

StereoScan: Dense 3d in Real-time

Andreas Geiger, Julius Ziegler, Christoph Stiller

KARLSRUHE INSTITUTE OF TECHNOLOGY

Contents

Motivation and Related Work

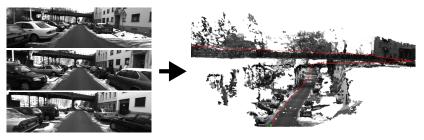
StereoScan: Approach

Experimental Evaluation / Future Work

Contents

Motivation and Related Work

StereoScan: Approach



Motivation

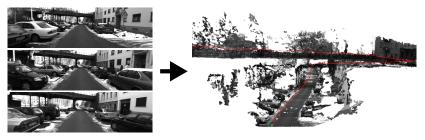
stereo sequence

3d reconstruction

Goal:

Real-time 3d from stereo video on a single CPU

Applications:

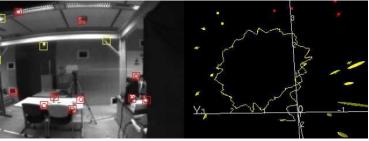

- Environment mapping / place recognition
- Scene understanding

Motivation

stereo sequence

3d reconstruction

Goal:


Real-time 3d from stereo video on a single CPU

Applications:

- Environment mapping / place recognition
- Scene understanding

Related Work

[MonoSLAM, Davison et al.]

Simultaneous Localization and Mapping

- Real-time systems exist
- Mostly sparse features
- Focus: loop-closure

Related Work

[3d Recording for Archeological Fieldwork, Pollefeys et al.]

[Building Rome in a Day, Agarwal et al.]

Structure-from-Motion

- Monocular ⇒ requires motion
- Multiple views of a single object
- Computationally demanding

Related Work

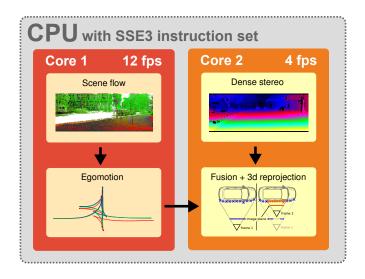
[Stixel World, Badino et al.]

Stixel World

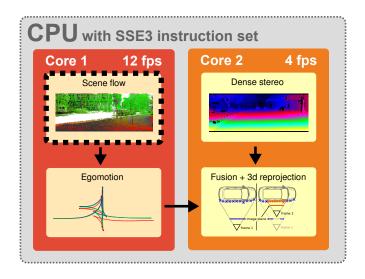
- Compact medium-level representation
- Integration: Multiple Kalman filters
- Can not represent overhanging structures or strongly curved roads

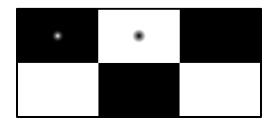
Contents

Motivation and Related Work

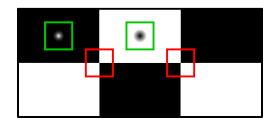


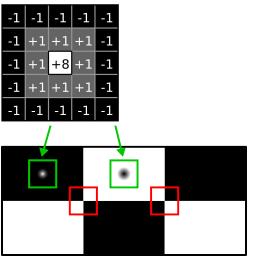
StereoScan: Approach

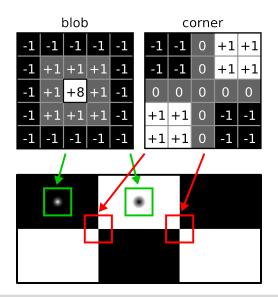

```
StereoScan - Overview
```

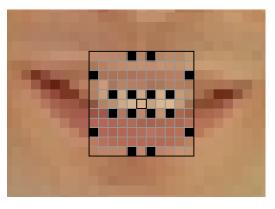
StereoScan - Scene Flow

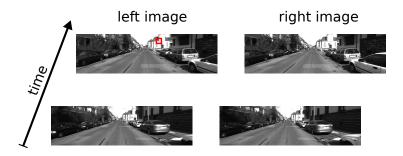


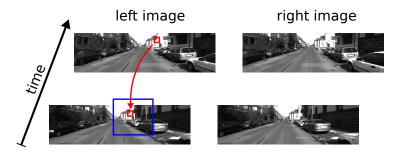


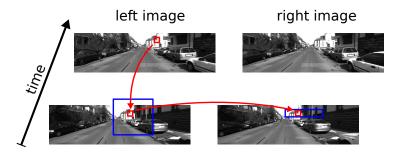


blob

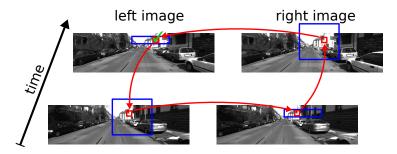





- 16 locations within 11 × 11 block window
- $\left(\frac{\partial I}{\partial u}, \frac{\partial I}{\partial v}\right) \Rightarrow$ 32 bytes per descriptor
- Efficient Sum-of-Absolute-Differences (SAD) via SIMD

