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Abstract— As a core robotic and vision problem, camera
and range sensor calibration have been researched intensely
over the last decades. However, robotic research efforts still
often get heavily delayed by the requirement of setting up
a calibrated system consisting of multiple cameras and range
measurement units. With regard to removing this burden, we
present a toolbox with web interface for fully automatic camera-
to-camera and camera-to-range calibration. Our system is easy
to setup and recovers intrinsic and extrinsic camera parameters
as well as the transformation between cameras and range
sensors within one minute. In contrast to existing calibration
approaches, which often require user intervention, the proposed
method is robust to varying imaging conditions, fully automatic,
and easy to use since a single image and range scan proves
sufficient for most calibration scenarios. Experimentally, we
demonstrate that the proposed checkerboard corner detector
significantly outperforms current state-of-the-art. Furthermore,
the proposed camera-to-range registration method is able to
discover multiple solutions in the case of ambiguities. Experi-
ments using a variety of sensors such as grayscale and color
cameras, the Kinect 3D sensor and the Velodyne HDL-64 laser
scanner show the robustness of our method in different indoor
and outdoor settings and under various lighting conditions.

I. INTRODUCTION AND RELATED WORK

Robots are typically equipped with multiple complemen-
tary sensors, which require calibration in order to represent
sensed information in a common coordinate system. Hereby,
each sensor can be characterized by its intrinsic (e.g. shape of
the camera lens) and extrinsic (i.e. pose) parameters. Calibra-
tion methods aim at estimating these parameters, often using
checkerboard patterns as targets. Although calibration is an
ubiquitous problem in robotics and computer vision, current
camera calibration tools such as the widely used Matlab
Camera Calibration Toolbox [1] or OpenCV [2] are not very
robust and often require manual intervention, leading to a
cumbersome calibration procedure. Furthermore, only little
work on camera-to-range sensor calibration has been done,
and to our knowledge [3] and [4] are the only toolboxes
online available.

In this work, we try to close this gap by proposing a robust
solution to automatically calibrating multiple cameras and
3D range sensors with respect to each other. Our approach
relies on a cheap and simple calibration setup: We attach
multiple printed checkerboard patterns at the walls and the
floor, see Fig. 4 for an illustration. As input, our method
requires a single range or camera image per sensor (which we
call shot in the following), as well as the distance between the
inner checkerboard corners for resolving the scale ambiguity.
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Fig. 1. Experimental setup. Trinocular camera with Velodyne HDL-64E
laser scanner (left) and binocular camera with Microsoft Kinect (right).

Note that this differs from previous approaches [1], [2], [3],
[4] which require multiple (synchronized) images of a single
calibration target presented at different orientations, as well
as the number of checkerboard rows and columns as input.
The only assumption we make is that all sensors return either
intensity or depth images and share a common field of view.

Experimentally we show the robustness of our method
on calibration images from the internet, a binocular camera
setup with the Kinect range sensor and a trinocular camera
setup with the Velodyne HDL-64E laser scanner, illustrated
in Fig. 1. We will also make an online version of our system1

available to the community: After uploading images and 3D
point clouds, the calibration parameters are computed within
one minute.

This work is organized as follows: The next section starts
with a discussion of related work. Sec. III and Sec. IV give
a detailed description of the proposed method on camera-to-
camera and camera-to-range calibration, respectively. After
an evaluation in Sec. V the paper is concluded in Sec. VI.

II. RELATED WORK

A. Camera-to-Camera Calibration

The most widely used toolbox for camera calibration
is probably Bouget’s Matlab Camera Calibration Toolbox
[1], of which a C++ version has been implemented in the
OpenCV library [2]. It uses the distortion model described
in [1], [5], [6], covering a large variety of lenses, and
allows to calibrate up to two video cameras intrinsically and
extrinsically by presenting a checkerboard calibration pattern
at multiple orientations. The OpenCV additionally offers an
automatic corner detection method based on quadrangles,
which has been extended and improved upon by Rufli et
al. [7]. Due to the method’s sensitivity to clutter in the input
image, Kassir et al. [4] propose a more robust corner detector

1www.cvlibs.net



based on multi-scale Harris [8] points and an improved
filtering mechanism inspired by [9]. From the recovered
corner points, they are able to detect a single checkerboard
within an image. The problem of multi-camera calibration
for the distortion-free scenario has been tackled in [10].

