

A Generative Model for 3D Urban Scene Understanding from Movable Platforms

Andreas Geiger*, Martin Lauer*, Raquel Urtasun**

*KARLSRUHE INSTITUTE OF TECHNOLOGY

**TOYOTA TECHNOLOGICAL INSTITUTE AT CHICAGO

3D Urban Scene Understanding

Related Work

Urban Scene Segmentation

- Semantic categories: road, vehicles, building, sky
- Joint detection and segmentation [Wojek 2008]
- Appearance combined with SfM [Sturgess 2009]

Geometric Methods

- 3D from single images [Hoiem 2007, Saxena 2009]
- Incorporating laws of physics [Gupta 2010]

Activity Recognition

- Extraction of typical activity patterns in 2D optical flow
- Non-parametric clustering [Wang 2009, Kuettel 2010]

- Topology and geometry of the scene
- Semantic information (e.g., traffic situation)
- Probabilistic generative model of 3D urban scenes
- Static features: Building facades
- Dynamic features: Moving vehicles

- Topology and geometry of the scene
- Semantic information (e.g., traffic situation)
- Probabilistic generative model of 3D urban scenes
- Static features: Building facades
- Dynamic features: Moving vehicles

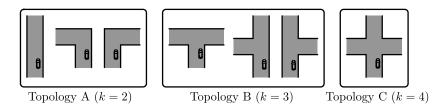
- Topology and geometry of the scene
- Semantic information (e.g., traffic situation)
- Probabilistic generative model of 3D urban scenes
- Static features: Building facades
- Dynamic features: Moving vehicles

- Topology and geometry of the scene
- Semantic information (e.g., traffic situation)
- **Probabilistic generative model** of 3D urban scenes
- Static features: Building facades
- Dynamic features: Moving vehicles

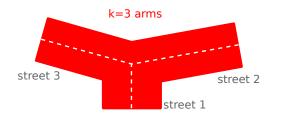
- Goal: Infer from short video sequences (moving observer)
 - Topology and geometry of the scene
 - Semantic information (e.g., traffic situation)
- **Probabilistic generative model** of 3D urban scenes
- Static features: Building facades
- **Dynamic features:** Moving vehicles

- Goal: Infer from short video sequences (moving observer)
 - Topology and geometry of the scene
 - Semantic information (e.g., traffic situation)
- **Probabilistic generative model** of 3D urban scenes
- Static features: Building facades
- Dynamic features: Moving vehicles

Topology Model

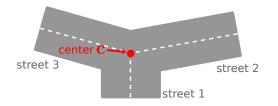


Reasoning in bird's eye perspective

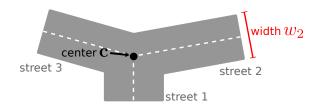


• k ... number of intersection arms

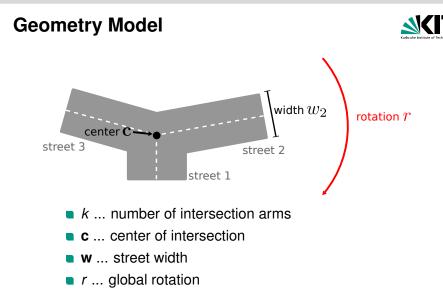
- c ... center of intersection
- w ... street width
- r ... global rotation
- o ... relative street orientation



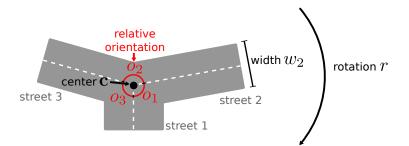
- k ... number of intersection arms
- **c** ... center of intersection
- w ... street width
- r ... global rotation
- o ... relative street orientation



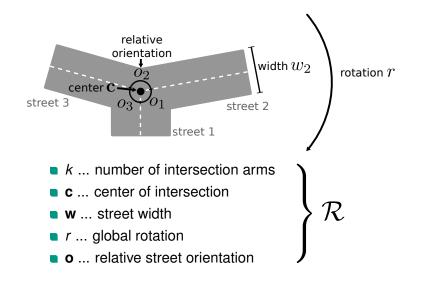
- k ... number of intersection arms
- **c** ... center of intersection
- w ... street width
- r ... global rotation
- o ... relative street orientation



o ... relative street orientation

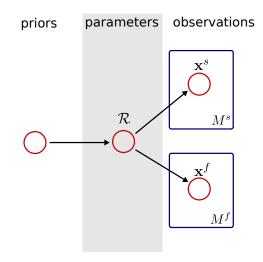


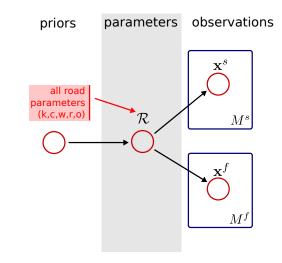
- *k* ... number of intersection arms
- **c** ... center of intersection
- w ... street width
- r ... global rotation
- o ... relative street orientation