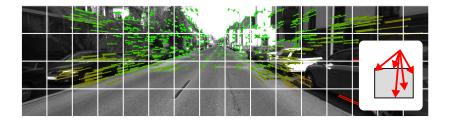

- Detect interest points using non-maximum-suppression
- Match 4 images in a 'space-time' circle
- Use epipolar constraints for left ↔ right matching
- Accept if last feature coincides with first feature


- Detect interest points using non-maximum-suppression
- Match 4 images in a 'space-time' circle
- Use epipolar constraints for left ↔ right matching
- Accept if last feature coincides with first feature


- Detect interest points using non-maximum-suppression
- Match 4 images in a 'space-time' circle
- Use epipolar constraints for left ↔ right matching
- Accept if last feature coincides with first feature

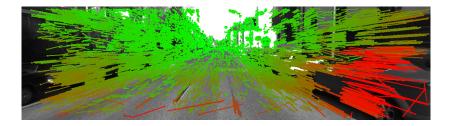
- Detect interest points using non-maximum-suppression
- Match 4 images in a 'space-time' circle
- Use epipolar constraints for left ↔ right matching
- Accept if last feature coincides with first feature

- Detect interest points using non-maximum-suppression
- Match 4 images in a 'space-time' circle
- Use epipolar constraints for left \leftrightarrow right matching
- Accept if last feature coincides with first feature



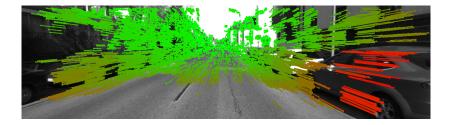
Fast feature matching:

- 1st: Match a sparse set of interest points within each class
- Build statistics over likely displacements within each bin
- Use this statistics for speeding up 2nd matching stage
- Rejection outliers (Delaunay triangulation)



Fast feature matching:

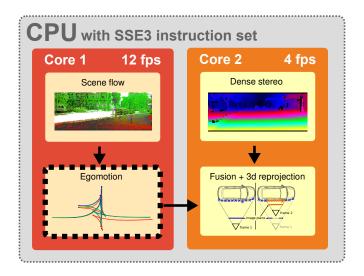
- 1st: Match a sparse set of interest points within each class
- Build statistics over likely displacements within each bin
- Use this statistics for speeding up 2nd matching stage
- Rejection outliers (Delaunay triangulation)

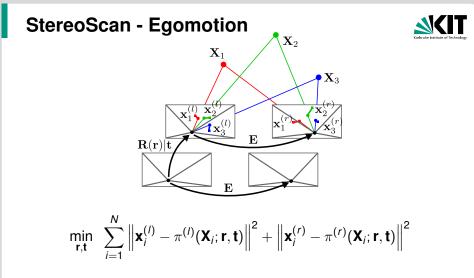


Fast feature matching:

- 1st: Match a sparse set of interest points within each class
- Build statistics over likely displacements within each bin
- Use this statistics for speeding up 2nd matching stage

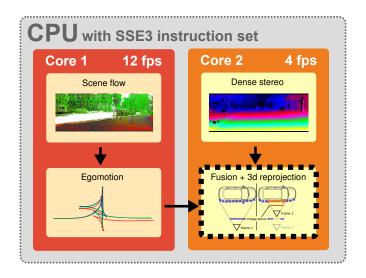
Rejection outliers (Delaunay triangulation)



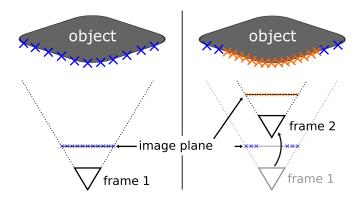

Fast feature matching:

- 1st: Match a sparse set of interest points within each class
- Build statistics over likely displacements within each bin
- Use this statistics for speeding up 2nd matching stage
- Rejection outliers (Delaunay triangulation)

```
StereoScan - Egomotion
```

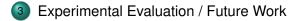
Minimize reprojection errors (Gauss-Newton + RANSAC)
Kalman Filter (constant acceleration model)

