain in performance can be expected when
properly combining stereo and monocular cues, which we verify in the experimental
section of this thesis.

The first feature cue we pursue here is the 3D scene flow caused by moving traffic
participants. The observation is that most of the non-backgroundmotion in the scene
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Figure 4.11.: Scene Flow. By matching features between the left and right images of a stereo
pair and over time, we obtain 3D flow vectors (left). Color codes disparity from large (red) to
small (green) values. When compensating the egomotion the dynamic parts of the scene can
be extracted and accumulated in a common coordinate system (right, bird’s eye view).

is caused by vehicles following a street or crossing the intersection. Assuming right-
handed traffic and that the majority of traffic participants keep up with the traffic
rules, these flow vectors should be explained by the underlying scene model, i.e. all
vehicles are driving on the correct lanes into the right direction.

Towards extracting 3D scene flow vectors f , we first extract feature matches from
the image sequence. In order to find stable feature locations, we filter the input
images with 5 × 5 blob and corner masks as illustrated in Fig. 4.12(a). Next, we
employ non-maximum- and non-minimum-suppression [143] on the filtered images,
resulting in feature candidates which belong to one of four classes (i.e., blob max,
blob min, corner max, corner min). To reduce computational efforts, only features
within those classes are matched.

In contrast to methods concerned with reconstructions from unordered image col-
lections, here we assume a smooth camera trajectory, superseding computationally
intense rotation and scale invariant feature descriptors like SURF [18, 17], SIFT
[134, 135] or others [34, 33, 158, 132]. We compute a compact 32 byte feature de-
scriptor from the 8 bit quantized horizontal and vertical Sobel responses at the 16
locations shown in Fig. 4.12(b). Since the sum-of-absolute-differences of 16 bytes
can be computed very efficiently using a single SSE instruction we only need two
calls in order to evaluate this error metric.

We match features between the left and right images and between two consecutive
frames. This is achieved by matching features in a ’circle’: Starting from all feature
candidates in the current left image, we find the best match in the previous left image
within aM ×M search window, next in the previous right image, the current right
image and last in the current left image again. A ’circle match’ gets accepted, if the
last feature index coincides with the first feature index. When matching between the
left and right images, we additionally make use of the epipolar constraint using an
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(a) Blob and Corner detector (b) Feature Descriptor (c) Motion Estimation

left image right image

ti
m

e

(d) Feature Matching

Stage Time
Filter 6.0 ms
NMS 12 ms
Matching 1 2.8 ms
Matching 2 10.7 ms
Refinement 5.1 ms
Total time 36.6 ms

(e) Running Time

Figure 4.12.: Feature Matching and Egomotion Estimation. Blob and corner features are
detected with filters (a), described using Sobel filter responses arranged in a star-like shape
(b) and matched in two consecutive stereo pairs (d). Egomotion is obtained using the 3-point
algorithm (c). Running times are given in (e).

error tolerance of 1 pixel. For further details3, the reader is referred to [75].
Given all ’circular’ feature matches from the previous section, we compute the

camera motion by minimizing the sum of re-projection errors using the 3-point al-
gorithm [144, 47, 85]. First, bucketing [110] is applied to reduce the number of
features (in practice we retain between 200 and 500 features) and spread them uni-
formly over the image domain. Next, we project the feature points from the previous
frame into 3D via triangulation using the calibration parameters of the stereo camera
rig. Assuming squared pixels and zero skew, the reprojection into the current image
is given by

uv
1

 =

f 0 cu
0 f cv
0 0 1


[R(r), t]


x
y
z
1

−
s0

0


 (4.26)

with
3Source code available at: http://www.mrt.kit.edu/software/
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• homogeneous image coordinates (u v 1)T

• focal length f

• principal point (cu, cv)

• rotation matrix R(r) = Rx(rx)Ry(ry)Rz(rz)

• rotation vector t = (rx ry rz)T

• translation vector t = (tx ty tz)T

• 3D coordinates x = (x y z)T

• and shift s = 0 (left image) or s = baseline (right image)

Let now πl(x; r, t) : R3 → R2 denote the projection implied by Eq. 4.26, which
takes a 3D point x and maps it onto the left image plane. Similarly, let πr(x; r, t)
be the projection onto the right image plane. Using Gauss-Newton optimization, we
iteratively minimize

r̂, t̂ = argmin
r,t

N∑
i=1

∥∥∥y(l)
i − πl(xi; r, t)

∥∥∥2

+
∥∥∥y(r)

i − πr(xi; r, t)
∥∥∥2

(4.27)

for the rigid motion parameters r and t. Here, y(l)
i and y

(r)
i denote the feature loca-

tions in the current left and right images and xi are the triangulated 3D points from
the previous frame. The required Jacobians are readily derived from Eq. 4.26. In
practice, even a simple initialization (r0 = t0 = 0) proved sufficient to converge in
only a couple of iterations (4-8). For robustness with respect to outliers, we wrap
the estimation approach into a RANSAC scheme [62]: We first estimate (r̂, t̂) nf
times independently using 3 randomly drawn correspondences. Afterwards, all in-
liers of the winning iteration are used for refining the parameters, yielding the final
transformation parameters (r̂, t̂). While more sophisticated methods for structure
and motion estimation could be employed [121, 122], we found the aforementioned
procedure to be simple and accurate enough for our purpose.

The final step is to compensate the 3D scene flow vectors using the egomotion
given by the transformation parameters {(r̂, t̂)} over time. Towards this goal, we
accumulate all vectors in the coordinate system of the last frame of the sequence
and threshold them by their length, i.e., we remove short vectors that are likely to
belong to the static environment. As the 3D scene flow likelihood doesn’t account
for object velocities, we normalize all flow vectors to unit length and project them
onto the estimated road plane as illustrated in Fig. 4.11 (right), yielding the scene
flow features F = {f1, . . . , fNf } which are modeled by the scene flow likelihood
in Section 3.3.5.
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Figure 4.13.: Occupancy Grid. From the input disparity maps of a T-intersection (left), we
compute evidence for static obstacles and free space in bird’s eye view, and accumulate it over
time in a common coordinate system (right, top view). Here, white denotes obstacle, black is
free space and gray represents unobserved areas.

4.5. Occupancy Grid

Buildings represent obstacles in the scene and thus should never coincide with driv-
able regions (road). This assumption is incorporated into the occupancy grid feature.
We construct a 2D voxel grid in road plane coordinates from disparitymeasurements.
The grid classifies the area in front of the vehicle into the categories obstacle, free
space and unobserved segments as illustrated in Fig. 4.13.

For stereo matching we propose the efficient large-scale stereo matcher ELAS4

[73], that is capable of computing disparity maps at large image resolutions in real-
time on the CPU. The method is inspired from the observation that despite the
fact that many stereo correspondences are highly ambiguous, some of them can
be robustly matched. Assuming piecewise smooth disparities, such reliable ’sup-
port points’ carry valuable prior information for the estimation of the remaining,
ambiguous disparities in between. First, the disparities of a sparse set of support
points are computed using the full disparity range. The image coordinates of the
support points are then used to create a 2D mesh via Delaunay triangulation. From
the mesh, a piecewise linear prior is computed to disambiguate the matching prob-
lem and increasing the efficiency by restricting the search to a plausible subspace.
The algorithm automatically determines the disparity range, can be easily paral-
lelized and has shown impressive performance on the realistic KITTI dataset [71]
and on the large-scale Middlebury benchmark [165] while at the same time achiev-
ing significant speedups with respect to competing methods. Two matching results
are illustrated in Fig. 4.13 (left). For a more in-depth discussion on the algorithm,
the reader is referred to [73].

Given the disparity maps for all frames of the sequence, we compute a 2D oc-
cupancy grid [178] of the environment, representing obstacles and drivable (road)

4Source code available at: http://www.mrt.kit.edu/software/
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areas. Using the visual odometry approach described in Section 4.4, we represent all
dynamic and static features in the bird’s eye perspective of the last frame’s camera
coordinate system.
More formally, let O = {ρ1, . . . , ρNo} be the occupancy grid map with ρi de-

noting if the i’th cell is free (ρi = −1) or occupied (ρi = +1). Let the proba-
bility of an occupied grid cell be denoted by p(ρi) ≡ p(ρi = +1). Further, let
D = {D1, . . . ,DT } denote the set of all disparity maps, with Di the disparity map
of the i’th frame. Assuming the odometry estimates to be known, we are interested
in computing the posterior p(O|D). To make computations tractable the individual
cells are assumed to be independent conditioned on the measurements D, yielding

p(O|D) =

No∏
i=1

p(ρi|D) (4.28)

As this is a binary static state estimation problem, the discrete Bayes filter can be
applied to p(ρi|D). For ease of computation and numerical stability, we follow [178]
and make use of the log-odds representation

l(ρ|D) = log
p(ρ|D)

p(¬ρ|D)
= log

p(ρ|D)

1− p(ρ|D)
(4.29)

p(ρ|D) =
exp l(ρ|D)

1 + exp l(ρ|D)
(4.30)

where we have dropped the grid cell index i for clarity. Let Dt = {D1, . . . ,Dt}
denote the set of disparity observations till time t. The recursive filter update gives
rise to

p(ρ|Dt)
p(¬ρ|Dt)

=
p(Dt|ρ,Dt−1)p(ρ|Dt−1)

p(Dt|¬ρ,Dt−1)p(¬ρ|Dt−1)

