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I Related Work A\KIT

Urban Scene Segmentation
m Semantic categories: road, vehicles, building, sky
a Joint detection and segmentation [Wojek 2008]
a Appearance combined with SfM [Sturgess 2009]
Geometric Methods
a 3D from single images [Hoiem 2007, Saxena 2009]
m Incorporating laws of physics [Gupta 2010]
Activity Recognition
m Extraction of typical activity patterns in 2D optical flow
a Non-parametric clustering [Wang 2009, Kuettel 2010]
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I Our Approach AT

a Goal: Infer from short video sequences (moving observer)

a Topology and geometry of the scene
m Semantic information (e.g., traffic situation)

a Probabilistic generative model of 3D urban scenes
m Static features: Building facades
a Dynamic features: Moving vehicles
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I Topology Model T
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Topology A (k = 2) Topology B (k = 3) Topology C (k =4)

a Reasoning in bird’s eye perspective
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I Geometry Model T
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k=3 arms

street 3 street 2

@ k ... number of intersection arms
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I Geometry Model

Karlsruhe Institute of Technology

street 3 street 2

@ k ... number of intersection arms
a ¢ ... center of intersection
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I Geometry Model

width W2

street 3 street 2

@ k ... number of intersection arms
a ¢ ... center of intersection
a w ... street width
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Geometry Model

Karlsruhe Institute of Technology

width W3 rotation 1

street 3 street 2

® k... number of intersection arms
@ c ... center of intersection

a w ... street width

® r ... global rotation
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relative
orientation
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street 3 street 2

® k... number of intersection arms
@ c ... center of intersection
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® r ... global rotation
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Geometry Model AT

Karlsruhe Institute of Technology

relative
orientation

width W3 rotation 1

street 3 street 2

® k... number of intersection arms

@ c ... center of intersection

a w ... street width R
® r ... global rotation

m o ... relative street orientation
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Observations AN {]]
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unobserved
y

m Static features: Occupancy grids. For each cell, a variable
indicates if it is occupied (+1), unobserved (0) or free (-1).

a Dynamic features: Sparse 3D scene flow
a Registration using stereo visual odometry
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priors parameters observations
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priors parameters observations

all road
parameters
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I Probabilistic Model
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I Probabilistic Model

priors parameters observations
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I Probabilistic Model (T
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I Probabilistic Model T
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| Probabilistic Model AT
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parameters observations

Dirichlet

Process

Mixture
Model

Multi-
variate
Gaussian
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| Probabilistic Model AT
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I Likelihood: Static Features AT

m Static observation likelihood

p(x°l0, 0, p°) x exp{Sf(x°,0,0,p°%)}

occupied

free space
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| Likelihood: Dynamic Features T

a Flow observation likelihood

p(x’|0. 6, p") o max eXIO{
I

Cd? | —m%}
2 2
207 207

flow observation V,

spline tangent t

lane 1
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| Likelihood: Dynamic Features T

a Flow observation likelihood

2 112
x'10,0, p’) x max exp { — a” _ IV =tlly
p(x'0,0,p') cxmax expy — o5 — "
Pt Pr2
flow observation V, d lane 2
spline tangent t w
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I Learning & Inference AT

Learning:

a Orientation:
Gibbs sampling with Dirichlet
parameters observations Process Mixture Model (MAP)
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Learning:

a Orientation:
Gibbs sampling with Dirichlet
Process Mixture Model (MAP)

a Center/rotation/width:
Maximum Likelihood
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I Learning & Inference IT

Learning:

= Orientation:
Gibbs sampling with Dirichlet
priors parameters observations Process Mixture Model (MAP)

»~  a Center/rotation/width:
) Maximum Likelihood

a Observation model:
MH sampling (MAP)
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a Reversible Jump MCMC:
a Local MH moves

a Global MH moves

a Reversible jumps
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I Sampling the Model

a Samples from the prior:
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I Estimating Geometry and Topology AN {]]
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| GP Regression  Ours

Accuracy in estimating k 61.1 % 92.9 %
Location error 54m 4.4 m
Orientation error 14.1 deg 6.6 deg
Overlap measure 49.3 % 62.7 %

I ———
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I Improving Object Detection AT
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a Re-weight scores of [Felzenszwalb08] using spatial prior

A e i

m Increase in average precision from 71.3 % to 74.9 %
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I Extracting Semantic Activities (T

aaaaaaaaaaaaaaaaaaaaaaaaaaa

action 1
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action 6
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[a=(000000)]

a Activity: k(k — 1) dimensional binary vector a
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I Extracting Semantic Activities (T
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actiOn 3

[a=(001000)]

m Activity: k(k — 1) dimensional binary vector a
a Error measure: Normalized Hamming distance
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I Extracting Semantic Activities (T
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actiOn 3

[a=(001100)]

action 4

m Activity: k(k — 1) dimensional binary vector a
a Error measure: Normalized Hamming distance

m Results:
| GP regression Ours

Hamming distance | 0.16 0.08
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Inference Results
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Conclusion:
a Generative model of 3D urban scenes
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Conclusion:

a Generative model of 3D urban scenes

m Static and dynamic features

m Improved object detection & activity recognition
Future work:

a Features: Vanishing points, scene labels, ...

a Joint object and scene layout reasoning

m Scene understanding with a single camera
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I Geometry Model T
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Unique orientation vector o, constrained to the A*—" simplex
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