While all of the existing methods concentrate on the prob-
lem of detecting only a single (and often known) calibration
target, our approach finds multiple unknown checkerboard
patterns in an image and automatically matches them be-
tween cameras. This facilitates the calibration setup as a
single image is sufficient for calibration and unsynchronized
sensors such as line sweep laser scanners (e.g. rotating SICK)
can be readily employed. Furthermore, our method requires
no manual intervention, and the proposed corner detector
significantly outperforms current state-of-the art [4], [9], as
illustrated by our experiments in Sec. V-A.

B. Camera-to-Range Calibration

For camera-to-range sensor calibration, all existing works
assume a valid intrinsic calibration of the camera and focus
on estimating the six parameters needed to align the two
coordinate systems. The approaches can be classified into
two groups, based on the type of range sensor used:

The first group of approaches uses full 3D sensors giving
rise to a dense 3D point cloud. Unnikrishnan et al. [3]
have developed a toolbox where the user has to mark the
calibration pattern in an interactive GUI. The approach of
Scaramuzza et al. [11] is comparable but specialized to
omni-directional cameras. Likewise, correspondences must
be selected manually.

The second and more established group uses one- or four-
layer laser scanners. Since these sensors only measure a
small part of the scene, most approaches rely on manual
selection of correspondences [12], [13], [14]. Only recently
this effort was reduced by either classifying line-segments
[4] or by exploiting reflectance measurements from the lidar
scanner [15]. Unfortunately, these approaches are not directly
applicable to 3D range sensors.

Common to all approaches is the use of only one cal-
ibration pattern. This requires to take several recordings
with the need for manually moving the calibration pattern.
In this paper we propose a robust method for 3D range
sensors which determines all six extrinsic parameters fully
automatically using a single shot only. Hereby, calibration
efforts are reduced dramatically.

III. CAMERA-TO-CAMERA CALIBRATION

Following [16], we use planar checkerboard patterns as
calibration targets for multiple reasons: They are cheap
to employ, corners can be localized with high sub-pixel
accuracy and structure recovery profits from strong edges
between corners. In contrast to existing methods which
capture multiple images of a single checkerboard, we take
a single shot of multiple checkerboards placed at different
locations in the image. This also facilitates the calibration
process, especially with respect to registering the triangulated
checkerboards to a 3D point cloud, as detailed in section IV.

(a) Corner Prototype 1 (b) Corner Prototype 2

(c) Input Image I (d) Corner Likelihood C

(e) Orientation & Score (f) Detected Checkerboard Corners

Fig. 2. Corner detection. We filter the input image I using corner proto-
types, apply non-maxima-suppression on the resulting corner likelihood C
and verify corners by their gradient distribution. See Sec. III-A for details.

Through not strictly necessary, we assume the prevalent cali-
bration scenario where all sensors have a part of their field of
view in common. Our camera calibration algorithm proceeds
as follows: First, we robustly locate checkerboard corners
in the image (Sec. III-A) and refine them for sub-pixel
accuracy (Sec. III-B). Checkerboard structures are recovered
by optimizing an energy function subject to structural con-
straints (Sec. III-C). Correspondences between images are
obtained by deterministically sampling affine transformations
and maximizing a fitness function (Sec. III-D). The final
camera parameters are recovered via non-linear optimization,
where we use weak regularizers to avoid degenerate solutions
(Sec. III-E). The following subsections give details about
each of these steps.

A. Corner Detection

Harris points [8] or Shi-Tomasi corners [17] are a common
choice for localizing junctions in an image. However, we
found that the following procedure gives more robust results
with respect to image clutter, blurring artifacts and localiza-
tion accuracy: In order to locate checkerboard corners in a
grayscale image I (Fig. 2(c)), we compute a corner likelihood
at each pixel in the image using two different n× n corner
prototypes: One for axis-aligned corners (Fig. 2(a)) and one
for corners, which are rotated by 45◦ (Fig. 2(b)). Empirically,
we found that these two simple prototypes are sufficient for
detecting corners over a wide range of distortions induced by
perspective transformations. Each prototype is composed of
four filter kernels {A,B,C,D}, which are convolved with
the input image I. For an ideal corner, the response of {A,B}



should be greater than the mean response of {A,B,C,D},
while the response of {C,D} should be smaller, and vice
versa for flipped corners. This fact can be expressed formally
as follows: Let f iX be the filter response of kernel X and
prototype i for a particular pixel. The corner likelihood c
at this pixel is defined by taking the maximum over all
combinations of prototypes and flippings:

c = max(s11, s
1
2, s

2
1, s

2
2) (1)

si1 = min(min(f iA, f
i
B)− µ, µ−min(f iC , f

i
D))

si2 = min(µ−min(f iA, f
i
B),min(f iC , f

i
D)− µ)