=
p(Dt|ρ)

p(Dt|¬ρ)
× p(ρ|Dt−1)

p(¬ρ|Dt−1)
(4.31)

or – equivalently – in log-odds representation

l(ρ|Dt) = l(Dt|ρ) + l(ρ|Dt−1) (4.32)

Here, l(Dt|ρ) takes the form

l(Dt|ρ) =


+1 if cell ρ is not occluded
−1 if cell ρ is occluded for < 5m

0 otherwise (> 5m)
(4.33)

where the occlusion state of a cell ρ at time t is computed by tracing rays from the
camera into the direction of ρ. If an obstacle higher than 2 meters from the ground
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plane is hit before the cell is reached, the cell is called occluded. Note that we only
assign negative log-odds to cells within a 5 meter margin as no information about
the region behind an obstacle is available (gray areas in Fig. 4.13, right). The min-
imum height requirement alleviates the problem of clutter produced by other traffic
participants which are (typically) of limited height. Ray tracing on the occupancy
grid can be performed efficiently using the Bresenham algorithm [26]. The last step
rounds all occupancy grid cells to ρ ∈ {−1, 0,+1}, yielding the final occupancy
gridO = {ρ1, . . . , ρNo}which is modeled with the occupancy grid likelihood from
Section 3.3.6.
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The dataset used in the experimental section of this thesis is part of an early version
of the KITTI vision dataset [71, 70], which has been recorded from a VW Passat
station wagon [68, 106] (established in the context of the SFB/Transregio 28 special
research field and illustrated in Fig. 5.1) while driving around Karlsruhe, Germany.
Our setup includes camera images, laser scans, high-precision GPS measurements
and IMU accelerations/angular velocities from a combined GPS/IMU system. The
main purpose of this dataset is to push forward the development of computer vision
and robotic algorithms targeted to dynamic inner-city and freeway scenes. From
the recorded data1 we have extracted benchmarks for different tasks such as stereo,
optical flow, visual odometry, SLAM, 3D object detection and 3D tracking [71]. For
a review on related datasets and evaluation efforts, the reader is referred to [71].

5.1. System Setup

Our sensor setup, illustrated in Fig. 5.1, is as follows:

• 2 × PointGray Flea2 grayscale cameras (FL2-14S3M-C), 1.4 Megapixels,
1/2" Sony ICX267 CCD, global shutter

• 2 × PointGray Flea2 color cameras (FL2-14S3C-C), 1.4 Megapixels, 1/2"
Sony ICX267 CCD, global shutter

• 4 × Edmund Optics lenses, 4mm, opening angle ∼ 90◦, vertical opening
angle of region of interest (ROI) ∼ 35◦

• 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz, 64 beams, 0.09
degree angular resolution, 2 cm distance accuracy, collecting ∼ 1.3 million
points/second, field of view: 360◦ horizontal, 26.8◦ vertical, range: 120 m

• 1×OXTSRT3003 inertial and GPS navigation system, 6 axis, 100 Hz, L1/L2
RTK, resolution: 0.02m / 0.1◦

As color cameras are less sensitive to light we use two stereo camera rigs, one for
grayscale and one for color. The baseline of both stereo camera rigs is approximately
54 cm and the calibration between all sensors is known. In the early setup used for
the intersection subset of KITTI, we only had access to a monochrome video camera

1The dataset can be downloaded from: http://www.mrt.kit.edu/software/datasets.html
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Figure 5.1.: Recording Platform. A VW Passat station wagon has been equipped with four
video cameras (two color and two gray scale cameras). A rotating 3D laser scanner and a
GPS/IMU inertial navigation system unit have been installed for obtaining ground truth anno-
tations.

stereo rig and an GPS/IMU system for localization. The trunk of our vehicle houses
a PC with two six-core Intel XEON X5650 processors and a shock-absorbed RAID
5 hard disk system, storing up to 4 terabytes. Our computer runs Ubuntu Linux (64
bit) and a database for cognitive automobiles [80] to store the incoming data streams
in real-time.

5.2. Sensor Calibration

We took care that all sensors are carefully synchronized and calibrated [72, 150]. To
avoid drift over time, we calibrated the sensors at each day of our recordings. The
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coordinate systems are defined as illustrated in Fig. 5.1, i.e.:

• Camera: x = right, y = down, z = forward

• Velodyne: x = forward, y = left, z = up

• GPS/IMU: x = forward, y = left, z = up

5.2.1. Synchronization

In order to synchronize the sensors, we use the timestamps of the Velodyne 3D laser
scanner as a reference and consider each spin as a single frame. We mounted a reed
contact at the bottom of the continuously rotating scanner, triggering the cameras
when it is facing forward. This minimizes the differences in range and image obser-
vations caused by dynamic objects. Unfortunately, the GPS/IMU system cannot be
synchronized that way. However as it provides updates at 100 Hz, we collect the data
with the closest time stamp to the laser scanner time stamp for a particular frame.
The remaining worst-case time difference of 5 ms can be taken into account by com-
paring the corresponding timestamps which are provided for each sensor modality.

5.2.2. Camera Calibration

For calibrating the cameras intrinsically and extrinsically, we use the approach pro-
posed in [72], which delivers all calibration and rectification parameters fully auto-
matically after only a couple of minutes processing. While our cameras are fixed
with respect to the vehicle body, flexible arrangements could be dealt with using
self-calibration methods [46]. Note that the focal points of all cameras are aligned
on the same x/y−plane. This is important as it allows us to rectify all cameras
jointly. The calibration parameters are:

• s(i) ∈ N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Original image size (1392× 512)

• K(i) ∈ R3×3 . . . . . . . . . . . . . . . . . . . . . . . . . . Calibration matrices (unrectified)

• d(i) ∈ R5 . . . . . . . . . . . . . . . . . . . . . . . . . . . Distortion coefficients (unrectified)

• R(i) ∈ R3×3 . . . . . . . . . . . . . . . . . . . . . . . . Rotation from camera 0 to camera i

• t(i) ∈ R1×3 . . . . . . . . . . . . . . . . . . . . . . Translation from camera 0 to camera i

• s
(i)
rect ∈ N2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Image size after rectification

• R
(i)
rect ∈ R3×3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rectifying rotation matrix

• P
(i)
rect ∈ R3×4 . . . . . . . . . . . . . . . . . . . . . . . Projection matrix after rectification
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Here, i ∈ {0, 1, 2, 3} is the camera index, where 0 is the left gray scale, 1 the right
gray scale, 2 the left color and 3 the right color camera. The variable definitions
are compliant with the OpenCV library [23], which has been used for warping the
images. After rectification, only the variables with rect-subscripts are relevant. Note
that due to the pincushion distortion effect the images have been cropped such that
the size of the rectified images is slightly smaller than the original size of 1392×512
Pixels.

The projection of a 3D point in rectified camera coordinates x = (x, y, z, 1)T to
a point y = (u, v, 1)T in the i’th image is given as

y = P
(i)
rect x (5.1)

with

P
(i)
rect =

f (i)
u 0 c

(i)
u −f (i)

u b
(i)
x

0 f
(i)
v c

(i)
v 0

0 0 1 0

 (5.2)

the i’th projection matrix. Here, b(i)x denotes the baseline (in meters) with respect to
reference camera 0. In order to project a 3D point x in reference camera coordinates
to a point y on the i’th image plane, the rectifying rotation matrix Rrect

cam must be
considered as well:

y = P
(i)
rect Rrect

cam x (5.3)

with Rrect
cam = R

(0)
rect as camera 0 serves as reference. Here, Rrect

cam has been ex-
panded to a 4 × 4 matrix by appending a fourth zero-row and column and setting
Rrect
cam(4, 4) = 1.

5.2.3. Velodyne and IMU Calibration

The Velodyne laser scanner has been registered with respect to the reference cam-
era coordinate system by initializing the rigid body transformation using the method
proposed in [72]. Additionally, we have optimized an error criterion based on the Eu-
clidean distance of 50 manually selected correspondences and a robust measure on
the disparity error with respect to the 3 top performing stereo methods in the KITTI
stereo benchmark [71]. The optimization has been carried out using Metropolis-
Hastings sampling, yielding the rigid body transformation Tcam

velo . A 3D point x in
Velodyne coordinates gets then projected to a point y in the i’th camera image via

y = P
(i)
rect Rrect

cam Tcam
velo x (5.4)

where Tcam
velo denotes the rigid transformation between the laser scanner and the ref-

erence camera coordinate system.
For registering the IMU/GPS with respect to the Velodyne laser scanner, we drove

an ’∞’-loop and registered the point clouds using the Point-to-Plane ICP algo-
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Figure 5.2.: Illustration of the Dataset. This figure depicts 18 out of the 113 sequences used
for evaluation of the presented method. Note the complexity and diversity in scene layout,
dynamic objects and appearance.
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Figure 5.3.: Intersection Annotation Utility. The annotation of the 113 sequences with
ground truth information has been carried out with an OpenGL tool, that displays image se-
quences, trajectories, GoogleMaps images and labeled intersections in bird’s eye perspective.

rithm. Given two trajectories this problem corresponds to the well-known hand-
eye-calibration problem which can be solved using standard tools [99], yielding the
rigid body transformation Tvelo

imu. A 3D point x in IMU/GPS coordinates can then
be projected to y in the i’th image using

y = P
(i)
rect Rrect

cam Tcam
velo Tvelo

imu x (5.5)

Note that the Velodyne sensor only serves as a reference and is not used in our ex-
periments in Chapter 5. However, we have included it here for completeness.