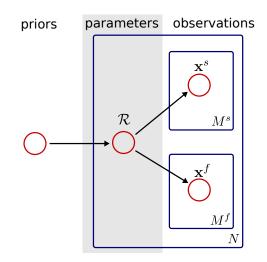


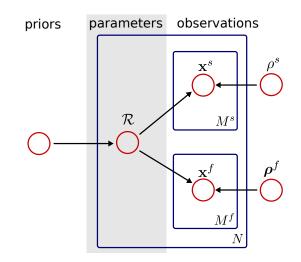
Observations

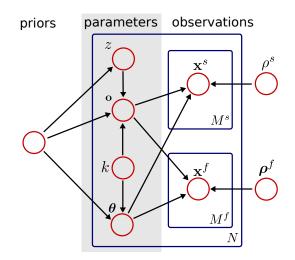
- Static features: Occupancy grids. For each cell, a variable indicates if it is occupied (+1), unobserved (0) or free (-1).
- Dynamic features: Sparse 3D scene flow
- Registration using stereo visual odometry

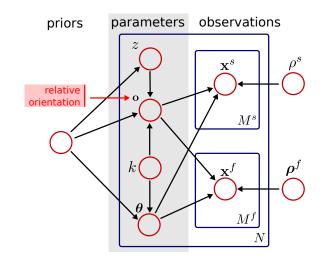


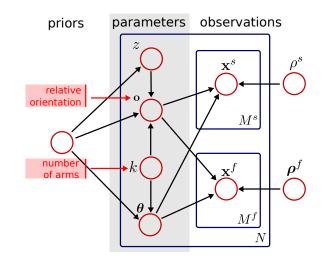


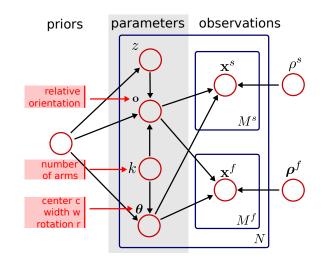


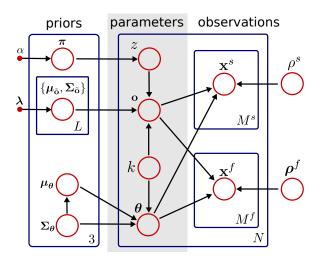


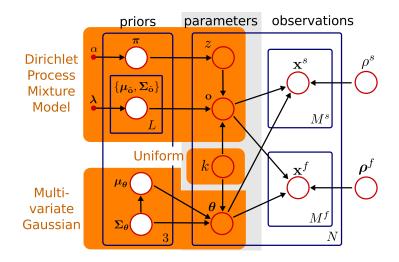


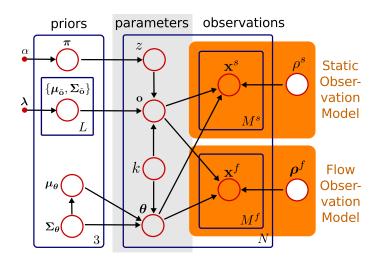








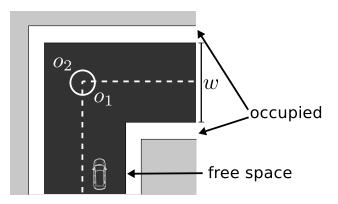




Likelihood: Static Features

Static observation likelihood

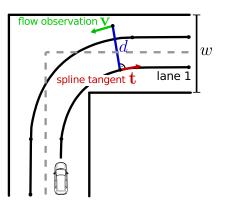
 $p(\mathbf{x}^{s}|\mathbf{o}, \boldsymbol{\theta}, \boldsymbol{\rho}^{s}) \propto \exp\{\beta f(\mathbf{x}^{s}, \mathbf{o}, \boldsymbol{\theta}, \boldsymbol{\rho}^{s})\}$