µ = 0.25 (f iA + f iB + f iC + f iD)

Here, si1 and si2 denote the likelihood of the two possible
flippings for prototype i. Computing this likelihood for every
pixel in the image yields a corner likelihood map C. See
Fig. 2(d) for an illustration. Importantly, note that the above
definition leads to a low likelihood c, if any of the four filter
kernels responds weakly. This is important for removing as
many non-checkerboard style corners as possible from the
hypotheses space. To produce a list of corner candidates,
we apply conservative non-maxima-suppression (with pa-
rameters nnms and τnms) [18] on C, followed by verifying
the candidates by their gradient statistics in a local n × n
pixel neighborhood, as illustrated in Fig. 2(e): We compute
a weighted orientation histogram (32 bins) from Sobel filter
responses and find the two dominant modes α1 and α2 using
mean shift [19]. Based on the edge orientations, we construct
a template T for the expected gradient strength ‖∇I‖2. The
product of T ∗ ‖∇I‖2 and the corner likelihood in (1) gives
the corner score, which we threshold by τcorner for obtaining
a final list of corner candidates, see Fig. 2(f). Here, ’∗’
denotes the normalized cross-correlation operator.

B. Sub-pixel Corner and Orientation Refinement

It is well-known that calibration benefits from sub-pixel
accurate corner locations [20], [21], [2]. In this work we
refine both, the corner location and the edge orientations.

For sub-pixel corner localization, we make use of the fact
that at a corner location c ∈ R2 the image gradient gp ∈
R2 at a neighboring pixel p ∈ R2 should be approximately
orthogonal to p− c, leading to the optimization problem

c = argmin
c′

∑
p∈NI(c′)

(
gT
p (p− c′)

)2
(2)

where NI is a local 11× 11 pixel neighborhood around the
corner candidate. Note that neighboring pixels are automat-
ically weighted by the gradient magnitude. This problem is
straightforward to solve in closed form, yielding the solution:

c = (
∑
p∈NI

gpgT
p )
−1
∑
p∈NI

(gpgT
p )p (3)

To refine the edge orientation vectors e1 ∈ R2 and e2 ∈ R2,
we seek to minimize the error in deviation of their normals
with respect to the image gradients

ei = argmin
e′
i

∑
p∈Mi

(gT
pe′i)

2 s.t. e′
T
i e′i = 1 (4)

(a) Iterative Expansion of Checkerboard Hypotheses from Seed Points

(b) Triples (c) Detected Checkerboards on Large-Scale Example

Fig. 3. Structure recovery. We iteratively expand seed points (a) into the
direction of the strongest gradient of an energy function evaluating the local
structuredness (b). Fig. (c) shows final detection result.

where Mi = {p | p ∈ NI ∧ |mT
i gp| < 0.25} is the set

of neighboring pixels, which are aligned with the gradient
mi = [cos(αi) sin(αi)]

T of mode i. The solution to Eq. 4
is obtained, by setting the derivative of its Lagrangian to
zero, leading to an eigenvalue problem, with ei being the
eigenvector corresponding to the smallest eigenvalue of∑

p∈Mi

(
g1pgT

p

g2pgT
p

)
∈ R2×2 (5)

where gip denotes the i’th entry of gp.