5.3. Data Collection and Annotation

For the experiments conducted in this thesis 113 realistic video sequences have been
recorded with a duration of 5 to 30 seconds each, featuring straights, 3-armed and 4-

70



5.4. Experimental Results

armed intersection scenarios. Each sequence captures the moment of approaching
an intersection or waiting in front of a red traffic light. All sequences are manu-
ally clipped at the moment the intersection is entered as this is the time when an
autonomous system would need to take a decision. Note that this would also be
possible in an automatic manner using approximate maps and state-of-the-art local-
ization techniques [29]. Fig. 5.2 depicts a couple of sequences from our dataset.
Note the large variability in terms of scene layout and dynamic objects present in
the scene.
The annotation of the data has been carried out using GoogleMaps aerial images.

For each intersection in the database we labeled the center of the intersection as well
as the number, orientation and width of the intersecting streets in bird’s eye perspec-
tive. A screen shot of our OpenGL annotation tool is shown in Fig. 5.3. Afterwards,
the annotated geometry is mapped into the road coordinate system using the GPS
coordinates of the vehicle, the road plane estimate and the calibration parameters
described in the previous section. Fig. 5.6 shows the variability in terms of road
layouts (red) in our dataset.

Additionally, we annotated all vehicle tracklets that have been detected by the
approach described in Section 4.1 with the index (l) of the corresponding lane or
parking area. For vehicles that have been associated to a lane, the tangent at the
closest foot point of lane l is used as object orientation ground truth. Furthermore,
we manually annotate all lanes in each scenario with a binary label indicating if the
lane is ’active’ or not, i.e., if moving vehicles on that lane can be observed or not.

5.4. Experimental Results

Our experiments target at evaluating the overall performance as well as the impor-
tance of each individual feature cue for the different tasks, which are detailed in the
following sections. Let us define the following feature abbreviations

P = Prior (see Section 3.3.1)
T = Tracklets (see Section 3.3.2)
V = Vanishing Lines (see Section 3.3.3)
S = Semantic labels (see Section 3.3.4)
F = Scene Flow (see Section 3.3.5)
O = Occupancy Grid (see Section 3.3.6)

which allow for easy indexing of the prior and the feature cues. To gain insights
into the strengths and weaknesses of each term in the proposed model, we conduct
experiments using the following feature combinations
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P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Prior only
PT, PV, PS, PF, PO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single term
PVSFO, PTSFO, PTVFO, PTVSO, PTVSF . . . . . . . . . . All terms but one
PTVSFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Full model

i.e., we evaluate the prior without any image cues, the prior in combination with a
single feature term, all feature terms but one and the full model including all terms
from Section 3.5.2. For each of these settings a separate set of parameters Θ maxi-
mizing the respective probability distribution is learned.

5.4.1. Learning the Model Parameters

Due to the relatively small number of sequences in the dataset, we leverage 10-fold
cross-validation to evaluate the proposed method: We hold out every 10’th data
point (i.e., sequence) for evaluation when training the model parameters Θ using
the approach described in Section 3.5.2. Fig. 5.4 and Fig. 5.5 depict the learning
curves of the first fold for each feature term combination. For fitting all curves into a
single plot, all values have been normalized to the interval [0, 1]. In contrast to clas-
sical gradient ascent methods, our gradients are noisy due to the non-deterministic
nature of the Markov chains that run within the learning procedure. Nevertheless,
convergence typically occured after 150-250 gradient ascent steps. During the fi-
nal iterations of the learning procedure we reduce the learning rate η step-by-step to
force all parameters to settle at their final values.

Note that for the prior parameters we slightly deviate from the derivations in Sec-
tion 3.5.2 and only optimize a scalar precision parameter that we multiply with the
maximum-likelihood estimate of the precision matrix. Empirically we found this
to perform equally well compared to the full optimization while at the same time
being significantly faster and more stable to optimize. Similarly, the mean vector
is obtained using maximum-likelihood and kept constant during optimization. Fur-
thermore, we exclude ζt, ζv and ζf from the optimization as these parameters are
difficult to optimize and can be easily chosen based on empiric reasoning. All pa-
rameters which are not part of Θ and thus not optimized for are summarized in Table
5.1 for reproducibility of the results.

5.4.2. Expressive Power and Generality

To accommodate for the noise in the features and the difficult nature of the estima-
tion problem in general, the proposed geometric model from Section 3.1 is simpli-
fied in a sense that it forces opposing streets to be collinear and all streets to share
the same width. To justify this approximation and demonstrate the applicability
of the proposed intersection model to real-world scenes, we fit the model parame-
ters R = {κ, c, w, r, α} to the true intersection layouts that have been annotated
using GoogleMaps images and compare the road area overlap. This leads to an ’or-
acle’ measure of the maximum performance that can be achieved with our model
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Figure 5.4.: Learning the Model Parameters. This figure depicts the evolution of the param-
eters Θ over the number of gradient ascent steps for each of the settings from Section 5.4.
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Figure 5.5.: Learning the Model Parameters. This figure depicts the evolution of the param-
eters Θ over the number of gradient ascent steps for each of the settings from Section 5.4.
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Prior: (Section 3.3.1)
σα = 0.1 rad KDE kernel bandwidth

Vehicle Tracklets: (Section 3.3.2 and Section 4.1)
τd = 0.2 NMS overlap threshold (object detection)
τt1 = 0.5 Gating threshold (tracking stage 1)
τt2 = 0.3 Gating threshold (tracking stage 2)
ζt = 10−20 Outlier threshold
σout = 70 m Std. deviation of outlier distribution

Vanishing Points: (Section 3.3.3)
ζv = 10−10 Outlier threshold

Semantic Scene Labels: (Section 3.3.4 and Section 4.3)
ns = 4 Px Image patch (superpixel) size
ws = (1, 1, 4) Scene label weights

Scene Flow: (Section 3.3.5 and Section 4.4)
nf = 50 Number of RANSAC samples
ζf = 10−15 Outlier threshold
σout = 70 m Std. deviation of outlier distribution

Occupancy Grid: (Section 3.3.6 and Section 4.5)
no = 1 m Occupancy grid cell size
wo = (−1, 4, 1) Weights of geometric prior
∆o = (2, 20) m Margins of geometric prior

Inference and Learning: (Section 3.4 and Section 3.5)
ninfer = 10, 000 Number of samples drawn at inference
nlearn = 10 Number of samples per learning iteration
niter = 500 Number of learning iterations

Sampling: (Table 3.1)
σc ∈ {0.5, 5.0} m Proposal std. deviation (center)
σw ∈ {0.5, 5.0} m Proposal std. deviation (street width)
σα ∈ {0.02, 0.2} rad Proposal std. deviation (crossing angle)
σr ∈ {0.01, 0.1} rad Proposal std. deviation (rotation)

Table 5.1.: Constants. This table shows the setting of all constants in our model. All values
have been kept fix throughout all experiments reported in this thesis.
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Figure 5.6.: Expressive Power of the Geometric Model. This figure illustrates the generality
of the restricted geometric model presented in Section 3.1 (blue) with respect to the ground
truth road layout (red). All 113 intersections from our dataset are shown, sorted by decreasing
overlap. As expected, straight roads can be approximated best, while X-crossings sometimes
appear in more esoteric shapes. Overall, the simplified model provides a good approximation
to the true intersection layout.
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when assuming complete and perfect observations. For each scene, we maximize
the overlapping road area using iterative non-linear optimization on the intersection-
over-union criterion

R̂ = argmax
R

road(R, w̄) ∩ road(G, w̄)

road(R, w̄) ∪ road(G, w̄)︸ ︷︷ ︸
overlapping road area

(5.6)

where road(·, d) is a function that returns the road region clipped at distance d from
the intersection center c, w̄ is the average street width, R is the simplified model
and G denotes the ground truth layout.

Fig. 5.6 shows the results of this optimization, ordered by decreasing overlap.
The ground truth and the simplified intersection layout are shown in red and blue,
respectively. The average overlap on all 113 sequences is 86.9%. Given the fact that
preliminary experiments [69, 74] indicate an expected performance between 45%
and 60%, and that the street width is often hard to observe or not observable at all
(e.g., due to the low camera viewpoint and clutter), the geometric approximations
seem justified. For the vast majority of intersection geometries in Fig. 5.6 the sim-
plified model in blue is a good approximation to the full model, illustrated in red, yet
it can be described with a significantly smaller amount of parameters. Note that the
113 scenarios under consideration are chosen at random from real-world test runs
and are representative for the distribution of intersection layouts in Karlsruhe.

5.4.3. Sampling from the Road Layout Prior

To confirm the quality of the learned road layout prior p(R; Θ) we draw 120 ran-
dom samples from it using the parameter set Θ from training fold one. The resulting
samples are depicted in Fig. 5.7 using the same axis limits for each subplot. As evi-
denced by this experiment, the synthesized intersections exhibit different topologies,
locations, scales and street orientations. Qualitatively, the samples resemble natural
intersections well. The impact of including this prior knowledge into the inference
process is evaluated quantitatively in Section 5.4.4. Note that simple left or right
turns (κ ∈ {2, 3}) have not been observed in our dataset which is also reflected by
the samples from the prior.

