

JOINT 3D ESTIMATION OF **OBJECTS AND SCENE LAYOUT**

ANDREAS GEIGER KIT

CHRISTIAN WOJEK MPI SAARBRÜCKEN

OVERVIEW

We propose a novel generative model that is able to reason jointly about the 3D scene **layout** and the location / orientation of objects.

PROBABILISTIC MODEL

Our goal is to estimate the most likely configuration $\mathcal{R} = (\theta, \mathbf{c}, w, r, \alpha)$ given the image evidence $\mathcal{E} = \{\mathbf{T}, \mathbf{V}, \mathbf{S}\}$, which comprises vehicle tracklets $\mathbf{T} = \{\mathbf{t}_1, .., \mathbf{t}_N\}$, vanishing points $\mathbf{V} = \{v_f, v_c\}$ and *semantic labels* **S**. Given \mathcal{R} we assume all observations to be independent:

VEHICLE TRACKLETS

RAQUEL URTASUN

TTI CHICAGO

Input:

- Urban video sequences (~ 10 s)
- Monocular, Grayscale @ 10 Hz

Features:

- Vehicle tracklets (tracking-by-detection)
- Semantic scene labels (joint boosting)
- Vanishing points (long lines)

Inference:

- Metropolis-Hastings sampling
- Dynamic programming

Output:

- Street layout (road size, orientation)
- Object locations and orientations
- Intersection crossing activities

TOPOLOGY AND GEOMETRY

$$p(\mathcal{R}) = p(\theta)p(\mathbf{c}, w)p(r)p(\alpha)$$
$$\theta \sim \delta(\theta_{MAP})$$
$$(\mathbf{c}, \log w)^T \sim \mathcal{N}(\boldsymbol{\mu}_{cw}, \boldsymbol{\Sigma}_{cw})$$
$$r \sim \mathcal{N}(\mu_r, \sigma_r)$$
$$\alpha \sim p(\alpha)$$

- Road parameters: $\mathcal{R} = (\theta, \mathbf{c}, w, r, \alpha)$
- Scene layout: $\theta \in \{1, ..., 7\}$
- Intersection center: $\mathbf{c} \in \mathbb{R}^2$
- Street width: $w \in \mathbb{R}_+$

PRIOR

- Scene rotation: $r \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
- Crossing street angle: $\alpha \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$

VANISHING POINTS

- $p(v_f|\mathcal{R}) \propto \delta_f \mathcal{N}(v_f|\mu_f, \sigma_f) + \text{const}$ $p(v_c|\mathcal{R}) \propto \delta_c \mathcal{N}(v_c|\mu_c, \sigma_c) + \text{const}$
- Forward vanishing point: $v_f \in \mathbb{R}$

 $p(\mathbf{t}|l, \mathcal{R}) = \sum p(s_1)p(\mathbf{d}_1|s_1, l, \mathcal{R})$ $s_1, ..., s_M$ M $\int p(s_m|s_{m-1})p(\mathbf{d}_m|s_m, l, \mathcal{R})$ m=2 $p(\mathbf{d}|s, l, \mathcal{R}) = p(\mathbf{o}|s, l, \mathcal{R})p(\mathbf{b}|s, l, \mathcal{R})$ $p(\mathbf{o}|s, l, \mathcal{R}) = \text{Mult}(\mathbf{o}|\boldsymbol{\pi}_o)$ $p(\mathbf{b}|s, l, \mathcal{R}) \propto \mathcal{N}(\boldsymbol{\pi}(\mathbf{b})|\boldsymbol{\mu}_b, \boldsymbol{\Sigma}_b) + \text{const}$

- Tracklet: $\mathbf{t} = \{\mathbf{d}_1, ..., \mathbf{d}_M\}$
- Lane: $l \in \{1, ..., K(K-1) + 2K\}$
- Location on lane: $s \in \mathbb{N}$
- Detection: $\mathbf{d} = (\mathbf{o} \in \{1, ..., 8\}, \mathbf{b} \in \mathbb{R}^4)$

SEMANTIC LABELS

 $p(\mathbf{S}|\mathcal{R}) \propto \exp(\gamma \sum S_{u,v}^{(c)})$ c $(u,v)\in\mathcal{S}_c$

• Class: $c \in \{road, building, sky\}$ • Pixels of reprojected model: S_c

• Crossing vanishing point: $v_c \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ • Existance variables: $\delta_f, \delta_c \in \{0, 1\}$

• Scene label probability: $S_{u,v}$

We model street scenes in **bird's eye perspective** using 7 scene layouts θ (left) and the following geometry parameters \mathcal{R} (right):

- Center of intersection c
- Street width *w*
- Scene rotation *r*
- Crossing street angle α

We model the set of possible vehicle locations with lanes connecting the streets and parking spots at the road side:

RESULTS

Automatically inferred scene descriptions: Tracklets from all frames superimposed (left). Inference result with θ known (middle) and θ unknown (right). The inferred intersection layout is shown in gray, ground truth labels are given in blue and detected activities are depicted in red.

FUTURE WORK

- Find more discriminative cues
- Extend inference (e.g., pedestrians)
- Holistic scene interpretation incorporating buildings, infrastructure, vegetation and other types of vehicles

		C			Ĩ			
		Topology	Location	Ori	entation	Overlap	Activity	
Topology	GP MKL		6.0 m	9	.6 deg	44.9 %	18.4 %	
known	Ours	_	5.8 m	5	.9 deg	53.0 %	11.5 %	
Topology	GP MKL	27.4 %	6.2 m	2	1.7 deg	39.3 %	28.1 %	
unknown	Ours	70.8 %	6.6 m	7	.2 deg	48.1 %	16.6 %	
Oracle	Stereo	92.9 %	4.4 m	6.6 deg		62.7 %	8.0 %	
Topology and Geometry Estimation: Errors / Accuracies with respect to GP-Baseline and Stereo								
					Error			
	Felzenszwalb et al. (raw)				32.6 °			
	Felz	Felzenszwalb et al. (smoothed)						
	Our	α method (θ unknown)			15.7 °			
	Our	r method (θ known)			13.7 °			
					•			

Orientation Estimation: Compared to state-of-the-art object detection we decrease angular orientation errors of moving objects by using context from our model. Measured in bird's eye view.