C. Structure Recovery

Let the set of corner candidates be X = {c1, .., cN} and
let Y = {y1, ..,yN} be the corresponding set of labels. Here,
y ∈ {O} ∪ N2 represents either an outlier detection (O)
or the row / column (N2) within the checkerboard. For all
checkerboards present in the image our goal is to recover Y
given X . We do this by minimizing the energy function

E(X ,Y) = Ecorners(Y) + Estruct(X ,Y) (6)

subject to the constraint, that no two labels can explain the
same checkerboard corner. Intuitively, we try to explain as
many corners as possible using a regular structured element
(the checkerboard): Ecorners(Y) = −|{y|y 6= O}| is taken
as the negative number of explained checkerboard corners
and Estruct measures how well two neighboring corners i
and j are able to predict a third one k, weighted by the
number of explained corners:

Estruct(X ,Y) = |{y|y 6= O}| max
(i,j,k)∈T

||ci + ck − 2cj ||2
||ci − ck||2

(7)
Here, T denotes the set of all row and column triples of the
current checkerboard configuration induced by Y , see Fig.
3(b) for an illustration. In total, we have |T | = m(n− 2) +
n(m−2) triples, with m and n denoting the number of rows
and columns respectively. Importantly note that due to the
local nature of our linearity requirement in Eq. 7, we gain
flexibility and also allow for strongly distorted patterns as
imaged by fisheye lenses, for instance.



Since the set of possible states Y can take is exponentially
large in N , exhaustive search is intractable. Instead, we
employ a simple discrete optimization scheme, which works
well in practice as confirmed by our experiments in Sec. V:
Given a seed corner, we search for its closest neighbors
in the direction of its edges e1 and e2, yielding an initial
2 × 2 checkerboard hypothesis with an associated energy
value E(X ,Y). To optimize E(X ,Y), we propose expansion
moves on Y , which expand any of the checkerboard borders
by a single row or column. Amongst all four possibilities,
we select the proposal, which reduces E(X ,Y) the most.
Fig. 3(a) illustrates the expansion moves exemplarily.

In order to recover multiple checkerboards in a single
image, we repeat the aforementioned procedure for every
corner in the image as seed, yielding a set of overlapping
checkerboards. Duplicates (having at least one corner index
in common) are removed greedily by keeping only the top
scoring candidates with respect to E(X ,Y), starting with the
highest scoring checkerboard first. Fig. 3(c) shows an image
with 11 discovered checkerboards exemplarily.

D. Matching Checkerboards between Images

Having recovered checkerboards in all camera images, we
are left with the problem of finding corner correspondences
between cameras. We do this by defining one camera as
the reference camera, and independently match all other
camera images against this reference image. Due to ap-
pearance ambiguities, classical feature descriptors such as
SIFT [22] or SURF [23] can not be employed. Instead, we
consider all possible combinations of two checkerboards in
both images (resulting in a loop over four variables), from
which we compute the corresponding unique 2D similarity
transformation ϕ(p;A,b) = Ap+b. Here, ϕ takes a point p
in the target image and projects it into the reference image by
changing translation, rotation and scale. Given ϕ, we assign
all checkerboards of the target image to their closest neigh-
bors in the reference image and resolve the two (rectangular
pattern) / four (quadratic pattern) fold checkerboard rotation
ambiguity by taking the minimizer of the corner projection
errors independently for each matched checkerboard. Here,
we only assign checkerboards, which agree in the number
of rows and columns and for which the relative projection
error is smaller than τmatch, measured relative to the image
width. From all samples, we choose the final solution as the
one which maximizes the number of matched checkerboards.
Fig. 8 shows the final matching results for different scenarios.

E. Optimization

Following [1], [2], we assume a pin-hole camera
model with radial and tangential lens distortion as de-
scribed in [1], [5], [6]. In total we have 10 intrinsic
(fu, fv, cu, cv, α, k1, k2, k3, k4, k5) and 6 extrinsic parame-
ters for each camera / reference camera combination. For
optimization, we extended the Matlab Camera Calibration
Toolbox [1] to handle an arbitrary number of cameras. We
initialize the intrinsic parameters of each camera indepen-
dently by exhaustively searching for fu and fv , placing the

principal point (cu, cv) at the center of the image and setting
α = k1 = k2 = k3 = k4 = k5 = 0. In practice we
found this procedure to yield more robust results than closed-
form solutions, such as the one proposed by Zhang et al.
[24], especially in the presence of only a small number of
checkerboards. The extrinsic parameters are initialized by av-
eraging the checkerboard-to-image plane homographies [24].
To carry out the final non-linear refinement, we minimize
the sum of squared corner reprojection errors using Gauss-
Newton optimization. Since we found the sixth order radial
distortion coefficient k5 hard to observe, we add a quadratic
regularization term to prevent k5 from getting too large.
Alternatively, individual distortion parameters can be fixed
to 0 in our toolbox.