5.4.4. Topology and Geometry

To judge the performance of the proposed model, we evaluate the estimation results
of each setting against several metrics. First, we measure the accuracy in topology
estimation, which is the percentage of all 113 cases in which the correct topology κ
has been recovered. Furthermore, we propose three geometric metrics: We compute
the average Euclidean error in estimating the center of the intersection, the average
street orientation error and the road area overlap.
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Figure 5.7.: Samples from the Prior. This figure shows 120 random samples from the learned
prior p(R) in road coordinates (y = 0), using the same axis limits in each plot: x ∈ [−75, 75]
and z ∈ [−50, 100]. For clarity, only the left and right road boundaries are shown here.
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Regarding the street orientation, we assign each street to its (rotationally) closest
counterpart in the ground truth layout in order to decouple the orientation measure
from the estimated topology κ. More precisely, we take the layout with the smaller
number of streets and assign all streets to their closest counterparts in the layout with
the larger number of streets. Consider for example a three-way intersection that has
been recovered as a four-way intersection or vice versa. If all street orientations have
been estimated correctly except for the one that does not exist in the other layout the
orientation error is not affected as desired. On contrary, a street that is part of the
correct layout but is estimated badly in terms of orientation increases the error.
Finally, the road area overlap measures how much the estimated road layout over-

laps with the ground truth layout by computing the intersection-over-union of both
road areas. For this evaluation we make use of the measure introduced in Eq. 5.6 in
Section 5.4.2. Note that the accuracy is upper bounded by the oracle results depicted
in Fig. 5.6 due to the simplified geometric model.

All metrics have been evaluated for each setting and the results are depicted in
Table 5.2 (row 1 to 4). The corresponding topology confusion matrices are shown in
Fig. 5.8. As evidenced by the experiments, each feature is able to improve the results
compared to using prior information alone (column 1-6). The strongest cues in our
framework are vehicle tracklets, 3D scene flow and the occupancy grid features. This
indicates that despite its noisy nature, depth information is important for solving
the problem. The smallest gain in performance is observed for the vanishing point
feature. This is because this feature cue only works in combination with other cues as
it only allows for ’fine tuning’ the street orientations but does not directly influence
the existence of a street.

Additional performance gains can be achieved when combining the feature cues.
In terms of topology estimation, the best results have been obtained by making us of
all information. Without the semantic scene label cue, the geometric error measures
can be slightly improved. While these differences are only marginal, our experi-
ments suggest that the semantic scene label cue is the weakest when considered in
combination with all the other cues. In contrast, important information is coming
from the occupancy grid. Removing this cue significantly impacts the performance,
especially in terms of topology and road area estimation, but also regarding the in-
tersection location and street orientation errors. We believe that this is because oc-
cupancy information is most complementary to the other cues, while 3D scene flow
and vehicle tracklets can partly replace each other.

Note that our learning procedure described in Section 3.5.1 has no access to the
metrics we employ here. Instead, it directly maximizes the likelihood of the data
with respect to the proposed model. Thus, errors and uncertainties in the ground
truth labeling impact performance and explain the differences between the models.
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Figure 5.8.: Topology Confusion Matrices. This figure depicts the confusion matrices for
each setting, with estimated topologies and true topologies at the x- and y-axis, respectively.
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5.4.5. Tracklet Associations and Semantic Activities

Besides the geometric reasoning discussed so far, an important aspect in real-world
applications is to understand the scene at a higher level. This includes the association
of vehicle tracklets to lanes (’Tracklet Accuracy’ in Table 5.2) as well as the detection
of active lanes (’Lane Accuracy’ in Table 5.2). With active we refer to lanes that
have the right of way, i.e., where the green light is turned on in the case of signalized
intersections. Note that we are able to infer such information merely by looking at
the dynamic objects in the scene. No detection and recognition of traffic lights is
required and the state of traffic lights facing towards the other streets are recovered
as well.
For evaluating the above mentioned metrics we extract all unique tracklets. We

define a tracklet as unique if it has a minimum tracklet length of 10 meters and if it
has been uniquely assigned to one of the lanes, where uniqueness is measured by the
distance of the most likely lane to the second likely in terms of their log-likelihood
log p(t|l,R) as defined in Eq. 3.12. For all unique tracklets, we evaluate the accu-
racy in tracklet-to-lane association as well as the accuracy in detecting active lanes.
We define a lane as active if at least one tracklet has been uniquely assigned to it.
Note that we assign the tracklets to the closest lanes in the ground truth layout to
account for the fact that the model topology κ might have been wrongly estimated.
This is similar to the street orientation evaluation in the previous section and decou-
ples the error metrics from other parameters.

The tracklet and lane accuracies for all settings are depicted in Table 5.2 (rows
5 and 6). As expected, the best results are obtained in all cases where either the
3D scene flow or the vehicle tracklet features are included in the model, with 80%
accuracy in tracklet associations and 90% accuracy in the active lane detection ex-
periment. While the boost in tracklet accuracy performance is dramatic compared
to using prior knowledge alone (28% accuracy), lane accuracy increases from 77%
to 90%. The reason is that most of the lanes are inactive, hence strongly biasing
the dataset. However, note that the improvements by our model still correspond to a
relative error reduction of over 50%.

5.4.6. Object Orientation Estimation

The estimated object orientations that serve as input to our tracklet model in Section
3.3.2 are noisy as evidenced by the confusion matrix in Fig. 4.2. In fact, the average
orientation error made by the object detector described in the previous section is 32.6
degrees. Using our extracted scene topology, geometry and lane association knowl-
edge, however, we are able to re-estimate the orientations of each object assuming
that all vehicles adhere to some basic traffic rules, i.e., right handed traffic. For as-
sociating the tracklets to lanes and the detections to lane spline points, we employ
the inference procedure described in Section 3.4.2. Next, we select the tangent angle
at the associated spline’s foot point s on the inferred lane l as our novel orientation
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5.4. Experimental Results

estimate. Since parked cars are often oriented arbitrarily, our evaluation focuses on
moving vehicles only. Table 5.2 (row 7) shows that we are able to significantly re-
duce the orientation error from 32.6 degrees, which corresponds to the orientation
error of the raw detections (not depicted in the table), down to 14.0 degrees when
using our model in combination with vehicle tracklets or 3D scene flow.

5.4.7. Object Detection

As we have shown in Section 5.4.4, objects help in estimating the layout and geom-
etry of the scene. On the other hand, knowledge about the road layout should also
help in improving the performance of object detectors. To verify this hypothesis, we
conduct the following experiment.

Wemanually annotated all cars in the last frame of each sequence using 2D bound-
ing boxes. This results in 355 labeled car instances in total. Next, we ran our pre-
trained part-based object detector [60] from Section 4.1.1 on those images and apply
non-maxima-suppression on the detections. Note that these detections are the same
as the ones that serve as input to our tracking model described in Section 3.3.2 and
Section 4.1.2. Given the object detections and the inferred road geometry from Sec-
tion 5.4.4, we re-score each object detection by adding the following term to the
scores of [60]

0.5

[
max
l

exp

(
− ∆2

l

2w2

)
+

3∑
i=1

exp

(
− (xi − µi)2

2σ2
i

)]
− 1 (5.7)

Here ∆l is the distance of a car detection to lane spline l, w is the estimated street
width and {µi, σi} are mean and standard deviation of the object width, height and
position, respectively, obtained from a held-out training set using maximum likeli-
hood estimation. Due to the choice of Eq. 5.7, a value between −1 and +1 will be
added to the detector score, depending on the agreement in size and the proximity
to the closest lane.

Fig. 5.9 depicts the precision-recall curves for the L-SVM baseline [60] and our
approach. As evidenced by this figure, our geometric and topological constraints in-
crease detection performance significantly, improving average precision from 69.9%
to 74.2%. The benefits of including this knowledge into the detection process are
also illustrated in Fig. 5.10. In order to include the partly occluded car to the right
into the detection result, the threshold of the baseline has to be lowered to a value
which produces two false positives (top). In contrast, our re-scored ranking is able
to handle this case (bottom). The average precision for each setting is listed in Table
5.2 (row 8).
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Figure 5.9.: ImprovingObject Detection. This figure shows the precision-recall curves for the
object detection task using an overlap threshold of 50%. Compared to Felzenszwalb et al. [60]
(L-SVM), context from the proposed model helps to improving object detection performance.

Figure 5.10.: Improving Object Detection. By using context from our model for re-weighting
object hypothesis our algorithm (bottom) is able to eliminate false positives of state-of-the-art
part-based object detectors [60] (top).
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Frame Sequence
Object Detection (Section 4.1.1) 3.88 s 314.01 s
Object Tracking (Section 4.1.2) 0.46 s 37.55 s
Long Line Detection (Section 4.2) 0.03 s 2.14 s
Vanishing Line Estimation (Section 4.2) 0.01 s 0.70 s
Semantic Scene Labels (Section 4.3) 0.01 s 1.01 s
Scene Flow / Egomotion (Section 4.4) 0.31 s 24.87 s
Road Plane Estimation (Section 4.4) 0.06 s 5.13 s
Stereo Matching (Section 4.5) 0.30 s 23.90 s
Occupancy Grid Estimation (Section 4.5) 0.09 s 7.41 s
Prior (Section 3.3.1) 0.12 s 9.85 s
Tracklets (Section 3.3.2) 1.28 s 103.54 s
Vanishing Points (Section 3.3.3) 0.10 s 8.19 s
Semantic Labels (Section 3.3.4) 0.60 s 48.21 s
Scene Flow (Section 3.3.5) 0.50 s 40.22 s
Occupancy Grid (Section 3.3.6) 0.18 s 14.41 s
Total 7.92 s 641.13 s

Table 5.3.: Running Times per Frame/Sequence on a Intel Core7@2.67 Ghz. This figure
shows the average running times of the individual parts of our algorithm on a single CPU core
using a mixed MATLAB/C++ implementation. The first part of the table lists the time used
for computing the image evidence (feature extraction) and the second part shows the timings
for evaluating 10, 000 samples. On average, our basic implementation runs at ∼ 8 seconds
per frame.