Likelihood: Dynamic Features

• Flow observation likelihood

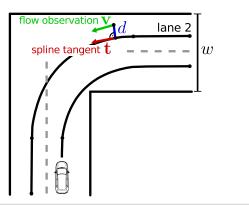
$$p(\mathbf{x}^{f}|\mathbf{0}, \boldsymbol{ heta}, \boldsymbol{
ho}^{f}) \propto \max_{i} \exp\left\{-rac{d_{i}^{2}}{2
ho_{f1}^{2}} - rac{\|\mathbf{v} - \mathbf{t}_{i}\|_{2}^{2}}{2
ho_{f2}^{2}}
ight\}$$



Likelihood: Dynamic Features

• Flow observation likelihood

$$p(\mathbf{x}^f | \mathbf{0}, \boldsymbol{\theta}, \boldsymbol{\rho}^f) \propto \max_i \exp\left\{-rac{d_i^2}{2
ho_{f1}^2} - rac{\|\mathbf{v} - \mathbf{t}_i\|_2^2}{2
ho_{f2}^2}
ight\}$$



parameters

0

k

observations

 M^s

 M^{j}

 ρ^{f}

 \mathbf{x}^{δ}

 \mathbf{x}^{j}

priors

 $\{\mu_{\tilde{\mathbf{o}}}, \mathbf{\Sigma}_{\tilde{\mathbf{o}}}\}$

 μ_{θ}

Orientation:

Gibbs sampling with Dirichlet Process Mixture Model (MAP)

- Center/rotation/width: Maximum Likelihood
- Observation model: MH sampling (MAP)

Inference:

- Reversible Jump MCMC:
- Local MH moves
- Global MH moves
- Reversible jumps

A Generative Model for 3D Urban Scene Understanding

11/18

parameters

0

k

observations

 M^{s}

 M^{j}

 ρ^{f}

 \mathbf{x}^{δ}

 \mathbf{x}^{j}

priors

 π

 $\{\mu_{\tilde{\mathbf{o}}}, \Sigma_{\tilde{\mathbf{o}}}\}$

 μ_{θ}

L

λ

Learning:

Orientation:

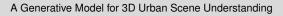
Gibbs sampling with Dirichlet Process Mixture Model (MAP)

Center/rotation/width: Maximum Likelihood

Observation model:
 MH sampling (MAP)

Inference:

- Reversible Jump MCMC:
- Local MH moves
- Global MH moves
- Reversible jumps



Learning:

Orientation:

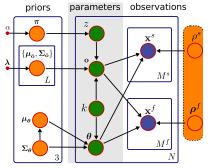
Gibbs sampling with Dirichlet Process Mixture Model (MAP)

- Center/rotation/width: Maximum Likelihood
- Observation model: MH sampling (MAP)

Inference:

- Reversible Jump MCMC:
- Local MH moves
- Global MH moves
- Reversible jumps

11/18



Learning:

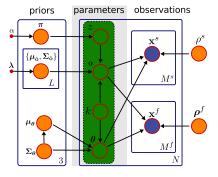
Orientation:

Gibbs sampling with Dirichlet Process Mixture Model (MAP)

- Center/rotation/width: Maximum Likelihood
- Observation model: MH sampling (MAP)

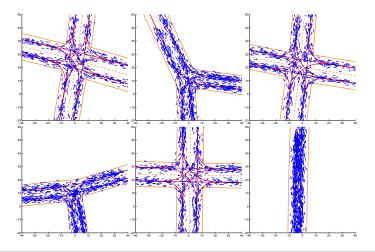
Inference:

- Reversible Jump MCMC:
- Local MH moves
- Global MH moves
- Reversible jumps

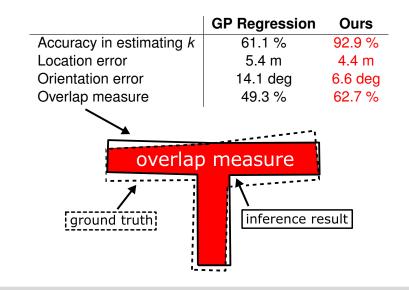


Sampling the Model

Samples from the prior:



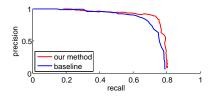
Estimating Geometry and Topology

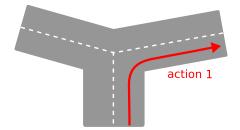


Improving Object Detection

Re-weight scores of [Felzenszwalb08] using spatial prior

Increase in average precision from 71.3 % to 74.9 %

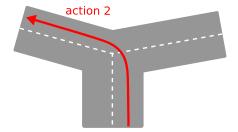




- Activity: k(k-1) dimensional binary vector **a**
- Error measure: Normalized Hamming distance

Results:

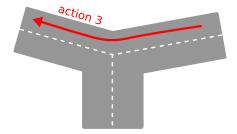
	GP regression	Ours
Hamming distance	0.16	