IV. CAMERA-TO-RANGE CALIBRATION

Goal of this section is to estimate the 6-DOF rigid trans-
formation parameters θ = (rx, ry, rz, tx, ty, tz)

T specifying
the relative pose of the reference camera coordinate system
wrt. the coordinate system of a range sensor. A 3D point
in camera coordinates pc can then be transformed into
range sensor coordinates via pr = Rθ · pc + tθ using the
corresponding rotation matrix Rθ and translation vector tθ.

Input from the range sensor is an unordered set of 3D
points Pr = {(x, y, z)} which keeps the approach as
generic as possible. Similarly, we obtain sets of 3D points
Pj
c = {(x, y, z)} from the camera-to-camera calibration

stage, where each set j corresponds to one checkerboard and
comprises the corner locations in 3D. In the following, we
describe how both sets of points can be aligned, giving rise
to the transformation parameters θ.

Existing methods [14], [13], [11], [3], [12] simplify
camera-to-laser calibration by manual user intervention and
the fact that several scans are taken with only one board
visible at a time. Our system is designed for easy usage
with the consequence of having a more difficult situation:
We can neither rely on correspondences between the two
point clouds, nor is it possible to use existing 3D point cloud
alignment methods due to the small overlap (full world vs.
checkerboards only) and the unknown initialization.

The proposed algorithm proceeds as follow: First, seg-
mentation is leveraged to identify planes in the range data
(Sec. IV-A). Next, transformation hypotheses are generated
by random plane associations (Sec. IV-B). The best ones
are refined and verified (Sec. IV-C). A final non-maxima
suppression step yields all feasible solutions (Sec. IV-D).

A. Segmentation

Segmentation aims at finding contiguous regions (or seg-
ments) Pj

r = {(x, y, z)} ⊆ Pr in the range data that
represent a plane and could potentially correspond to a
checkerboard mounting. Note that there might be several
checkerboards sticking to the same wall.

As a preprocessing step, we calculate normal vectors ni
r ∈

R3 for each point pi
r ∈ Pr by principal component analysis

on the K nearest neighbors NK,Pr
(pi

r). Segmentation is
carried out by greedily growing regions from random seed



(a) Input camera image

(b) Input range data and calibration result

Fig. 4. Calibration example. Camera with Velodyne HDL-64E.

points pj
r ∈ Pr, each generating the corresponding set Pj

r .
A point pi

r is added to the region Pj
r iff it is a neighbor and

its normal vector is similar to the seed’s normal:

∃pm
r ∈ NK,Pr

(pi
r) : pm

r ∈ Pj
r ∧ ni

r

T
nj
r > τsegment (8)

Each region is grown until it converges, then removed from
Pr, and a new seed is selected until no more points are
left in Pr. A final filtering step removes segments which are
either significantly smaller than a checkerboard or not planar
enough.

Note that the above algorithm is nondeterministic: Seed
points are chosen randomly and each region-expansion is
dependent on the seed. Experiments show that the outcome
is nevertheless very stable. Compared to using local decisions
this can guarantee that resulting segments are planar.

B. Global Registration

Given a set of planar point clouds {Pj
r} and {Pj

c} from the
range sensor and camera respectively, this section generates a
set of initial transformations G = {θi}. Therefore, each point
cloud region Pj

c/l is transformed into a disc-shaped surface
sjc/l = (pj

c/l,n
j
c/l) with center pj

c/l and normal nj
c/l using

principal component analysis. Next, we repeatedly select and
associate three surfaces from both sets in a random manner,
calculate the transformation, and verify it using a distance
measure. Algorithm 1 lists these steps in detail.

In line 4 of the algorithm, three surfaces are selected
randomly from the checkerboards. A surface triple (sac , s

b
c, s

c
c)

thereby has the following probability of being selected:

p(sac , s
b
c, s

c
c) =

1

Z
exp(−na

c
Tnb

c − na
c
Tnc

c − nb
c

T
nc
c) (9)

with Z being a normalizing constant. Intuitively, a surface
triple is selected with higher probability if normals point into
different directions. The probabilites of all possible combi-
nations are computed in advance. Tractability is guaranteed
by the limited number of checkerboards present in the scene.