5.4.8. Runtime

In this section we evaluate the computational complexity of the proposed approach
experimentally. Towards this goal, wemeasure the running times of ourmixedMAT-
LAB/C++ implementation. While parts of the algorithm already run in real-time and
others can be accelerated using instruction- or thread-level parallelism, this was not
the primary goal of this thesis and is left to future work. However, this evaluation
provides a good indication of the bottlenecks and the more efficient stages in our
implementation.

Table 5.3 lists the average running times of the individual stages of our algorithm,
separated into feature extraction (top) and model inference (bottom). Learning times
are in the order of hours, depending on the quality of the gradient approximation,
but not listed here as learning can be performed offline. On average, our method
runs at ∼ 8 seconds per frame, when including the time for feature extraction and
drawing 10, 000 samples from the model. While the time for inference could be
dramatically reduced when using a pure C++ implementation and parallel Markov
chains, the main bottleneck of our method is the feature extraction stage. In partic-
ular, the running times are heavily dominated by the time consumed to detect and
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track objects, even though the cascaded version [61] of the part-based object detec-
tor [60] has been leveraged, which reduces object detection runtime by a factor of
10, approximately. With the availability of faster object detectors [53, 19] and heavy
multi-processing, a real-time implementation seems within reach.

5.4.9. Qualitative Results

Fig. 5.11-5.13 illustrate our inference results for the setting ’PTVSFO’, with the
most likely lanes for each unique tracklet, indicated by an arrow. The ego-vehicle
(observer) is depicted in black. For a definition of uniqueness, the reader is referred
to Section 5.4.5.
For most sequences the road layout has been estimated correctly and the vehicles

have been assigned to the correct lanes. Only vehicles that are very far away or
visible only for a couple of frames pose problems in terms of their lane associations.
However, note that this didn’t affect the layout estimation. In Fig. 5.11 (top-left) the
moving vehicle in front of the observer and the static vehicles at the side of the road
have been identified correctly. In Fig. 5.11 (bottom-left) the cyan object has been
observed only for a short period of time, leading to a probability of moving forward
as well as making a right turn. In Fig. 5.11 (bottom-right) the two crossing vehicles
have been identified correctly and distinguished from the vehicles waiting in front
of the traffic light. However, the red car has been assigned to the wrong lane as
the object detector orientation estimate was too uncertain and no motion has been
observed. The same holds true for the red vehicle in Fig. 5.12 (top-left), which has
been detected only for a very short period of time.
Typical failure modes are depicted in Fig. 5.14. In Fig. 5.14 (top-left, top-right,

bottom-right) the wrong intersection layout has been recovered. However, note that
given the estimated layout, most of the lane associations are correct. Fig. 5.14
(middle-right) is a difficult case as no moving vehicles were present to support the
hypothesis of a third intersection arm, resulting in a straight road. While the street
width has been wrongly estimated in Fig. 5.14 (bottom-left), the layout is correct
and almost all vehicles have been associated with the right lanes. In summary, the
proposed system works well and robustly. Furthermore, even in the rare event of
topology or geometry estimation failures many objects are still correctly inferred.
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Figure 5.11.: Inference Results. For each sequence, the top plot shows the input image with
the bounding boxes of the detected objects. The bottom plot shows the inference result from
bird’s eye perspective. Arrows indicate the predicted driving direction(s). See Section 5.4.9
for details.
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Figure 5.12.: Inference Results. For each sequence, the top plot shows the input image with
the bounding boxes of the detected objects. The bottom plot shows the inference result from
bird’s eye perspective. Arrows indicate the predicted driving direction(s). See Section 5.4.9
for details.
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Figure 5.13.: Inference Results. For each sequence, the top plot shows the input image with
the bounding boxes of the detected objects. The bottom plot shows the inference result from
bird’s eye perspective. Arrows indicate the predicted driving direction(s). See Section 5.4.9
for details.
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Figure 5.14.: Failure Cases. This figure shows some failure modes of our algorithm, where
either the topology, geometry or the tracklet associations are (partly) wrong. Section 5.4.9
gives further details.
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6. Conclusions and Future Directions

This thesis has proposed a probabilistic generative model, which is able to reason
about complex inner-city traffic scenes using features extracted from short (stereo)
video sequences recorded from a movable platform. The application is autonomous
driving, which currently cannot handle urban environments due tomissing or corrupt
GPS information, outdated maps, the complexity of the scenes, the amount of clutter
(e.g., shadows, vegetation) as well as the high level of occlusions (e.g., occlusions
caused by cars, buildings, vegetation or infrastructure). Simple extensions of state-
of-the-art lane detectors or lane-keeping systems to intersections are doomed to fail
as lane markings are often missing, damaged or occluded.
To provide an alternative, here we have proposed a probabilistic model and image

likelihoods using five complementary feature cues that consider the scene as awhole:
Vehicle tracklets, vanishing points, semantic labels, 3D scene flow and occupancy
grids. By making use of these cues our model is able to extract information such as
the topology and geometry of the road layout, as well as the lanes on which vehicles
are driving. We have shown that, despite the fact that the partition function of the
probabilistic model is intractable to compute, parameter learning is still possible in
our model. We have cast the problem as a Gibbs random field and apply contrastive
divergence in combination with Markov Chain Monte Carlo inference techniques.

The validity of the proposed model has been substantiated by comprehensive ex-
periments, considering individual image cues as well as a large variety of combi-
nations. On a set of 113 realistic real-world intersection sequences we are able to
estimate the topology of the scene with an accuracy of up to 90% while at the same
time accurately determining the intersection center and the individual street orien-
tations. Vice-versa, we have shown that context from our model helps in improving
the performance of state-of-the-art object detectors in terms of detecting objects as
well as estimating their orientation. Considering the scene as a whole turned out to
be crucial, especially in the presence of clutter and missing data.

While we have discovered that all features proposed in this work were able to
improve performance individually, occupancy grids as well as vehicle tracklets and
3D scene flow have been identified as the strongest and most important feature cues.
This is comprehensible as human drivers likewise examine other traffic participants
as well as the 3D structure (e.g., buildings, urban canyons) to picture the scene.

Regarding future extensions, models that incorporate typical traffic patterns and
traffic light phases will present an interesting area of research. Presently, noise in
the observations can lead to implausible configurations such as cars colliding with
each other. Including higher-level information such as traffic patterns and traffic light
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phases will help to reduce ambiguities and increase robustness. Such information
will also allow for the detection of abnormalities in the traffic flow and to warn the
driver before entering the intersection.
Furthermore, more complex vehicle motion models are required. The presented

model uses a simple forward motion constraint with a B-spline based lane model.
Improved sensor observations and more computing power will allow for more ac-
curate motion models and lane representations. Another interesting direction will
be to integrate information from other traffic participants (e.g., pedestrians) into the
model as well as to make use of further sources of information such as road markings
whenever they are visible and reliable or street maps, e.g., OpenStreetMap. While
maps can be noisy or even outdated, they still provide valuable prior information and
can be updated in an online manner as soon as enough vehicles have been equipped
with a scene understanding system like the one proposed in this thesis.
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A. Sampling Techniques

This appendix gives an introduction to sampling techniques, in particular Markov
Chain Monte Carlo (MCMC) methods [5, 123], which are adopted for inference
in the scene understanding model presented in this thesis. The robot localization
examples used for illustration are gratefully borrowed from a tutorial presentation
of Martin Lauer in 2010 [123].

A.1. Introduction

Many statistical problems of practical relevance lead to problemswhich include solv-
ing an integral that is analytically intractable. In Bayesian inference, for example,
one is typically interested in inferring unknown variables x from observed data y,
which leads to the following problems:

• Normalization: p(x|y) = p(y|x)p(x)∫
p(y|x′)p(x′)dx′

• Marginalization: p(x|y) =
∫
p(x, z|y)dz

• Expectation: Ep(f(x)) =
∫
f(x)p(x)dx

Examples for the latter are:

• The expectation:
∫
xp(x)dx,

• The variance:
∫
x2p(x)dx−

(∫
xp(x)dx

)2 , or

• The expected risk:
∫
risk(x)p(x)dx

Unfortunately, these integrals are often analytically intractable and sometimes p can
not even be expressed as a function. An approximation scheme for solving these
tasks is random Monte Carlo simulations, in which the integral∫

f(x)p(x)dx (A.1)

is approximated by a finite sum

1

N

∑
i

f(xi) (A.2)
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Figure A.1.: Monte Carlo Approximation of an integral with a finite sum.

where xi are samples drawn from p. The longer we run the Monte Carlo simulation,
the better the approximation of the integral:

1

N

N∑
i=1

f(xi)
N→∞−−−−→

∫
f(x)p(x)dx (A.3)

Thus the estimate is unbiased andwill almost surely converge to the right value by the
strong law of large numbers. The Monte Carlo approximation principle is illustrated
in Fig. A.1. Maintaining efficiency is one of the main challenges of Monte Carlo
methods.