- Activity: k(k-1) dimensional binary vector **a**
- Error measure: Normalized Hamming distance

Results:

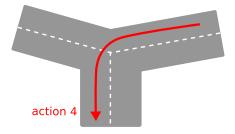
	GP regression	Ours
Hamming distance	0.16	



- Activity: k(k-1) dimensional binary vector **a**
- Error measure: Normalized Hamming distance

Results:

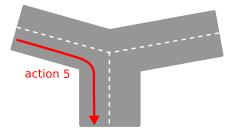
	GP regression	Ours
Hamming distance	0.16	



- Activity: *k*(*k* − 1) dimensional binary vector **a**
- Error measure: Normalized Hamming distance

Results:

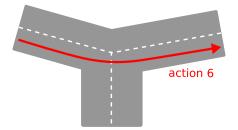
	GP regression	Ours
Hamming distance	0.16	



- Activity: *k*(*k* − 1) dimensional binary vector **a**
- Error measure: Normalized Hamming distance

Results:

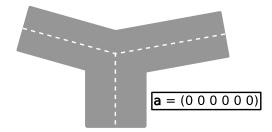
	GP regression	Ours
Hamming distance	0.16	



- Activity: k(k-1) dimensional binary vector **a**
- Error measure: Normalized Hamming distance

Results:

	GP regression	Ours
Hamming distance	0.16	

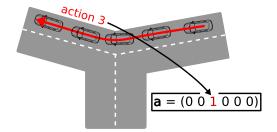


■ Activity: *k*(*k* − 1) dimensional binary vector **a**

Error measure: Normalized Hamming distance

Results:

	GP regression	Ours
Hamming distance	0.16	

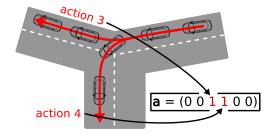


• Activity: k(k-1) dimensional binary vector **a**

Error measure: Normalized Hamming distance

Results:

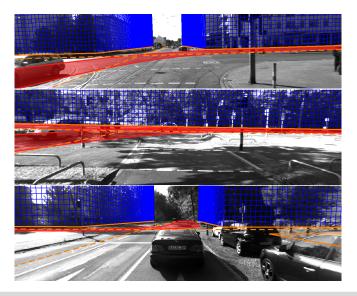
	GP regression	Ours
Hamming distance	0.16	

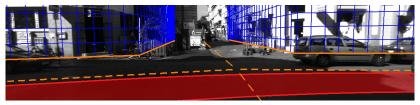


- Activity: k(k-1) dimensional binary vector **a**
- Error measure: Normalized Hamming distance
- Results:

	GP regression	Ours
Hamming distance	0.16	0.08

Inference Results



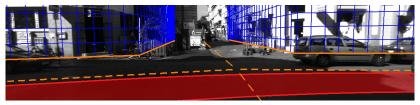


Conclusion:

- Generative model of 3D urban scenes
- Static and dynamic features
- Improved object detection & activity recognition

Future work:

- Features: Vanishing points, scene labels, ...
- Joint object and scene layout reasoning
- Scene understanding with a single camera



Conclusion:

- Generative model of 3D urban scenes
- Static and dynamic features
- Improved object detection & activity recognition

Future work:

- Features: Vanishing points, scene labels, ...
- Joint object and scene layout reasoning
- Scene understanding with a single camera



Conclusion:

- Generative model of 3D urban scenes
- Static and dynamic features
- Improved object detection & activity recognition

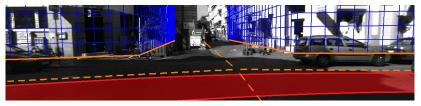
- Features: Vanishing points, scene labels, ...
- Joint object and scene layout reasoning
- Scene understanding with a single camera



Conclusion:

- Generative model of 3D urban scenes
- Static and dynamic features
- Improved object detection & activity recognition

- Features: Vanishing points, scene labels, ...
- Joint object and scene layout reasoning
- Scene understanding with a single camera



Conclusion:

- Generative model of 3D urban scenes
- Static and dynamic features
- Improved object detection & activity recognition

- Features: Vanishing points, scene labels, ...
- Joint object and scene layout reasoning
- Scene understanding with a single camera



Conclusion:

- Generative model of 3D urban scenes
- Static and dynamic features
- Improved object detection & activity recognition

- Features: Vanishing points, scene labels, ...
- Joint object and scene layout reasoning
- Scene understanding with a single camera

Geometry Model

Unique orientation vector **o**, constrained to the Δ^{k-1} simplex