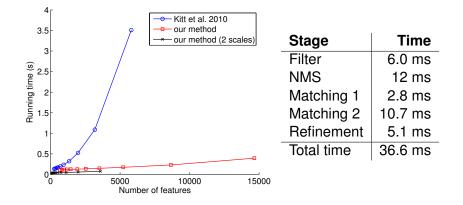

```
StereoScan - 3D Fusion
```


StereoScan - 3D Fusion

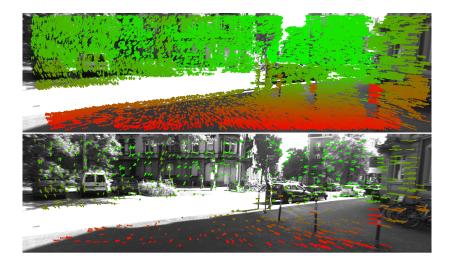
- Greedy pixel association by reprojection into next frame
- Depth fusion based on stereo uncertainty

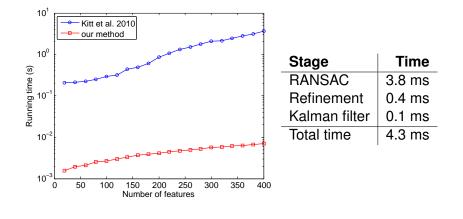
Contents

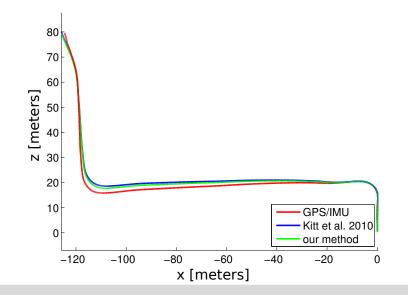




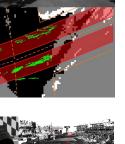
StereoScan: Approach


Experiments - Scene Flow


Experiments - Scene Flow


Experiments - Egomotion Estimation

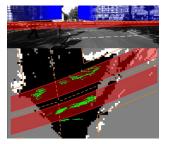
Experiments - Egomotion Estimation



Conclusion:

- Proposed a real-time 3D reconstruction algorithm
- Real-time on a single CPU
- Large-scale stereo imagery
- Code: www.cvlibs.net

- Handle dynamic objects
- Integrate multiple frames
- 3d urban scene understanding (CVPR'11)
- Thank you!



Conclusion:

- Proposed a real-time 3D reconstruction algorithm
- Real-time on a single CPU
- Large-scale stereo imagery
- Code: www.cvlibs.net

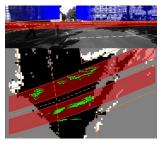
- Handle dynamic objects
- Integrate multiple frames
- 3d urban scene understanding (CVPR'11)
- Thank you!



Conclusion:

- Proposed a real-time 3D reconstruction algorithm
- Real-time on a single CPU
- Large-scale stereo imagery
- Code: www.cvlibs.net

- Handle dynamic objects
- Integrate multiple frames
- 3d urban scene understanding (CVPR'11)
- Thank you!



Conclusion:

- Proposed a real-time 3D reconstruction algorithm
- Real-time on a single CPU
- Large-scale stereo imagery
- Code: www.cvlibs.net

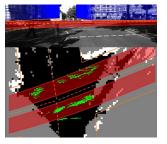
- Handle dynamic objects
- Integrate multiple frames
- 3d urban scene understanding (CVPR'11)
- Thank you!



Conclusion:

- Proposed a real-time 3D reconstruction algorithm
- Real-time on a single CPU
- Large-scale stereo imagery
- Code: www.cvlibs.net

- Handle dynamic objects
- Integrate multiple frames
- 3d urban scene understanding (CVPR'11)
- Thank you!



Conclusion:

- Proposed a real-time 3D reconstruction algorithm
- Real-time on a single CPU
- Large-scale stereo imagery
- Code: www.cvlibs.net

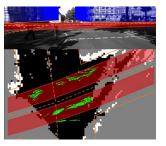
- Handle dynamic objects
- Integrate multiple frames
- 3d urban scene understanding (CVPR'11)
- Thank you!



Conclusion:

- Proposed a real-time 3D reconstruction algorithm
- Real-time on a single CPU
- Large-scale stereo imagery
- Code: www.cvlibs.net

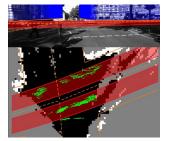
- Handle dynamic objects
- Integrate multiple frames
- 3d urban scene understanding (CVPR'11)
- Thank you!



Conclusion:

- Proposed a real-time 3D reconstruction algorithm
- Real-time on a single CPU
- Large-scale stereo imagery
- Code: www.cvlibs.net

- Handle dynamic objects
- Integrate multiple frames
- 3d urban scene understanding (CVPR'11)
- Thank you!


Conclusion:

- Proposed a real-time 3D reconstruction algorithm
- Real-time on a single CPU
- Large-scale stereo imagery
- Code: www.cvlibs.net

Future Work:

- Handle dynamic objects
- Integrate multiple frames
- 3d urban scene understanding (CVPR'11)

Thank you!