A.2. Basic Sampling Strategies

Before moving on to Markov chains [5], we will review a set of basic sampling
algorithms and illustrate them on simple toy cases.

A.2.1. Inverse Transform Sampling

Assuming we are provided with a random number generator, one can draw samples
from distributions for which the cumulative probability distribution is invertible.
When this is not the case, one can still draw samples by approximating the inverted
cumulative probability distribution using interpolation.

More formally, let us consider a one-dimensional random variable x with prob-
ability distribution p(x) from which we want to sample. Let us further assume a
uniformly distributed random variable y ∼ U(0, 1) and a function f(y), such that
x = f(y). Since probability mass in any differential area must be invariant under
change of variables |p(x)dx| = |p(y)dy|, the distribution of x will be governed by

p(x) = p(y)

∣∣∣∣dydx
∣∣∣∣ =

∣∣∣∣dydx
∣∣∣∣ . (A.4)
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Figure A.2.: Inverse Transform Sampling. This figure illustrates sampling from a distribution
p(x)with invertible CDF by uniformly drawing samples on the interval (0, 1) and transforming
them by the inverse of the CDF.

By integration we obtain the cumulative density function (CDF)

h(x) ≡
∫ x

−∞
p(x′)dx′ = y (A.5)

with x = f(y) = h−1(y). This means that to obtain a sample from x we can
sample y ∼ U(0, 1) and transform it using the inverse of the integral of the target
distribution p(x). To illustrate this fact we sample from an exponential distribution
by sampling from a uniform distribution using this method. Consider

p(x) =

{
exp(−x) 0 ≤ x,
0 else

(A.6)

which gives h(x) = 1 − exp(−x). The inverse mapping is given by f(y) =
h−1(y) = − ln(1 − y). This is illustrated in Fig. A.2, which shows 100 samples
drawn from the distribution Eq. A.6.

A.2.2. Rejection Sampling

Unfortunately, for many distributions the inverse transform sampling procedure is
impractical due to their complex form or high dimensionality. An alternative is re-
jection sampling, which can be applied whenever another proposal distribution q(x)
satisfying

p(x) ≤Mq(x) with M <∞ (A.7)

is available from which samples are obtained more easily and p(x) can be evaluated
up to some normalizing constant as illustrated in Fig. A.3. Each sample from the
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Figure A.3.: Rejection Sampling. This figure illustrates the target distribution p and the pro-
posal distribution q, satisfying the requirement p(x) ≤ 2q(x).

rejection sampler involves generating two random numbers and an accept/reject step:

• Draw a sample x from p(x).

• Draw a sample u from U(0,Mq(x))

If u ≤ p(x) the sample is accepted, otherwise it gets rejected. As all accepted sam-
ples (x, u) follow a uniform distribution under the curve of p(x) the corresponding
x-values are distributed according to p(x) as desired:

p(x) ∝ q(x)
p(x)

Mq(x)
(A.8)

The procedure is illustrated in Algorithm 4. In practice it is often difficult to bound
p(x) byMq(x). IfM is chosen too conservatively (too large) the acceptance prob-
ability

Pr(x accepted) = Pr

(
u <

p(x)

Mq(x)

)
≈ 1

M
(A.9)

gets too small to accept enough samples within reasonable time. This makes rejec-
tion sampling impractical in high dimensions.

Let us now consider a simple example. Given independent samples from a Gaus-
sian distributionN (0, 0.5), we wish to estimate the mean µ and standard deviation
σ using rejection sampling. The graphical model is shown in Fig. A.4(a). We draw
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Algorithm 4 Rejection Sampling
i← 1
while i < N do

draw sample xi ∼ q(x)
draw sample ui ∼ U(0, 1)

if ui < p(xi)
Mq(xi)

then
accept xi
i← i+ 1

(a) Graphical Model
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(b) 50 samples fromN (0, 0.5)
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(c) 1000 Samples
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(d) Kernel Density Estimate
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Figure A.4.: Rejection Sampling. Given N = 50 independent samples from a Gaussian
distributionN (µ, σ) we infer the posterior over µ and σ.
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50 samples xi from N (µ, σ) and assume µ ∼ U(−0.5, 0.5) and σ ∼ U(0.1, 1.1)
as prior distributions (Fig. A.4(b)). The posterior simplifies to

p(µ, σ|x1, ..., xN ) ∝ p(µ, σ)p(x1, ..., xN |µ, σ)

= p(µ)p(σ)

N∏
i=1

p(xi|µ, σ)

= [−0.5 ≤ µ ≤ 0.5]× [0.1 ≤ σ ≤ 1.1]

×
(

1√
2πσ2

)N
exp

(
− 1

2σ2

N∑
i=1

(xi − µ)2

)
(A.10)

Unfortunately, a tight bound to this density is hard to derive analytically. Hence,
we set q(µ, σ) = p(0, 0.5, |x1, ..., xN ) to be constant. This highlights the main
problem with rejection sampling: Finding a tight bound to make sampling tractable.
The results of sampling from this posterior are illustrated and compared against the
true posterior in Fig. A.4(c)-A.4(e).

Let us now consider a second examplewhich is illustrated in Fig. A.5. Assume, we
have a robot which is located in a 2D field of size 1×1meters, equipped with sensors
thatmeasure its distance di with respect to the four corners ei of the field. We assume
a uniform prior for the robot location x ∼ U([0, 1]× [0, 1]) and the measurements
are given by the robot’s position and Gaussian noise di|x ∼ N (‖x−ei‖, σ2) Since
all measurements are assumed to be independent, the posterior of the robot’s position
x given the 4 measurements {d1, ..., d4} can be written as

p(x|d1, d2, d3, d4) ∝ p(x)p(d1|x)p(d2|x)p(d3|x)p(d4|x) (A.11)

∝ [0 ≤ x1, x2 ≤ 1]× exp

(
− 1

2σ2

4∑
i=1

[‖x− ei‖ − di]2
)

Since we know that the maximum of the unnormalized posterior is 1, we set q(x) =
[0 ≤ x1, x2 ≤ 1]which tightly boundsZp(x), whereZ is the normalizing constant.
The sampling results are depicted in Fig. A.5(c) and Fig. A.5(d). Note how many
rejected samples are required for accepting 50 samples in total.

A.3. Markov Chains

While the methods discussed so far are simple, they can be only applied to very sim-
ple low-dimensional problems. As a step towards the much more powerful Markov
Chain Monte Carlo methods, this section first introduces Markov chains and their
properties.
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(c) Samples (x = (0.9, 0.1), σ = 0.1)
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(d) Samples (x = (0.5, 0.5), σ = 0.1)

Figure A.5.:Robot Localization using Rejection Sampling. Illustration of the robot localiza-
tion example: The task is to infer the robot’s location given noisy measurements of its distances
to the field corners. The lower plots show samples drawn using rejection sampling.

A.3.1. Definition of Markov Chains

Let us start with the definition of Markov chains.

Definition 1 (Markov Chain). A Markov chain (named after Andrey Markov) is a
discrete random process with the Markov property.

Definition 2 (Random Process). Let (Ω,F , P ) be a probability space, with sample
space Ω, σ-field F ⊆ 2Ω and probability measure P : F → [0, 1]. Let further
(Ψ,X ) be a measurable observation space. A random process is a collection of
Ψ-valued random variables on Ω:

X = {xi : i ∈ {1, ..., N} ∧ xi : Ω→ Ψ}

Definition 3 (Markov Property). A random process is said to be Markov, iff the
conditional probability distribution of successor states in the process depends only
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1x 2x 3x 4x 5x 6x ...0x

Figure A.6.: Markov chain. Each state depends only on its predecessor.

T =

 0 1 0
0 0.1 0.9
0.6 0.4 0



(a) Stochastic Transition Matrix
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0.1

0.4

0.6
(b) Stochastic Transition Graph

Figure A.7.: Homogeneous Discrete Markov Chain. This figure shows the stochastic tran-
sition matrix and the transition graph of a Markov chain with 3 states. In (a), the ij-th entry of
T denotes the probability of transitioning from i to j. (b) shows the corresponding graph.

upon the present state:

P (xi|xi−1, ..., x1) = P (xi|xi−1)

This simplifies the joint distribution ofX to:

P (x1, ..., xN ) = P (x1)

N∏
i=2

P (xi|xi−1)

TheMarkov property is illustrated in Fig. A.6, where each variable of the process de-
pends only on the previous variable. An example of a Markov process is the random
walk where, at each step, the new position only depends upon the current position.
If dynamics is introduced, for example in form of a continuous velocity assumption,
the process is no longer Markov, since the new position depends on the current and
the previous position. However, increasing the dimensionality of the state to two
(position, velocity) restores the Markov property again.