Algorithm 1 Global registration
1: GenerateTransformations({sjc}, {sjr},Pr):
2: G ← {}; S ← {};
3: while not enough(G) do
4: (sac , s

b
c, s

c
c) ← randomselect({sjc})

5: (sar , s
b
r, s

c
r) ← randomselect({sjr})

6: θ ← minimize(sac , s
b
c, s

c
c, s

a
r , s

b
r, s

c
r)

7: s ← score(sac , s
b
c, s

c
c,θ,Pr)

8: G, S ← selectbest(G ∪ θ, S ∪ s)
9: end while

10: return G

On the contrary, random selection in line 5 is for each
s
a/b/c
r independent with a uniform probability distribution

over {sjr}.
The transformation θ is computed (line 6) by aligning the

selected surfaces. We first estimate the rotation matrix R,
which maximally aligns all normal vectors

R = argmax
R′

∑
i∈{a,b,c}

ni
r

T
R′ ni

c = VUT (10)

using the singular value decomposition (SVD) of the covari-
ance matrix

∑
i ni

cn
i
r
T

= UΣVT . Next, we estimate the
translation t by minimizing point-to-plane distances

t = argmin
t′

∑
i∈{a,b,c}

((R · pi
c + t′ − pi

r)
Tni

r)
2 (11)

in closed form using least squares. Each transformation is
scored (line 7) by

s = −
∑

i∈{a,b,c}

||p̃i
c −N1,Pr (p̃

i
c)||, p̃i

c = R · pi
c + t (12)

which determines the distance from the transformed checker-
board centers to the nearest neighbors in Pr. We return all
solutions for which the score exceeds τscore ·max({s}). The
algorithm terminates if either all possible combinations have
been processed or enough good transformations have been
found (|G| > τcomb).

C. Fine Registration

In the previous section, the initial transformation set G has
been calculated from point clouds {Pj

r}, {Pj
c} based on their

centroids and normal vectors solely. Since this is very fast
but less accurate, all transformations θ ∈ G are refined by
gradient descent using the following error function:

E(θ) =
∑

pi
c∈Pc

||p̃i
c −N1,Pr

(p̃i
c)||2, p̃i

c = R · pi
c + t (13)

This minimizes the sum of point-to-point distances to closest
neighbors, which can be solved with the well-known iterative
closest points algorithm [25]. This results in a set of finely
registered transformations F .



D. Solution Selection

The transformation set F might contain several transfor-
mations that are very similar. Hence, we employ non-maxima
suppression in order to suppress similar transformations in a
local neighborhood based on their energy (13).

Under typical conditions, we retain exactly one solution
after this process. If not, there exist ambiguities that result
from the constellation of the checkerboards, i.e. orthogonality
as in Fig. 6. In this case, an automatic view is rendered for
each transformation and the final selection is left to the user.

V. EXPERIMENTS

To evaluate our approach, we collected a database of 10
different calibration settings with multiple shots each, as
listed in Table I. Calibration settings differ by baseline, focal
lengths and range sensors employed. For each shot, we varied
the position, orientation and number of calibration targets.
To make our dataset more representative, we additionally
collected 16 random calibration images from the internet,
which are only used to evaluate corner detection. In total, we
used 126 camera images and 55 range measurements in our
experiments. Despite the fact that the proposed framework
extends to an arbitrary number of sensors, we restrict our
quantitative evaluation to setups involving two cameras and
a single range sensor for clarity of illustration, as illustrated
in Fig. 1. As parameters, we empirically picked nnms = 3,
τnms = τcorner = 0.02, τmatch = 0.1, τsegment = 0.9,
τscore = 1.5 and τcomb = 25 and keep them fixed throughout
all experiments. To obtain a modest level of scale invariance
and robustness with respect to blur, we detect corners using
4 × 4, 8 × 8, and 12 × 12 pixel windows in Sec. III-
A and take the maximum of the three scores. Our C++
implementation achieves running times of less than one
minute per calibration scenario, where most time is spent
in the camera-to-range point cloud optimization procedures.

A. Corner Detection and Checkerboard Matching

We first evaluate the ability of our method to correctly
locate checkerboard corners in all 126 test images, for which
we annotated all checkerboard corners manually. We com-
pare our approach to several competitive baseline methods:
Harris corners [8] using the Shi-Tomasi criterium [17], a
reimplementation of the method of Ha et al. [9] and the
detector of Kassir et al. [4]. Note that a fair comparison to the
more noise sensitive OpenCV detector [2] and its derivates
(Rufli et al. [7]) is not possible due to the fact that they
directly return a single checkerboard per image.