AMarkov chain for which the transition operator does not depend on time is called
homogeneous Markov chain. It is convenient to describe homogeneous Markov
chains via stochastic transition matrices and directed graphs. This is illustrated in
Fig. A.7. Here, transition probabilities are represented as entries in the transition
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matrix T or labels in the transition graph. Probabilities must be positive and sum to
one. The probability distribution for the new state pi is obtained by multiplying the
previous probability vector pi−1 by the transition matrix T:

pT
i = pT

i−1T (A.12)

Note that we will use p = (p(x = s1), ..., p(x = sm))T for distributions and p for
probabilities, or elements of p. To ensure that probabilities sum to one (

∑
i p̃i = 1),

all rows of T must sum to one. This can be easily verified by rewriting the transition
in terms of sums:

p̃j =
∑
i

piTij (A.13)

Because of
∑
j p̃j = 1 we have

∑
j

∑
i piTij =

∑
i pi
∑
j Tij = 1 and since∑

i pi = 1, it is sufficient that all rows ofT sum to one (
∑
j Tij = 1) to ensure valid

distributions. In the following we illustrate some iterations of a Markov process.
Let’s consider the transition matrix

T =

0.5 0 0.5
0.5 0.5 0
0 0.5 0.5

 (A.14)

and start with p1 = (1, 0, 0)T, a distribution which has all it’s probability at state 1.
By iterating pT

i ← pT
i−1T, we get:

Iteration i pT
i

1 (1.00, 0.00, 0.00)

2 (0.50, 0.00, 0.50)

3 (0.25, 0.25, 0.50)

4 (0.25, 0.38, 0.38)

5 (0.31, 0.38, 0.32)

6 (0.34, 0.34, 0.32)

7 (0.33, 0.33, 0.33)
...

...
∞ (0.33, 0.33, 0.33)

This example already exhibits a desired property of Markov chains: After several
iterations the chain stabilizes at a fix point. It is said to be stationary at p∞ =
(0.33, 0.33, 0.33)T. For this T, no matter what initial distribution p1 we use, the
chain will always converge to the same stationary point. Note that the stationary
point can be computed directly from the stochastic transitionmatrixT. Since forp∞
we havepT

∞ = pT
∞T,p∞ is the left eigenvector ofT corresponding to eigenvalue 1.

In the following we will examine sufficient conditions which guarantee convergence
of Markov chains.
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A.3.2. Properties of Markov Chains

Definition 4 (Stationarity). A probability distributionp on a state space of aMarkov
chain with transition matrix T is called stationary, if

pT = pTT.

or in, other words, the probability of being in state x′ is invariant

p(x′) =
∑
x

p(x)Txx′

for any possible state x′. For the continuous case, the matrix T is replaced by a
transition kernel T (x′|x) which models the transition probabilities. Thus stationary
distributions are those, for which

p(x′) =

∫
p(x)T (x′|x)dx

holds.

A stochastic transition matrix T, for which any Markov chain converges to the in-
variant distribution p(x) is called ergodic. An ergodic Markov chain has exactly one
stationary distribution.

Definition 5 (Ergodicity). LetT∞ = limk→∞Tk. A Markov chain with transition
matrix T is called ergodic, if

• T∞ exists

• All entries of T∞ are positive

• All rows of T∞ are identical

A Markov chain is ergodic, iff it is irreducible and aperiodic.

Definition 6 (Irreducibility). AMarkov chain is called irreducible, if any state x′ of
the chain can be reached by any other state x in a finite number of steps. More
formally, there must be a sequence of states (x = x1, ..., xN = x′) such that
Txi−1xi > 0 for all i ∈ {1, ..., N − 1}.

Through proper state assignment or via permutation using an appropriate permuta-
tionmatrixQ, the transitionmatrixT of a reducibleMarkov chain can be partitioned
into the canonic form

QTQT =

(
C A
0 T

)
(A.15)

with square stochastic matrixC, rectangular non-negative matrixA and square sub-
stochastic matrixT. The states of theMarkov chain are partitioned into closed states
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belonging exclusively to C and transient states belonging to T. Once a transition
into a closed state has been performed, transient states are never reachable again.
The eigenvectors of C define the behavior of the Markov chain at equilibrium.

Definition 7 (Aperiodicity). A Markov chain is called aperiodic, if the occurrence
of states is not restricted to periodic events, but any state may occur at any time.
More formally, we define the period of state x as1

dx = gcd
{
n ∈ N | ∃(x = x1, ..., xn = x) ∧ ∀i∈{2,..,n} : Txi−1xi > 0

}
A Markov chain is aperiodic, if all states x have period dx = 1.

If a Markov chain is aperiodic, returns to state x can occur at irregular times.

Definition 8 (Detailed Balance). A Markov chain with transition matrix T fulfills
the detailed balance condition for a distribution p, iff

p(x)Txx′ = p(x′)Tx′x

or in the continuous case

p(x)T (x′|x) = p(x′)T (x|x′)

holds for all x and x′.

Informally this means that the probability of being in state x and moving to state x′
equals the probability of being in state x′ and moving back to state x. The detailed
balance condition is sufficient to ensure that p(x) is stationary for T (or T ).

Theorem 1 (Detailed Balance). If T (or T) satisfies the detailed balance condition
for distribution p, then p is stationary distribution of T (or T).

Proof. ∑
x

p(x)Txx′ =
∑
x

p(x′)Tx′x = p(x′)
∑
x

Tx′x = p(x′)∫
p(x)T (x′|x)dx =

∫
p(x′)T (x|x′)dx = p(x′)

To illustrate the convergence properties of Markov chains, let us randomly draw 10
points on the probability simplex and perform 30 Markov chain iterations. To pro-
vide a more vivid visualization, we interpolate all points using polynomials. We
show convergence results on a unit 2-simplex (dim(p) = 3) in Fig. A.8 and on a
unit 3-simplex (dim(p) = 4) in Fig. A.9. A black square marks the final state of
1gcd: greatest common divisor
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each Markov chain. Stationary distributions are computed from the first eigenvector
of T and depicted as a black circles. For the periodic and reducible case, all chains
converge to the sub-simplex of the reduced transition matrix (for the 2-simplex the
sub-simplex corresponds to a line), but continue oscillating in this space. Thus no
stationary distribution can be found. For the periodic and irreducible example, all
chains are orbiting around the center of the simplex and never converge. For the
aperiodic and reducible case, all Markov chains converge to a common stationary
distribution, but the stationary point is confined to the sub-simplex of the reduced
matrix. When the transition matrix is aperiodic and irreducible, all trajectories con-
verge to a stationary distribution, defined by the first eigenvector of T.

A.3.3. Combining Kernels

Transition kernels ofMarkov chains have the nice property that they can be combined
by concatenation. This allows for constructing complex moves from simple ones.

Theorem 2 (Kernel Concatenation). Let T1 and T2 be transition kernels with sta-
tionary distribution p. Then T (x′|x) ≡

∫
T2(x′|x̃)T1(x̃|x)dx̃ is another transtion

kernel with stationary distribution p.

Proof. ∫
T (x′|x)p(x)dx =

∫ ∫
T2(x′|x̃)T1(x̃|x)dx̃ p(x)dx

=

∫
T2(x′|x̃)

∫
T1(x̃|x)p(x)dx dx̃

=

∫
T2(x′|x̃)p(x̃)dx̃

= p(x′)

Theorem 3 (Kernel Mixing). Let T1 and T2 be transition kernels with stationary
distribution p and w1, w2 ≥ 0 with w1 +w2 = 1. Then T (x′|x) ≡ w1T1(x′|x) +
w2T2(x′|x) is another transtion kernel with stationary distribution p.

Proof. ∫
T (x′|x)p(x)dx =

∫ (
w1T1(x′|x) + w2T2(x′|x)

)
p(x)dx

= w1p(x
′) + w2p(x

′)

= p(x′)
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Figure A.8.:Markov chains on the 2-Simplex. From left to right: Stochastic transition matrix
T, transition graph and 10 runs of the process. Squares denote final states after 30 iterations,
circles denote stationary states.
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Figure A.9.:Markov chains on the 3-Simplex. From left to right: Stochastic transition matrix
T, transition graph and 10 runs of the process. Squares denote final states after 30 iterations,
circles denote stationary states.

106



A.4. Markov Chain Monte Carlo

Algorithm 5Metropolis-Hastings
x1 ← initial state
i← 2
while i < N do

draw xi ∼ q(xi|xi−1)
draw ui ∼ U(0, 1)

if ui > p(xi)q(xi−1|xi)
p(xi−1)q(xi|xi−1)

then
xi ← xi−1

i← i+ 1

A.4. Markov Chain Monte Carlo

To make use of Markov chains for sampling, we need to construct a chain with sta-
tionary distribution p(x). This is called theMarkov ChainMonte Carlo approach. In
contrast to the sampling schemes discussed so far, samples from aMarkov chain will
be temporally correlated, but for many applications this is not a problem. The first
samples we draw will be biased towards the user-specified initial state of the Markov
chain and should thus be removed. This stage is often called ’burn-in’ phase.

A.4.1. Metropolis-Hastings Sampling

First, we consider the popular Metropolis-Hastings (MH) algorithm, which is very
easy to implement and satisfies the detailed balance condition. The idea is to use
a proposal distribution q from which samples can be drawn easily and efficiently.
Given x, a proposed sample x′ ∼ q(x′|x) is accepted with probability

pMH(x′|x) = min

{
1,
p(x′)q(x|x′)
p(x)q(x′|x)

}
(A.16)

Informally this means that a proposed state is accepted, if the target density p(x′) is
high and it is likely to get back to the old state q(x|x′) using the next proposal. If a
sample x′ is accepted, it is added to the Markov chain, otherwise the old state x is
added. If q is symmetric Eq. A.16 becomes

pMH(x′|x) = min

{
1,
p(x′)

p(x)

}
(A.17)

and the resulting algorithm is called Metropolis sampling. The general Metropolis-
Hastings algorithm is summarized in Algorithm 5. To show that p is a stationary
distribution of T , let us write down the transition kernel T in terms of the acceptance
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probability Eq. A.16:

T (x′|x) = q(x′|x)pMH(x′|x)

+ δ(x′ − x)

∫
q(x̃|x)[1− pMH(x̃|x)]dx̃ (A.18)

Informally T (x′|x) is the probability of moving from state x to state x′ times the ac-
ceptance probability of state x′ or the probability of staying at state x because either
x was proposed and accepted or any other state has been proposed and rejected.

Theorem 4 (Metropolis-Hastings). p is stationary distribution of T .

Proof. ∫
T (x′|x)p(x)dx =

∫
min{p(x)q(x′|x), p(x′)q(x|x′)}dx

+

∫
p(x′)q(x̃|x′)[1− pMH(x̃|x′)]dx̃

=

∫
min{p(x)q(x′|x), p(x′)q(x|x′)}dx

+p(x′)

∫
q(x̃|x′)d̃x

−
∫
p(x′)q(x̃|x′)pMH(x̃|x′)dx̃

=

∫
min{p(x)q(x′|x), p(x′)q(x|x′)}dx

+p(x′)

−
∫

min{p(x′)q(x̃|x′), p(x̃)q(x′|x̃)}dx̃

= p(x′)

Let us now turn back to our example of sampling the mean µ and variance σ of
a univariate Gaussian. Again, we first sample N = 50 data points from N (µ =
0, σ = 0.5). For sampling x = (µ, σ)T, we use the Metropolis algorithm with the
proposal distribution

q(x′|x) ∼ N (x, 0.05 I) (A.19)

Fig. A.10 shows that the Metropolis sampler has a better acceptance rate than the
rejection sampler from Section A.2.2. Unfortunately this rate depends heavily on the
particular choice of the proposal distribution q and making the right choice is cru-
cial for applying Metropolis-Hastings to problems of practical relevance. A Markov
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(c) 1000 Samples

−0.4 −0.2 0 0.2 0.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

mu

si
gm

a

(d) Kernel Density Estimate
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Figure A.10.: Markov Chain Monte Carlo Sampling. Given independent samples from a
Gaussian distribution we infer the posterior over µ and σ using the Metropolis sampling algo-
rithm with q(x′|x) ∼ N (x, 0.05 I).

chain that traverses the state space efficiently is said to be well mixing. In contrast,
a Markov chain that easily gets trapped in small areas of the search space is called
poorly mixing. The first samples of the chain (’burn-in’ samples) are typically re-
jected from the final estimate.

Let us now reconsider the robot localization problem from Fig. A.5, but this time
using the Metropolis algorithm and assuming unknown noise in the distance mea-
surements σ as illustrated in Fig. A.11. Since we are also concerned about estimating
the sensor noise σ, we use 16 measurements (instead of only four in the previous ex-
ample) in order to gain robustness. Again, the prior for the robot’s location x is
assumed to be uniformly distributed on the unit square and we assume a uniform
prior on the interval [0.01, 0.5] for σ, which is now a stochastic variable as well:

x ∼ U([0, 1]× [0, 1]) (A.20)
σ ∼ U(0.01, 0.5) (A.21)
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Figure A.11.: Robot Localization using the Metropolis Algorithm. The second row shows
the Markov chain for the robot’s position x and the measurement noise σ. The true parameters
are x = (0.5, 0.5) and σ = 0.1.

The measurements are modeled using a Gaussian distribution

di|x, σ ∼ N (‖x− ei‖, σ2) (A.22)

Since all measurements are assumed independent, the posterior of the robot’s posi-
tion given the 16 measurements {d1, ..., d16} is

p(x, σ|d1, ...d16) ∝ p(x)p(σ)p(d1|x, σ) · · · p(d16|x, σ)

∝ [0 ≤ x1, x2 ≤ 1]× [0.01 ≤ σ ≤ 0.5]

×
exp

(
− 1

2σ2

∑16
i=1[‖x− ei‖ − di]2

)
(2πσ2)8 (A.23)

Sampling results with accepted and rejected samples are depicted in Fig. A.11. After
a small ’burn-in’ period, the mode of the posterior is found in terms of position as
well as in terms of noise, while only rejecting a relatively small number of samples.
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A.4.2. Gibbs Sampling

When dealing with multivariate posterior distributions, it is also possible to update
variables only partly and loop over the updates. One popular and efficient choice of
such a cyclic MH kernel is known as Gibbs sampling. The idea in Gibbs sampling is
to introduce knowledge about the distributions into the sampling process by adopting
full conditional distributions

p(xk|x1, ..., xk−1, xk+1, ..., xD) (A.24)

as proposal distributions for each k. Note that in contrast to the previous section,
here xk denotes the k’th dimension of random vector x and dim(x) = D is its
dimensionality. By applying this procedure all samples get accepted, making Gibbs
sampling very efficient in practice. However, the conditional posterior must be easy
to sample, whereas for Metropolis-Hastings the posterior must only be evaluated
up to a multiplicative constant. Note that it is also possible to group variables and
sample from grouped conditionals.

In Gibbs sampling, the proposal distribution is chosen as

q(x′|x) = p(xk|x−k) δ(x′−k − x−k) (A.25)

for k ∈ {1, ..., D}. Here x−k denotes all entries of x without entry k. It is easy to
show that all Gibbs moves are accepted using this proposal distribution.

Theorem 5 (Gibbs). Gibbs moves are accepted with probability 1.

Proof. As x′−k = x−k, the acceptance probability becomes

pMH(x′|x) = min

{
1,
p(x′)q(x|x′)
p(x)q(x′|x)

}
= min

{
1,
p(x′)p(xk|x′−k)

p(x)p(x′k|x−k)

}
= min

{
1,
p(x′k,x

′
−k)p(xk|x′−k)

p(xk,x−k)p(x′k|x−k)

}
= min

{
1,
p(x′k|x′−k)p(x′−k)p(xk|x′−k)

p(xk|x−k)p(x−k)p(x′k|x−k)

}
= min {1, 1} = 1

Note that the proposal distribution is reducible, since we are not exploiting the full
state space. This ’problem’ is addressed by sampling several times from different
components k of x (=different dimensions). After a full cycle the sample is added
to the list. The full algorithm is given in Algorithm 6.
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Algorithm 6 Gibbs sampling
x1 ← initial state
for i← 2 to N do

for k ← 1 toD do
draw sample xki ∼ p(xki |x1

i , ..., x
k−1
i , xk+1

i−1 , ..., x
D
i−1)
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(d) Kernel Density Estimate

−0.4 −0.2 0 0.2 0.4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

mu

si
gm

a

(e) True Posterior

Figure A.12.: Gibbs Sampling. Given 50 independent samples from a Gaussian distribution
the posterior over µ and σ is sampled using Gibbs sampling. Non-informative priors on µ and
σ are assumed.

Let us illustrate Gibbs sampling on our previous example of sampling the pos-
terior parameters of a univariate Gaussian. Note that the simple uniform priors we
employed in the other examples cannot be used for Gibbs sampling as they lead to
non-standard conditional posterior distributions. Instead, we focus on posterior dis-
tributions with a well-defined analytical form, for which out-of-the-box samplers
can be used. Such posteriors can be obtained by using conjugate priors, which have
the same analytical form as the posterior. The only difference is an update on the
parameters. It is well known that the conjugate prior for the mean of the Gaussian
is Gaussian, and the conjugate prior for the precision (inverse variance) is a Gamma
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distribution. For details on conjugate priors the reader is referred to [76].
Let us now show that the state conjugacy relationships hold indeed, starting with

the Gaussian mean. Instead of working with the variance σ2 we employ the so-
called precision parameter λ = σ−2 for notational simplicity. Assuming that the
data likelihood and the prior for the mean µ and precision λ are given by

xi|µ, λ ∼ N (µ, λ−1) ∝
√
λ exp

{
−λ

2
(xi − µ)2

}
(A.26)

µ ∼ N (ξ, κ−1) ∝ exp
{
−κ

2
(µ− ξ)2

}
(A.27)

λ ∼ Γ(α, β−1) ∝ λα−1 exp {−λβ} (A.28)

the posterior ofµ givenλ and the posterior ofλ givenµ is easily found by completing
the square:

µ|x1, ..., xN , λ ∼ N
(
λ
∑
i xi + κξ

λN + κ
, (λN + κ)−1

)
(A.29)

λ|x1, ..., xN , µ ∼ Γ

(
α+

N

2
,

(
1

2

∑
i

(xi − µ)2 + β

)−1)
(A.30)

The bivariate Gibbs sampler for the posterior of a Gaussian is now readily given by
alternately drawing samples from p(λ|x1, ..., xN , µ) and p(µ|x1, ..., xN , λ) while
keeping the other variable fixed in turn. This is illustrated in Fig. A.12 using unin-
formative priors with ξ = κ = α = β = 0.
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