Fig. 5 (left) shows the precision-recall plot obtained by
varying the detection threshold τ for each of the methods. For
Ha et al. [9] we varied the relative number of pixels required
to classify a region as dark or bright while employing a very
conservative Harris threshold. Kassir et al. [4] has been run
using the code and parameters proposed by the authors.

Note that our method significantly outperforms all base-
lines, especially in terms of recall. The recall of Ha et al.
[9] and Kassir et al. [4] is bound by the (multi-scale) Harris
corner detector, which serves as an input to those methods.
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Fig. 5. Left: Precision-recall curves for different corner detection methods.
Right: Close-up for the range {precision, recall} ∈ [0.9...1.0]. Bottom:
Corner reprojection errors of our method after fitting the model parameters.

Qualitative results of our detector are illustrated in Fig. 8
and at www.cvlibs.net.

B. Camera-to-Camera Calibration

In this section we evaluate the camera-to-camera calibra-
tion accuracy by comparing the estimated baselines and focal
lengths to ground truth in all 10 calibration settings. On
average, we obtain a corner reprojection error of 0.18 pixels
indicating high sub-pixel accuracies and a good model fit.
This is also illustrated by the Poisson distribution of the
reprojection errors shown in Fig. 5 (right). Further results
are depicted in Table I: Here, the fifth and eighth column
are the ground truth focal length and baseline, followed by
the mean and standard deviation of the estimated values
respectively. In general, the errors of our fully automatic
calibration system are small. The largest ones occur for
setting 7 and 8. This can be explained as those are the
outdoor setups, which are more difficult since fewer corners
have been matched as a consequence of cast shadows and
difficult lighting conditions. Also note that the provided
ground truth itself is subject to slight measurement errors,
as the values have been measured manually or simply have
been read from the objective lens.

C. Camera-to-Range Calibration

Assuming a precise camera-calibration, this section eval-
uates the robustness of camera-to-range calibration. Since
range sensors are independent from lighting conditions and
the proposed approach does not assume any initially given
parameters, the only two factors of influence are the constel-
lation of the checkerboards and the noise within the range
data. The former is covered by the collected dataset (see
Table I) that contains a varying number of checkerboards
in different constellations. For the latter, we added Gaussian
noise N (0, σ2I3) to the point cloud Pr for varying values of
σ and carry out calibration. The final result R, t is compared
against ground truth Rg, tg , which was determined with the



(a) Input data: camera image and range image from the Kinect sensor

(b) Camera-to-Range calibration result: Three solutions were detected,
automatically rendered images help selecting the appropriate solution.

Fig. 6. Calibration example. Ambiguities are automatically detected.

fine registration (Sec. IV-C) on the original point cloud in a
supervised way. Errors are given independently for rotation
and translation

et = ||t− tg|| (14)
er = ∠(R−1Rg) (15)

where er is the smallest rotation angle around a rotation
axis that represents the rotation difference. This process is
repeated 20 times for each setting, and the statistics over et
and er are gathered for the Velodyne and the Kinect sensor
independently. The results, depicted in Fig. 7, indicate that
the approach is sufficiently robust to noise, but highly depen-
dent on the calibration setting: Only configurations where the
checkerboards constrain the problem sufficiently well lead to
low errors. This is the case when the checkerboards cover
most parts of the image and they are presented at various
distances and orientations. The feasible higher noise level for
the Velodyne sensor in comparison with the Kinect sensor
is thereby due to sparser range data and roughly five times
more distant checkerboards.

VI. CONCLUSIONS

We have proposed a toolbox for automatic camera and
range sensor calibration and shown its effectiveness under
various conditions. The main limiting assumption of our
approach is a common field of view of the camera and
range sensors. While this remains a useful scenario for
applications such as generating stereo or scene flow ground
truth, augmenting images with depth values or colorizing a
point cloud, we believe that extending our method to handle
partly overlapping fields of view will further increase the
range of applications.
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Fig. 7. Robustness of camera-to-range calibration. Calibration errors
when adding Gaussian noise N (0, σ2I3) to the range data. On each box,
the central mark is the median, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually.
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